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Abstract

Mobile participatory sensing has opened the doors to numerous sensing scenarios

that were unimaginable few years ago. In absence of protection mechanisms,

most of these applications may however endanger the privacy of the participants

and end users. In this manuscript, we highlight both sources and targets of

these threats to privacy and analyze how they are addressed in recent privacy-

preserving mechanisms tailored to the characteristics of participatory sensing.

We further provide an overview of current trends and future research challenges

in this area.
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1. Introduction

Mobile participatory sensing1 takes advantage of the sensing, processing, and

storage resources available in current mobile phones to gain insights about the

participants and their environment. The collected information enables a wide

1Without loss of generality, we use the generic term mobile participatory sensing to des-

ignate applications using mobile phones as sensors (or as data sink for interfaced sensors)

where participants contribute sensor data. The notion of participatory sensing therefore in-

cludes mobiscopes [1] and opportunistic sensing [2], spatial crowdsourcing [3], and mobile

crowdsensing [4]. It also covers specific terminologies focusing on particular monitoring sub-

jects, such as urban sensing [2], participatory urbanism [5], citizen sensing [6], people-centric

sensing [1, 2], and community sensing [7].
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range of innovative applications, ranging from people-centric to environmental-

centric scenarios. With the help of people-centric applications, participants

can monitor and document health-related issues, such as diet behaviors [8, 9,

10, 11], individual exposure and impact to air pollution [12, 13, 14, 15, 16],

depression [17], physical activities [17, 18], sport experiences [19, 20, 21, 22, 23],

and stress conditions [24]. Using the sensors embedded in their mobile phone,

participants can also enhance social media [25, 26, 27] or contribute to price

auditing applications [28, 29]. Additionally, they can contribute to monitor the

mobility of crowds at large scale events, such as concerts or festivals [30, 31]. In

contrast, environmental-centric applications crowdsource the collection of data

about, e.g., urban air pollution [12, 5, 32, 33, 34, 35, 36], noise pollution [12,

37, 38, 39, 40, 41, 42, 43], weather conditions [44], events in the city [45], bus

arrival times [46], or thermal columns [47].

Most of these applications have however been conceived as research proto-

types and their real-world deployment still remains limited in terms of either

number of participants or deployment duration as shown in Table 1. Neverthe-

less, comparable commercial products are increasingly gaining popularity among

the population. For example, mobile applications, such as RunKeeper [48], En-

domondo [49], and Nike+ Running [50] documenting running activities and

MyFitnessPal [51] measuring calorie intakes totalize between 10 and 50 million

installs only on the Google Play store. Connected bracelets, such as FitBit

One [52], Jawbone Up [53], and Nike+ FuelBand [54], has represented a 330

million US dollars market in 2013 [55]. These statistics therefore confirm the

existence and constant growth of the Quantified Self community [56, 57, 58, 59],

which members rely on technology to better quantify, e.g., their fitness, perfor-

mance, or sleep quality. Similarly, a commercial mobile micro-jobbing applica-

tion called AppJobber [60] that relies on, e.g., pictures taken by participants

counts over 100,000 registered users across di↵erent European countries that

is more than most deployments compiled in Table 1. Consequently, mobile

participatory sensing applications are not only limited to small-scale research

prototypes, but are increasingly integrated in our daily life at a larger scale.
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Table 1: Examples of real-world sensing deployments

Applications Crowd size Duration Location

[14] 8 participants 1 month La Jolla, USA

[15] 16 participants 2 to 4 weeks La Jolla, USA

[30] 155 participants 8 days Roskilde Music Festival, Denmark

[31] 128,000 participants 3 days Züri Fäscht Festival, Switzerland

[43] up to 13 participants up to 1 week Antwerp, Belgium

[45] ⇠2,000 taxis 1 year Stockholm, Sweden

[47] 2,331 participants 7 years Switzerland

Both participants and end users can however put their privacy at risk when

interacting with such applications. Since most collected sensor readings are an-

notated with spatiotemporal information, the participants’ whereabouts can be

inferred [61]. The sensor readings themselves may also reveal sensitive informa-

tion about the contributing participants. Even end users who query application

results may disclose their current location and potential interests. In order to

address these threats, di↵erent countermeasures can be applied as shown in [61].

Building on our previous work, we herewith aim at reporting the latest progress

in this area by especially analyzing newly proposed solutions. For this purpose,

we adopt the same classification based on the di↵erent architectural components

of typical participatory sensing applications. Consequently, this manuscript ex-

tends our previous survey and makes the following new contributions:

• We first analyze di↵erent scenarios in which the privacy of participants

and end users may be endangered. As a result, we extend and refine our

previous threat model, which primarily focuses on threats coming from

administrators of participatory sensing campaigns.

• We next classify and examine how the current state-of-the-art in privacy-

preserving solutions tackles the aforementioned threats. In this analysis,

we especially consider recent approaches that have emerged in the last

three years and are thus not covered in our previous work.

• Based on the surveyed solutions, we finally study the research challenges
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which have been addressed and identify those which still need to be tar-

geted in the future.

