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Materials as point patterns

Idea: use discrete point patterns to model solid materials

The points are the "building blocks" of the material, that may or may not have

"internal structure".

Atoms: no internal structure.

Mechanical resonator (such as quartz): internal structure such as shape and

orientation.

Both cases can be treated on equal footing by changing the ambient space of the

pattern.
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Laboratory setting

Mechanical resonator: confined mechanical system with finite set q = {q1, . . . , qN} of

degrees of freedom

We will be concerned with finite and infinite clusters of identical seed resonators

located at a discrete subset L of "oriented points" in the physical space Ed ,

d = 1, 2, 3. We thus view L as a subset of Iso(Ed ).

Quadratic Lagrangian:

LL(q̇, q) = 1
2

∑
x∈L

q̇x · M̂0 · q̇T
x − 1

2

∑
x,x′∈L

qx · Ŵx,x′ (L) · qT
x′ ,

Degrees of freedom observed and quantified using equipment that is rigidly attached

to the frame of the resonator.

The numerical values {q1, . . . , qN} recorded by the local research assistants are not

affected by translations, rotations or reflections of the resonators.

Physics encoded in the relation

L 7→ LL(q̇1, . . . , q̇r , q1, . . . , qr ), q̇ i , q i ∈ RN .
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Laboratory setting

Figure: Example of a physical system addressed in this work. It consist of identical resonators
placed at selected points of the plane and with selected orientations. Assistants observe and
quantify the dynamics of the local degrees of freedom using a local frame rigidly attached to
the resonators.
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Dynamical matrix

Quadratic Lagrangian:

LL(q̇, q) = 1
2

∑
x∈L

q̇x · M̂0 · q̇T
x − 1

2

∑
x,x′∈L

qx · Ŵx,x′ (L) · qT
x′ ,

We encode the dynamics the dynamical matrix:

DL =
∑

x,x′∈L
|x⟩ ⊗ wx,x′ (L)⊗ ⟨x ′| ∈ B(ℓ2(L,CN)),

with

wx,x′ (L) = M̂
− 1

2
0 Ŵx,x′ (L) M̂

− 1
2

0 ∈ MN(C).

In the presence of Galilean invariance, we have the equivariance relation

wg·x,g·x′ (g · L) = wx,x′ (L), g ∈ Iso(Ed ),

which can be used to reduce the expression of the dynamical matrix

DL =
∑

x,x′∈L
|x⟩ ⊗ we,x·x′ (x · L)⊗ ⟨x ′|.

This shows that the entire dynamics is encoded in the MN(C)-valued map

(g ,L) 7→ we,g (L), defined on tuples (g ,L) with g ∈ L.
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Measurement conditions

For precision measurements one needs control over the dynamical matrices:

Continuity: the map (x , x ′,L) 7→ wx,x′ (L) is continuous is an appropriate sense;

Equivariance: wgx,gx′ (gL) = wx,x′ (L);

Finite coupling range: wx,x′ (L) = 0 whenever x ′ · x is outside a compact set.

Claim: such matrices can be measured in a laboratory. Equivariance assures us that it

is enough to focus the observations only on x , x ′ in a compact vicinity of the origin.

By continuitya good approximation of the map L → wx,x′ (L) can be derived by

interpolating a finite sampling of L’s. This assures us that, even for an infinite

architecture, we still have a chance to measure with enough precision every single

coupling matrix of the system.

Goal: find the smallest C∗-algebra that contains the dynamical matrices.
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Delone sets in groups

G locally compact Hausdorff topological group, L ⊂ G closed subset;

L is a Delone set if:

there is a nonempty open set U ⊂ G such that for all g ∈ G : |gU ∩ L| ≤ 1

(U-separated);

there is a compact set K ⊂ G such that for all g ∈ G : |gK ∩ L| ≥ 1 (K -dense);

Classical Delone sets G = Rd :

An (r ,R)-Delone set L ⊂ Rd :

uniformly r -discrete: ∀x ∈ Rd : |B(x , r) ∩ L| ≤ 1,

relatively R-dense: ∀x ∈ Rd : |B(x ,R) ∩ L)| ≥ 1.

Important: we do not assume any translational symmetry for L.
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The hull of a Delone set

The space of C(G) of closed subsets of G carries the Fell topology. For fixed U, the

subset of all U-seperated sets is closed. To describe the physics in a translation

invariant way we enlarge our space to obtain an G -action. Consider the hull of L:

ΩL := {g · L : g ∈ G}.