We present these contributions as follows. In Sec. 2, we recall the typical

participatory sensing architecture. We next address privacy issues resulting from

potential interactions with participatory sensing applications in Sec. 3, before

detailing novel privacy-preserving solutions specially tailored for this scenario

in Sec. 4. After examining past and current challenges in Sec. 5, we conclude

this manuscript in Sec. 6.

2. Participatory Sensing Architecture

In what follows, we adopt the system model illustrated in Fig. 1, which serves

as underlying basis for this manuscript. Participatory sensing applications in-

clude the participants’ mobile phones and one or several application servers

maintained by the campaign administrators. End users (i.e., the participants

themselves or any other persons interested in the campaign) can leverage addi-

tional devices, such as laptops or desktop computers, to access the results of the

participatory sensing campaign. The di↵erent stakeholders typically interact

with the system components as follows:

1. Tasking : The campaign administrators or end users first determine the

sensing tasks to be executed, which are then distributed to the partici-

pants’ mobile phone.

2. Sensing : The participants’ mobile phone collects the sensor readings cor-

responding to the defined sensing tasks.

3. Local processing and storage: The collected sensor readings may be locally

processed on the mobile phone to, e.g., extract interesting features. The

processed sensor readings may be temporarily stored by the participants

before being transmitted to the application server.

4. Reporting : The participants’ sensor readings are reported to the applica-

tion server for further analysis and display.
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Figure 1: System overview

5. Centralized storage and processing : The application server may first store

all reported sensor readings before analyzing them. It can then, e.g.,

remove incorrect sensor readings, compute summaries, or analyze the re-

ported sensor readings.

6. Presentation: End users can access the results of the sensing tasks made

available by the campaign administrators. For example, they can query

specific sensor modalities or results in a region of interest.

3. Privacy Issues

Although participatory sensing systems undeniably provide novel opportu-

nities in terms of sensing, they can put the privacy of the participants and end

users at stake. For example, we have observed in our previous survey that most

applications collect spatiotemporal information about the participants. This in-

formation is usually used to annotate the collected sensor measurements, such

as sound samples, pictures, pollution and biometric data or the phones’ acceler-

ation. As a result, they can provide a wealth of insights about the participants,

ranging from their current context to their behavior. We therefore highlight po-

tential threats to privacy in Sec. 3.1. We next define a threat model in Sec. 3.2

summarizing possible privacy attacks conducted against the system described

in Sec. 2.
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3.1. Threats to Privacy

Participatory sensing campaigns first threaten the participants’ privacy. In

absence of any protection mechanisms, the participants’ identity and location

can be revealed when interacting with the system (e.g., when downloading the

tasks from the application server or reporting sensor readings to the server).

Assuming that the participants would use pseudonyms to contribute to partic-

ipatory sensing applications, this would not e�ciently protect their anonymity.

Indeed, their identity (or at least a link between their di↵erent contribution) may

still be inferred based on an analysis of the spatiotemporal annotations [62]. For

example, a reverse look-up address search may reveal their name, as participants

typically commute between their domicile and workplace. Alternatively, a cross-

analysis of the participants’ mobility patterns could enable their re-identification

based on their uniqueness [63]. Such mobility patterns may also reveal partic-

ipants’ routines and habits, medical state based on frequent visits to hospitals

and political a�liations [23].

Furthermore, the current participants’ location may also be identified based

on the collected sensor readings. For example, pictures, audio samples, and

pollution data may include unique features, exposing the participants’ where-

abouts. When looking closer at the sensor readings, those can reveal fine-grained

details about the participants. For example, accelerometer data can reveal the

participants’ current activities [64], their identity based on gait recognition [65],

and their keyboard inputs, such as passwords [66, 67]. Additionally, participants

can be re-identified based on the characteristics of the sensor readings they have

collected [68].

Apart from the participants, end users ’ privacy can also be endangered.

Assuming that end users can send query to the application server to retrieve

sensor readings or subscribe to di↵erent data streams. By doing so, end users

may provide knowledge to the campaign administrators about themselves. Their

location can be first disclosed when sending a query, but also based on the

query’s content. In fact, it is likely that end users are interested in data collected
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in their proximity. Similarly, queries and subscriptions can reveal insights about

their personal interests.

3.2. Threat Model

In this section, we analyze di↵erent scenarios, in which the privacy of the

participants and end users may be endangered. Note that this analysis extends

the one conducted in [61], which primarily focuses on threats coming from the

campaign administrators.

3.2.1. Internal Threats

We first consider possible threats coming from active stakeholders of par-

ticipatory sensing applications, i.e., participants, campaign administrators, and

end users. Theses threats can vary in terms of (1) degree of involvement, (2)

sources and targets, (3) duration, and (4) background knowledge.

Concerning the degree of involvement, di↵erent scenarios are possible, rang-

ing from involuntary to deliberate threats to others’ privacy. For example, as-

suming that a participant reports her precise location to the application server,

she can reveal the locations of other participants having reported coarser loca-

tions based on the similarities between the sensor measurements. In this case,

the disclosure is not the result of a voluntary action conducted by this partic-

ipant. On the opposite, campaign administrators could, e.g., actively collude

with participants, who would report their precise locations on purpose to re-

veal those of other participants. Between both extrema, we can also imagine

honest-but-curious stakeholders. Whereas they would behave normally (i.e., not

conducting an active attack), they would be interesting in inferring information

about others based on the data they have access to.

Among the di↵erent scenarios, both sources and targets can belong to either

the same stakeholders’ subset (i.e., participants, campaign administrators, or

end users) or di↵erent ones. For example, participants may impersonate other

participants and reveal sensitive data about them [69]. Alternatively, end users

may attempt to deanonymize contributing participants based on the available
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data. Moreover, the number of involved sources and targets may vary depending

on the attack severity. Additionally, sources and targets can be either in physical

proximity or randomly distributed [70, 71].

The duration of potential threats may also be di↵erent. For example, we can

imagine continuous as well as time-limited attacks [70, 71]. Such attacks could

be concentrated around particular times of interest, randomly distributed, or

periodically programmed.

Malicious stakeholders may finally come with di↵erent background knowledge

that they can combine with information available through the participatory

sensing applications to ease their attacks or increase their severity [72]. For ex-

ample, campaign administrators may use the registration information including

their home address to re-identify participants using pseudonyms.

Note that we have previously focused on potential threats coming from par-

ticipants, campaign administrators, and end users. We have deliberately not

considered the network operator. The reason behind this exclusion is that the

network operator needs to be trusted to respect the stakeholders’ privacy, as it de

facto has access to the unique phones’ identifier and their locations [73, 74, 75].

3.2.2. External Threats

Like most existing systems, participatory sensing applications can also be

subject to external attacks. In this case, an external attacker may attempt

to gain insights about the participants and/or the end users. For example,

they may be interested in knowing their identity, location, current context,

or personal interests. To this end, they may hence attack (1) the application

server to get access to the stored data or (2) he communication between the

participants and/or the end users with the application server. Again, these

threats are not specific to participatory sensing and well-established solutions

can be applied to protect the concerned stakeholders from these threats.

In summary, threats to privacy resulting from participatory sensing appli-

cations can be diverse. While this list is by no means exhaustive, it aims at
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increasing the awareness of future application developers and providing point-

ers for future privacy-preserving mechanisms.

4. Current State-of-the-Art

We herein present recently published privacy-preserving solutions that ad-

dress the threats to privacy highlighted in Sec. 3.2. For this purpose, we build

upon our previous work and classify novel solutions based on the architecture

introduced in Sec. 2. For each studied solution, Tab. 2 summarizes the origin

and target of the addressed threats to privacy.

4.1. Tasking

The starting point of all participatory sensing applications is the distribu-

tion of the tasks to the participants’ mobile phone. While this first step may

seem innocuous, it may already provide insights about the participants’ iden-

tity, device, as well as current location when, e.g., downloading the tasks to be

executed.

To prevent the campaign administrators from inferring this information,

di↵erent solutions have already been proposed, such as using tasking beacons,

attribute-based authentication, location privacy-preserving routing schemes [76],

or downloading the tasks in densely populated locations [77]. In addition to

these solutions, the novel PiRi scheme introduced in [78, 79] proposes to rely

on the participants to distribute the tasks among them. To this end, each par-

ticipant defines a region around her current location and merges it with the

region of k � 1 other participants to obtain a larger region. Instead of trans-

mitting all computed regions, only elected participants transmit their extended

region. The tasks distributed by the campaign administrators to these elected

participants are then redistributed between all participants according to the re-

gion they are able to cover. By doing so, the campaign administrators do not

gain access to the individual participants’ location. Based on this approach, the

same authors propose TAPAS [80], which aims at improving the quality of the
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Table 2: Overview of the threats, sources, and targets addressed in the analyzed solutions as

well as the corresponding applied techniques (ID : Identity, L: Location, SR: Sensor readings,

Pa: Participants, A: Administrators, EU : End users, B : Bystanders, Ps: Pseudonyms, k :

k-anonymity, C : Cryptography, and D : Di↵erential privacy). x and (x) represent primary and

secondary aspects, respectively.

Category Solutions

Threats to Threats from Targeting Techniques

ID L SR Pa A EU Pa B EU Ps k C D

Tasking

[76] x x x x x

[77] x x x x x

[78, 79] x x x x x x

[80] x x x x x x

[81] x x (x) x x x x

[82] x x (x) x x x x

[83] x x (x) (x) x x x

Sensing

[85] x x x (x) x x x

[86] x x (x) x

Local

storage

[87] x x x x x

Reporting

[77] x x x (x) x x x

[88] x x (x) x

[89, 90] x x x (x) x

[91] (x) (x) x x (x) x x

[92] x (x) x x (x) x x x

[93] x x (x) x x

[94] x x x (x) x x x

[95] x x (x) x x

[96] (x) x x (x) x x

[97] x x (x) x x

[98, 99] x x x x x x

[100] x x x x x

[101] x x x x x

[102] x x x x x

[103] x x x x x

[104, 105] x x x x x

[106] x x x x x

[107] (x) x x (x) x x

[108] x x (x) x x

[109] x x x x x

[110] x x x (x) x x x

[111] x x x x x

[112] x x x

[113] x x x x

[114, 115] x x (x) x x x x

[116] (x) x (x) x x x (x)

[117] (x) x (x) x x x x

[118] (x) x (x) x x x x

[119] x x x

Storage

& access

control

[120, 121]

x x x x

[122, 123]

[124] x x x

Presen-

tation

[125] x x x x x

[70, 71] x x x x x x

[126] x x x x x

[73, 74]

x x x x x x x

[75]
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collected sensor readings by optimizing the participants’ selection in proximity

of a particular location of interest while still protecting their location privacy.