For L = Zd we have ΩZd = Td but in general it can be quite complicated.

We obtain a continuous crossed product C∗-algebra C(ΩL) ⋊ G , which contains a

larger class of dynamical matrices than we are after. To make it smaller, we need the

notion of a groupoid.

B. Mesland (Leiden), Groupoid C∗-algebras in solid state physics 8 / 26



Motivation Patterns in groups Groupoids C∗-algebras and dynamics of resonators Fermion dynamics

1 Motivation

2 Patterns in groups

3 Groupoids

4 C∗-algebras and dynamics of resonators

5 Fermion dynamics

B. Mesland (Leiden), Groupoid C∗-algebras in solid state physics 8 / 26



Motivation Patterns in groups Groupoids C∗-algebras and dynamics of resonators Fermion dynamics

Groupoids

Groupoids form a class of mathematical objects unifying spaces, groups and

equivalence relations.

They also form a bridge between commutative and noncommutative

topology/geometry

Groupoids arise in many different contexts: dynamics, foliations, number theory and

physics.
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Definition

Definition

A groupoid is a small category in which all morphisms are invertible. More concretely

it is a set G with a subset G(2) ⊂ G × G, a multiplication map G(2) → G, (γ, ξ) 7→ γξ

and an inverse G → G γ 7→ γ−1 such that

(i) (γ−1)−1 = γ for all γ ∈ G,

(ii) if (γ, ξ), (ξ, η) ∈ G(2), then (γξ, η), (γ, ξη) ∈ G(2),

(iii) (γ, γ−1) ∈ G(2) for all γ ∈ G,

(iv) for all (γ, ξ) ∈ G(2), (γξ)ξ−1 = γ and γ−1(γξ) = ξ.

Given a groupoid we denote by G(0) = {γγ−1 : γ ∈ G} the space of units and define

the source and range maps r , s : G → G(0) by the equations

r(γ) = γγ−1, s(γ) = γ−1γ

for all γ ∈ G. The source and range maps allow us to characterise

G(2) =
{
(γ, ξ) ∈ G × G : s(γ) = r(ξ)

}
.
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Topology and equivalence

A topological groupoid is a groupoid G equipped with second countable, locally

compact and Hausdorff topology such that the mulitplication, inversion, source and

range maps are all continuous.

A groupoid G is étale if the range map r : G → G(0) is a local homeomorphism. Étale

groupoids have the useful property that for all x ∈ G(0), the fibres r−1(x) and s−1(x)

are discrete.

There is a notion of Morita equivalence of groupoids. This roughly entails the

existence of a space that admits commuting left and right actions that are free and

proper in the appropriate sense. Morita equivalence is an equivalence relation on

groupoids.
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Examples

Examples of groupoids:

A locally compact space X is a groupoid with G = G(0) = X ;

A locally compact group G is a groupoid with G = G , G(0) = {e} and inversion

and composition determined by the group operation;

Let ∼ be an equivalence relation on X . Then its graph defines a groupoid

G := {(x1, x2) : x1 ∼ x2}, G(0) := {(x , x)}

with

r(x1, x2) = x1, s(x1, x2) = x2, (x1, x2)(x2, x3) = (x1, x3), (x1, x2)
−1 = (x2, x1)

Let G be a locally compact group acting on X by homeomorphisms. Then the

Cartesian product G ⋊ X is a groupoid with

r(g , x) = gx , s(g , x) = x , (h, gx)(g , x) := (hg , x), (g , x)−1 := (g−1, gx).

Morita equivalent to G \ X if the action is free and proper.
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Abstract transversals

Definition

A topological groupoid G admits an abstract transversal if there is a closed subset

X ⊂ G(0) such that

X meets every orbit of the G-action on G(0);

for the relative topologies on X and

GX := {γ ∈ G : s(γ) ∈ X} ⊂ G,

the restrictions r : GX → G(0) and s : GX → X are open maps.

Given an abstract transversal X ⊂ G(0),

G r←− GX
s−→ H

is a G–H groupoid equivalence for H = {γ ∈ GX : r(γ) ∈ X}.

In examples, a non-étale groupoid G often admits a transversal X for which the

groupoid H is étale. Examples of this include transitive groupoids, groupoids from

foliations, Smale spaces, and Delone sets.
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Transversal for the hull crossed product

The continuous groupoid ΩL ⋊ G admits a transversal

Ωe := {ω ∈ ΩL : e ∈ ω}.