In both cases, the privacy protection however fully depends on the participants’

trustworthiness and can hence be endangered as soon as the participants would,

e.g., collude with the campaign administrators.

An alternative to PiRi and TAPAS is to use a central trusted entity to build

the cloaked region based on the k nearest participants to a point of interest as

proposed in [81]. In this case, the participants however provide their location to

the trusted entity. They therefore need to trust this entity to e�ciently protect

their data against external attacks and also not to disclose it to unauthorized

entities.

As a result, participants can cloak their location using either distributed or

centralized mechanisms based on other participants or a trusted entity, respec-

tively. In both cases, the task distribution between participants using cloaked

locations can be optimized. For example, the solution proposed in [127] aims at

increasing the task fulfillment rate while simultaneously minimizing the distance

to cover by the participants to fulfill these tasks.

Instead of relying on either other participants or a trusted entity, the network

provider plays the role of a broker between the participants and the applica-

tion server in [82]. The participants first transmit their location to the network

provider. Note that involving the network provider in this scheme does not

increase the risks for the participants’ privacy, as it already knows the partici-

pants’ location. The application server can then query the network provider to

find participants willing to fulfill tasks in a region of interest. Instead of pro-

viding the identity and location of potential participants, the network provider

adds random noise to the query results based on the concept of di↵erential pri-

vacy [128]. As a result, the application server cannot infer whether a particular

participant is located in a particular region based on its queries. Finally, the

application server uses the answer of the network provider to contact poten-

tial participants using geocasting. If the contacted participants are willing to

contribute to the task, they answer back to the application server, which hence
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infers their identity. Otherwise, they remain silent and thus unknown from the

application server. Consequently, the network provider simultaneously protects

the participants’ location privacy by leveraging di↵erential privacy, while allow-

ing the application server to distribute sensing tasks to voluntary participants

based on their location. Following the same idea of privacy brokers, the ap-

proach proposed in [83] enables end users to directly distribute tasks to the

participants. In this case, mobile cloud agents are responsible for managing the

distribution of the tasks in a decentralized fashion. Again, the participants need

to trust them to respect and apply their privacy preferences.

4.2. Sensing

Assuming that the sensing tasks have been distributed to the participants’

mobile phone. Participants’ may then be able to control ex ante the degree of

granularity at which the sensor readings are collected depending on their individ-

ual privacy preferences. As enabler for this control, we have proposed di↵erent

interfaces allowing participants to choose between three degrees of granularity

for the collection of location information, sound samples, pictures and acceler-

ation data [84]. We have further introduced picture-based warnings based on

the participants’ current privacy settings in [129]. These warnings aim at in-

creasing the participants’ awareness about potential risks for their privacy and

allow them to then accordingly adapt their settings if necessary. Note that both

approaches can also be applied post ante before sharing the collected data with

the application server without loss of generality.

Additionally, the participants can define zones in which no sensor readings

are either collected or reported to the application server. Setting such zones

may however not be su�cient to e�ciently protect the participants’ privacy.

For example, they may only contain the participant’s home and hence indirectly

reveal her identity. In order to prevent this issue, the solution proposed in [85]

includes an underlying mechanism that automatically adapts the zone to cover

at least k buildings. As a result, the so called silent zones dynamically optimize
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the existing tradeo↵ between privacy protection and data granularity based on

the density of surrounding buildings.

4.3. Local Processing and Storage

After the collection of the sensor readings, local processing can be applied

on the participants’ phones to remove privacy-sensitive features. For example,

sound samples including human voices may be discarded. After processing,

the remaining sensor readings may then be stored on either the participants’

mobile phones or individual repositories. For example, participants can securely

store their collected on cloud servers using the approach introduced in [87]. By

encrypting them using proxy re-encryption and homomorphic encryption, the

sensor readings are not accessible by untrusted cloud providers, but can be

accessed by participatory campaigns selected by the participants.

4.4. Data Reporting

When reporting sensor readings to the application server, the following tech-

niques can be applied to protect the participants’ privacy.

4.4.1. Anonymity

To ensure the participants’ anonymity, several solutions leverage the con-

cept of mix networks [130] or mix zones [131]. The key idea is that the partici-

pants’ contributions are mixed with others when sent to the application server

to prevent the campaign administrators from identifying their original source.

Multiple servers ensure this function in [77] by mixing di↵erent contributions,

rerouting them, and introducing delays. In [88], the participants themselves

serve as routers and a multi-hop route is built between the participants, along

which each participant only knows her predecessor and successor. When the

sensor readings reach the tenth participant, they are uploaded to the applica-

tion server. This scheme however requires maintaining a peer-to-peer network

between the participants and coping with, e.g., disconnections.

An alternative is to leverage opportunistic encounters between participants

to exchange collected sensor readings when being in physical proximity [89, 90].
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This scheme called path jumbling however fully depends on the participants’

trustworthiness and collaboration. To quantify the trust level of the participants

and quarantine untrustworthy ones, TrustMeter approach has therefore been

introduced in [132]. Participants can leverage it associated with dedicated user

interfaces detailed in [133] to set the minimum trust level required by other

participants to be able to exchange sensor readings with them. Moreover, the

participants can select di↵erent exchange strategies between exchanging: (1) all

sensor readings, (2) a random number of sensor readings, or (3) a number of

sensor readings agreed between both exchange partners. Instead of exchanging

full or partial sets of sensor readings, SLICER [92] inspired by [91] proposes to

either exchange only one sensor reading at each encounter or select a subset of

participants to share more sensor readings with and hence optimize the reporting

process.

Instead of considering individual sensor readings, the following mechanisms

focus on the participants’ full trajectories. By using [93, 94], the participants can

conceal their own trajectories with those of other participants based on a trusted

third party. In [93], the trusted third party merges the sensor readings belonging

to di↵erent participants to build new equivalent trajectories. Alternatively, the

trusted third party maps the identities and the participants’ trajectories entering

and leaving predefined sensitive zones in TrPF [94]. By doing so, the mixing

function can be customized and optimized depending on the desired privacy

protection. While this control can be an advantage as compared to the concept

of physical mixes, the solution however requires that the participants provide

their precise location to this third party.

To prevent the third party from linking the participants’ identity to their

location, the participants first collaborate by relaying the other participants’

sensor readings before uploading them to the third party in [95]. The third

party then anonymizes the sensor readings and sends them back to the partici-

pants following the same route. Since the sensor readings have been previously

anonymized, the participants can report them to the application server using

their real identity. Note that the number of participants is however unlimited
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as compared to [88].

Such centralized architectures however present a single point of failure, mak-

ing them vulnerable to malfunctions and external attacks. LOCATE [96] there-

fore adopts a distributed approach by leveraging a direct collaboration between

the participants. In this case, not a third party needs to be trusted, but other

participants. To mitigate this trust in other participants, two sets of the original

participants’ trajectories are built. Assuming that a user frequently visited n

locations. The first set consists of trajectories including n0 < n of the frequently

visited locations. In the second set, none trajectory contains any of the n loca-

tions. The number of trajectories belonging to each set is computed based on

the resulting entropy. The participants alternatively exchange trajectories from

both sets and distribute the exchanges over time between di↵erent participants.

4.4.2. Pseudonymity

To protect the participants’ privacy, various applications replace the partici-

pants’ real identity by a unique pseudonym, including [134, 29, 23, 97]. However,

it has already been shown in [62] that the provided protection is insu�cient, as

the real identifies may be inferred based on the reported location information.

In [97], the participants have the possibility to mitigate this threat by dropping

the collected sensor readings, if they estimate that they could endanger their

anonymity. This however requires a manual intervention of the participants be-

fore each reporting. Moreover, it is assumed that the participants can correctly

identify privacy threats by, e.g., taking into account their past contributions,

which may not always be the case.

An alternative to unique pseudonyms is proposed in the IncogniSense frame-

work [98, 99], which relies on the utilization of periodic pseudonyms and a

transfer of reputation between these pseudonyms. By doing so, the framework

combines to conflicting aspects namely the participants’ privacy and reputation.

Indeed, most reputation and incentive schemes require a link between the par-

ticipants’ contributions over time to, e.g., identify participants contributing in-

correct measurements or reward active participants. In contrast, protecting the
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participants’ privacy often requires to break the link between the participants’

contributions. Moreover, the chosen approach is independent of any trusted

third parties because of the utilization of blind signatures. If blind signatures

theoretically ensure that successive pseudonyms cannot be linked, the evolu-

tion of the pseudonyms’ reputation may reveal their chronology. To prevent

such linking attacks, the reputation transferred between pseudonyms is cloaked

to build groups sharing similar reputation values and render the pseudonyms

indistinguishable.

Building upon periodic pseudonyms, di↵erent alternatives have been in-

troduced. For example, a trusted third party is responsible for building the

pseudonyms’ groups [100]. In comparison to IncogniSense, this approach en-

ables a dynamic adaptation of the cloaked values, but the trusted third party

knows the link between the participants’ identity and their pseudonyms in ad-

dition to their original and cloaked reputations values. Another alternative also

based on blind signatures or a trusted third party adds an incentive mechanism

on top of the reputation framework to reward contributing participants [101].