Proposition (Enstad-Raum)

If L is uniformly separated then the space Ωe is an abstract transversal for ΩL ⋊ G .

Examples:

For L = Zd ⊂ Rd the tranversal is a single point.

For the pattern {n + λ(ξn − 1
2 )}n∈Z, with the ξn entries drawn randomly and

distinctly from the interval [0, 1] and λ < 1, the transversal is the Hilbert cube

[0, 1]Z.
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Transversal for the hull crossed product

The groupoid

GL := {(x , ω) ∈ G ⋊ Ω0 : x ∈ ω} ⊂ G ⋊ Ω0

is an étale groupoid with compact unit space Ω0.

The groupoid C∗-algebras of G ⋊ ΩL and G are Morita equivalent.

In G ⋊ ΩL the fibers of the range and source maps r , s : G ⋊ ΩL → ΩL are in

bijection with G .

In GL the fibers of the range and source maps are in bijection with L (and its

translates).
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Haar systems

We briefly review the construction of groupoid C∗-algebras.

Definition

A Haar system on a locally compact Hausdorff groupoid G is a set of measures

{νx : x ∈ G(0)} on G such that supp(νx ) = r−1(x) and for all f ∈ Cc (G),∫
G
f (ξ) dνr(η)(ξ) =

∫
G
f (ηξ) dνs(η)(ξ), g(x) :=

∫
G
f (ξ) dνx (ξ) ∈ C(G(0)).

Étale groupoids always have a Haar system given by the counting measure on the

(discrete) fibres r−1(x).

A transformation groupoid G ⋊ X carries a Haar system induced by the Haar

measure on G .
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Groupoid convolution C∗-algebras

Given G with Haar system {νx}x∈G(0) , we can define a ∗-algebra structure on Cc (G):

(f1 ∗ f2)(η) =
∫
G
f (ξ)g(ξ−1η)σ(ξ, ξ−1η)dνr(η)(ξ), f ∗(ξ) = f (ξ−1),

as well as a a family of inner products parametrised by x ∈ G(0):

⟨f , g⟩x :=

∫
f (ξ−1)g(ξ−1)dνxξ.

This gives:

A family of regular representations πx of the ∗-algebra Cc (G) on L2(G, νx )x∈G(0)

by convolution;

the closure of Cc (G) in the norm supx∈G(0) ∥πx (f )∥ gives the reduced groupoid

C∗-algebra C∗
r (G).

Morita equivalent groupoids give rise to Morita equivalent C∗-algebras;

for any C∗-algebra we obtain C∗
r (G,A) = C∗

r (G)⊗ A.
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Pattern groupoid

For a pattern L ⊂ G the left regular representations of C∗(GL,Mn(C)) are supported

on

HL := ℓ2
(
L,CN

)
,

and the representation acts explicitly as

[πL(f )φ](g
′) =

∑
g∈L

f
(
g · (g ′,L)

)
· φ(g), g ′ ∈ L, φ ∈ ℓ2

(
L,CN

)
.

In particular one verifies that

πL(f )(|g ′⟩ ⊗ α) =
∑
g∈L

f
(
g · (g ′,L)

)
· |g⟩ ⊗ α, α ∈ CN .

Recall the expression of a generic dynamical matrix

DL =
∑

x,x′∈L
|x⟩ ⊗ we,x·x′ (x · L)⊗ ⟨x ′|

and, obviously,

DL(α⊗ |x ′⟩) =
∑
x∈L

we,x·x′ (x · L) · α⊗ |x⟩.
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Pattern groupoid

The transversal groupoid of a pattern reproduces the dynamical matrices.

Under the "physicality" assumptions, it is the smallest C∗-algebra that contains all of

them.

For systems with internal structure we use patterns in Iso(Rd ).

For systems without internal structure we use Delone sets in Rd

The K -theory and representation theory of such configurations are controlled by

Morita equivalence classes of patterns, or rather, their groupoids.
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Hamiltonians in K-theory

In the case of a Delone set in G = Rd the groupoid GL can be used to model the

dynamics of a single fermion hopping on L.

A 2-cocycle σ : G × G → S1 can be used to model the presence of a magnetic field.

Observables: the twisted groupoid C∗-algebra C∗(G, σ).

Theorem (Bellissard-Kellendonk)

The C∗-algebra C∗(G, σ) contains all Galilean invariant Hamiltonians for the dynamics

of a single fermion.