The idea of rewarding participants using pseudonyms is shared with [102] and

[103]. In the former approach, participants use a unique pseudonym, while they

use multiple pseudonyms in combination with a group signature scheme in the

latter called SPPEAR. Instead of only supporting positive reputation updates

as in the aforementioned approaches, the solution called ARTSense proposed

in [104, 105] also allows negative reputation updates. This aims at further penal-

izing malicious participants by increasing the impact of incorrect measurements

on their reputation. When adopting the LotS framework [106], the identity of

misbehaving participants may even be revealed.

4.4.3. Spatial Cloaking

As we have seen in Sec. 4.4.1 and 4.4.2, the above solutions protect the

participants’ privacy by breaking the link between their identity and contribu-

tions. By mixing the contributions between participants or utilizing di↵erent

pseudonyms, most presented solutions preserve the original spatiotemporal in-
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formation. Other methods alter the location information by providing it at a

coarser degree of granularity and/or building groups of k participants sharing

the same location. Note that a comparison of both methods [72] shows that

the degree of granularity has additional influence on the participants’ location

privacy than the number of participants sharing the same location.

Instead of selecting a predefined degree of granularity before the measure-

ments (cf. Sec. 4.2), dynamic solutions, such as ipShield [107] and that presented

in [108], can be applied. These solutions running on the participants’ mobile

phone consider the participants’ current context and past contributions to com-

pute the appropriate degree of granularity at which the location information

can be released to the application server. As a result, end users will have access

to this data with either the same (if the campaign administrators release the

data as such) or a coarser degree of granularity (if the campaign administrators

apply further processing).

However, providing both coarse-grained information to the application server

and fine-grained information to specific end users can be useful in certain ap-

plication scenarios. For example, participants may be willing to share detailed

information, such as the time of their asthma crisis, with their doctor to analyze

its potential environmental causes but not with other end users. This is possible

with the scheme proposed in [109]. It releases the location information at two

di↵erent degrees of granularity: the coarsest one is anonymized and publicly

available, whereas the finest one is encrypted using attribute based encryption.

This means that only end users showing the attributes defined by the partici-

pants (e.g., age, location, role...) will be able to decrypt and have access to the

participants’ fine-granular locations.

Instead of adapting the degree of granularity to potential data recipients, the

approach introduced in [110] applies two di↵erent techniques based on the size

of the area of interest, which is assumed to be centered on a predefined point

of interest. In the case of large areas, the participants replace their precise

location by the nearest point of interest and report the corresponding sensor

readings to a broker. The broker aggregates them and transmits the results to
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the application server. By applying this technique, the location granularity is

hence degraded. In contrast, the participants apply double encryption on the

sensor readings including their precise location in the case of small areas. They

use first the application server’s public key, before using the broker’s public key.

Again, the encrypted sensor readings are sent to the broker, which waits for

several participants to do the same before forwarding them to the application

server. By doing so, the location granularity is preserved but the link between

the participants’ identity and contributions is broken by the intermediary of the

broker. Therefore, this hybrid approach dynamically leverages the concepts of

either spatial cloaking or aggregation (cf. Sec. 4.4.5) depending on the size of

the monitored area.

4.4.4. Data Perturbation

The key principle of data perturbation is to hide the individual participants’

contributions while allowing the application server to computes statistical trends

over the whole participants’ set. To hide the individual contributions, the first

method consists in adding noise on the participants’ sensor readings. As a result,

the noise selection determines the participants’ privacy protection.

Assuming that all participants share the same noise distribution. There is

a risk that malicious participants may be able to reconstruct it based on their

own data and hence breach the privacy of other participants. To mitigate this

threat, the authors propose the PESP scheme [111], which distributes di↵erent

noise distributions to the participants and adapt them to the sensor readings

already reported to the application server.

Instead of automatically adapting the individual noise distributions, ALPS [112]

adjusts the perturbation according to the participants’ preferences. As a result,

a tailored Gaussian perturbation is first applied followed by a smoothing func-

tion to remove potentially remaining insights about the participants and hence

protect their privacy.

An alternative to using noise is to leverage the concept of negative surveys

as introduced in [113]. In this case, the collected sensor readings are divided
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into di↵erent complementary categories. Instead of reporting their own sensor

readings, the participants choose sensor readings from another category and

report those to the application server. Using a perturbation matrix that maps

the probability of perturbing a category to another, the application server is able

to reconstruct the probability density functions of the original sensor readings

without having access to them.

4.4.5. Data Aggregation

The idea behind data aggregation is also to break the link between the

participants’ identity and their contribution. In contrast to the mechanisms

detailed in Sec 4.4.1, sensor readings from di↵erent participants are however

merged together to build aggregates. The application server receiving the ag-

gregates is hence unable to isolate individual sensor readings and link them to

the collecting participants. Di↵erent methods can be applied to aggregate the

data, ranging from centralized to distributed solutions. For example, Noise-

TubePrime [114, 115] relies on a network of trusted brokers. The participants

report their results on a map common to all participants and encrypted us-

ing the campaign administrators’ public key to their respective broker. The

brokers organized in a ring topology successively add the contribution of their

participant until the aggregate map is completed.

By applying the scheme proposed in [116], participants however not need to

trust one or several aggregators (such as the brokers in NoiseTubePrime). The

authors make use of additive homomorphic encryption combined with a new

key management scheme to reduce both the communication and encryption

overhead while still supporting sum and min aggregates. To better support the

participants’ dynamic (i.e., new participants joining or leaving), the original

scheme has been extended in [117] by a novel ring-based interleaved grouping

technique that diminishes the number of participants that need to renew their

cryptographic keys.

Also not trusting the aggregator, VPA+ [118] adopts a hybrid solution,

in which the participants first register their sensor readings to the aggregator
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before contributing them to the aggregate computed in a distributed fashion.

Using a homomorphic MAC of the participants’ sensor readings, the registration

does however not reveal the original data but allows the aggregator to later

verify which participants have contributed and hence guarantee the aggregate’s

integrity. Similarly, the participants collaborate to compute the sum aggregate

without revealing the individual sensor readings.

4.5. Hiding Selective Locations

The solution proposed in [119] is devised for application scenarios, in which

the temporal annotations of the sensor readings are irrelevant. In such cases, the

participants explicitly choose the sensor readings corresponding to the locations

they want to share with the application server. Their mobile phone then mixes

them to modify their chronology and hence break the link between both spatial

and temporal information. As a result, the application server can compute the

application results based on the data voluntarily shared by the participants.

4.6. Storage and Access Control

The sensor readings reported to the application server can be either individu-

ally stored or directly processed on the application server to build, e.g., statistics

or maps. The participants may thus only maintain control over their data in the

former case. For this purpose, they may use dedicated access control and data

sharing solutions, such as SensorSafe [120, 121, 122, 123] or PDVLoc [124]. Us-

ing SensorSafe, the participants can manage several individual repositories using

a broker and tailor the granularity at which the collected data are shared based

on, e.g., its nature and context, the resolution required by potential end users,

their identity or attributes, as well as the degree of trust of the participants in

these end users. Following a similar model, PDVLoc allows participants to se-

lect potential data recipients as well as the corresponding degree of granularity

at which the data is shared. It further supports the participants in config-

uring their settings and shows them the consequences of their decisions. An

additional function notifies the participants when their current settings seem to

diverge from their personal conception.
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4.7. Presentation

Participatory sensing results can be made available to end users in di↵erent

forms. For example, end users may access a map aggregating all participants’

results or be able to query and filter individual results based on, e.g., a region,

sensor modality, or operating system of interest. As soon as end users are able

to query participatory sensing results, the privacy of both participants and end

users may be put at stake.

Among the existing solutions, the one proposed in [125] concentrates on

protecting the participants’ privacy. For this purpose, the participants report

only partial trajectories to the application server, which then optimizes the

query answers by merging partial data collected by several participants. Instead

of submitting only partial results, the participants encrypt their complete sensor

readings and distribute multiple duplicates to other participants at regular and

common time intervals in [70, 71]. The encrypted sensor readings are annotated

with a tag corresponding to the time interval at which they have been collected

and exchanged. End users can then send a query indicating the sensor readings

and interval of interest to a gateway, which will forward it to a set of participants.

Participants matching the query provide the corresponding encrypted sensor

readings to the end users through the gateway. As a result, neither the gateway

nor the end users can infer who has initially collected the sensor readings, as the

link between the participants’ identity and their contribution are broken during

the exchanges.

Besides, PEPPeR [126] only focuses on end users’ privacy and relies on to-

kens distributed by the application server to authorized end users. By using

them, end users can directly query participants, who provide access to their

sensor readings once they have verified the corresponding token with the appli-

cation server. The verification process however does not disclose the identity of

the end users to the application server and preserves hence their privacy.

In comparison, PEPSI [73, 74, 75] simultaneously protects the privacy of

both participants and end users. It relies on a trusted third party responsible for

their registration and authorization. During the campaign, the registered par-
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ticipants report their sensor readings encrypted to the application server, while

the registered end users send their queries to the application server. Leveraging

authorizations and tokens delivered by the trusted third party during the regis-

tration process, the application server blindly matches both sensor readings and

queries. This means that both collected data and query content remain hidden

from the application server.

5. Past and Future Challenges

We have highlighted the progress of privacy-preserving schemes for partici-

patory sensing applications in the past years. While this domain still attracts

many novel solutions, some privacy challenges still remain. In what follows, we

successively consider the research challenges identified in our previous survey

and discuss how these have been addressed, before highlighting novel research

directions.

5.1. Including Participants in the Privacy Equation

Among the previously identified challenges, this is probably the one which

has been the most addressed in the last years. The participants were initially

only able to choose the granularity at which sensor readings are collected, man-

age individual storages, and control the data stored and disclosed to end users.

We now observe an increasing inclusion of the participants in the control of

novel privacy-preserving mechanisms. For example, their privacy preferences

is taken into account during both the tasking and the reporting processes (see

Sec. 4.1 and Sec. 4.4, respectively). To cater for this control, specific inter-

faces have been designed and evaluated based on user studies. In addition to

server in the evaluation of technical approaches, user studies, such as [135] and

[136], have been conducted to analyze potential users’ privacy expectations and

how these are influenced by contextual factors (e.g., sensing modality, duration,

or purpose of the data collection). While the first stones have recently been

laid, additional e↵orts are needed to cater for additional privacy control and
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awareness. This however remains challenging as it requires to finely balance the

trade-o↵ between control and the resulting overhead for the participants. More-

over, finding representative and large user sets makes the evaluation of future

approaches demanding.