Proposition (Freed–Moore, Thiang, Bourne–Carey–Rennie, Kellendonk, Kubota)

Suppose that h = h∗ ∈ C∗
r (G, σ) has a spectral gap. Then h determines a class in

K0(C∗
r (G, σ)). If h has a chiral symmetry, then h determines a class in K1(C∗

r (G, σ)).

Numerical invariants arise via

K∗(C
∗
r (G, σ))× KK∗(C∗

r (G, σ),C(Ω0))→ K0(C(Ω0))

∫
−→ C.

Here
∫

is the integral associated to a translation invariant measure on Ω0.
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Fundamental class in KK-theory

To obtain a class in KKd (C
∗(G, σ),C(Ω0)) we consider

The coordinate functions Xk : G → R, (ω, x) 7→ xk

The spinor bundle Sd of Rd

D :=
∑d

k=1 γkXk : Cc (G, Sd )→ Cc (G, Sd ) extends to a KK -cycle (E ,D)

The class [(E ,D)] ∈ KKd (C
∗(G, σ),C(Ω0)) gives the map

Kd (C
∗(G, σ)) ⊗[D]−−−→ K0(C(Ω0))

Invariant measures on Ω0 give maps K0(C(Ω0))→ C and invariants of C∗(G, σ).
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Invariants on the boundary

Restriction to boundary of the material: dropping the coordinate xd .

Consider

The subgroupoid H := {(ω, x) ∈ G : xd = 0} ⊂ G, and C∗(H, σ),

The function Xd : Cc (G)→ Cc (G) extends to a KK -cycle (X , S).

The class [(X , S)] ∈ KK1(C∗(G, σ),C∗(H, σ)) gives a map

Kd (C
∗(G, σ)) ⊗[S]−−−→ Kd−1(C

∗(H, σ)).

The boundary algebra C∗(H, σ) carries its own fundamental cycle (Y ,T ) built from

X1, · · · ,Xd−1 and the spinor bundle Sd−1 on Rd−1.
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Invariants on the boundary

Theorem (Bourne–Mesland 2018)

There is a commutative diagram

Kd (C
∗(G, σ)) ⊗Xd−−−→Kd−1(C

∗(H, σ))y⊗D

y⊗T

K0(C(Ω0)) = K0(C(Ω0)).

Every K -theoretic invariant of the bulk algebra C∗(G, σ) has a corresponding invariant

in the edge algebra C∗(H, σ). Their numerical invariants computed from the

fundamental KK -class and an invariant measure on Ω0 coincide.
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N-fermion blow-up

To model N fermions we consider the topological space

Ω
(N)
L := {(ω,U, χ) : ω ∈ ΩL, U ⊂ Lω , |U| = N, χ : {1, · · · ,N} ∼−→ U}

The map

Ω
(N)
L → ΩL, (ω,U, χ) 7→ ω,

is an infinite covering map.

The symmetric group SN acts on Ω
(N)
L by deck transformations via

(ω,U, χ) · γ := (ω,U, χ ◦ γ).

The the blow-up of ΩL ⋊ Rd by Ω
(N)
L carries a 2-action by SN .
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N-fermion dynamics

Restricting the cover Ω
(N)
L → ΩL to

Ω
(N)
0 := {(ω,U, χ) : U ⊂ Lω , |U| = N, χ : {1, · · · ,N} ∼−→ U, χ(1) = 0}

gives a cover Ω
(N)
0 → Ω0. We denote the blow-up of the groupoid G by Ω

(N)
0 by GN .

The groupoid GN also carries a 2-action of SN , but it does not arise from deck

transformations.

Theorem (Mesland-Prodan 2021)

Let σ : SN → {±1} be the sign representation. The C∗-algebra M(C∗
σ(GN ,C))

contains all Galilean invariant Hamiltonians for the dynamics of N-fermions.

Work in progress: the bi-equivariant groupoid C∗-algebras C∗
σ(GN ,C) and

C∗
σ(Ω

(N)
L ⋊ Rd ,C) are Morita equivalent in a way compatible with the 2-action of SN .
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Outlook

Use point patterns in groups to model configurations of resonators with or

without internal structure;

Single out a family of dynamical matrices or Hamiltonians;

The transversal groupoid C∗-algebra of a pattern is the smallest C∗-algebra

containing the dynamical matrices;

K -theory and representation theory are governed by the Mortia equivalence class

of the pattern groupoid;

Topological phases and bulk boundary correspondence can be understood in this

context;

Interacting systems of finitely many particles can be interpreted through a

blow-up construction.
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