5.2. Providing Composable Privacy Solutions

All aforementioned approaches still focus on providing a particular mech-

anism to address one specific threat to privacy at a time. This means that

none of them addresses the full spectrum of possible threats to privacy. Ap-

plication developers still need to select each mechanism individually. Instead,

an integrated holistic solution is required to help them in selecting appropriate

mechanisms depending on the specifications of their application. Besides, this

solution should be easily and intuitively configurable.

5.3. Trade-o↵s between Privacy, Performance, and Data Fidelity

An increasing number of mechanisms consider potential trade-o↵s linked

to the respect of the privacy of the participants and end users. For example,

solutions have been proposed to (1) optimize the sensing coverage during the

task distribution process (cf. Sec. 4.1), (2) optimize the incentives given to the

participants depending on the expected quality of information [137], and (3) run

reputation algorithms (cf. Sec. 4.4.2). All of them simultaneously respect the

participants’ privacy. Pursuing in this direction is necessary as both application

utility and participants’ privacy are two tightly-coupled key components in the

acceptance of both participants and end users. If the application utility is

limited, end users may not be interested in the results. The same is valid for

the participants: if their privacy is not respected, they may not be willing to

contribute to the application and hence limit its utility.

5.4. Making Privacy Measurable

Most solutions are evaluated using di↵erent privacy metrics. Depending on

the scenario, the authors either introduce a new metric or choose an existing

23



one. Existing metrics include k-anonymity, l-diversity, entropy-based, errors-

based, or probabilistic-based [138]. As before, this makes a comparison of the

performance of the di↵erent schemes di�cult. However, more and more solutions

adopt a decentralized or distributed setting. By doing so, they reduce the trust

that the participants need to have in a unique entity to guarantee the protection

of their privacy.

5.5. Defining Standards for Privacy Research

While some studied approaches share the same dataset for their evaluation,

there is still no consensus on a common open data set, which would be adopted

by all to ease the comparison of the proposed schemes. As compared to other

research fields, only few schemes are thoroughly compared against each other

especially in terms of performance using, e.g., simulations. Not having a bench-

marking corpus in terms of dataset and open privacy solutions hence prevent

application developers from easily identifying and selecting the best solution to

address privacy threats.

5.6. Holistic Architecture Blueprints

In comparison to our previous survey, we have observed an increased diver-

sity among the sources and targets of privacy threats addressed in the studied

approaches. Instead of only focusing on threats coming from the campaign

administrators and targeting the participants, recent solutions highlighted in

Tab. 2 address the privacy protection of both participants and end users. This

fact might be linked with the evolution of the underlying participatory sens-

ing applications. In the first proposed applications, end users are mostly only

able to access already collected information displayed, e.g., in forms of maps or

statistics. In contrast, end users can also trigger the collection of sensor read-

ings depending on their own interests in recently developed applications. Having

this capability, end users have hence recently moved from a passive to a more

active role in the system. Such evolution leads to an increase of the threats to

their privacy. Tailored privacy-preserving mechanisms to these specific threats
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are therefore needed. However, only few solutions address threats coming or

targeting di↵erent groups of stakeholders. While the existing solutions can still

be composed to provide a complete solution, it may be useful for application

developers to have a solution covering most to all threats to privacy.

In summary, most of the challenges identified in our previous survey have

still not been fully tackled and require additional attention. The following chal-

lenges complete our list of previously identified challenges based on the solutions

surveyed in this manuscript.

5.6.1. Bystander Privacy

Most of the studied schemes consider each participant as an individual entity

and omit their relationships with others (i.e., participants or non-participants).

By doing so, this poses the risks for participants to unwillingly reveal infor-

mation about others. For example, collected sound samples can reveal private

conversations of bystanders or similar sensor readings can disclose the proxim-

ity of two or more participants as shown in [68]. To prevent this scenario, the

participants can leverage NotiSense [86], which notifies the participants about

currently running sensing tasks and potential risks for their privacy. While this

approach o↵ers a first solution to this issue, we believe that additional alterna-

tives can be devised by, e.g., integrating this aspect in the privacy-preserving

solutions to be developed.

5.6.2. Multidimensional Privacy

The aforementioned approaches mainly focus on the annotation of the col-

lected sensor readings. Di↵erent solutions are proposed to hide, cloak, perturb,

or aggregate them. Only little attention is however given to the collected sensor

readings themselves. While the collection of sensor readings is the key character-

istic of participatory sensing and solutions tailored to this scenario might hence

only be transferable to other research domains to a limited extend, the sensor

readings can also endanger the participants’ privacy as highlighted in Sec. 3.1.

Additional emphasis should therefore be put on the sensor readings themselves
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and more especially, on the impact of their combination and correlation on the

participants’ privacy.

5.6.3. Internet of Things and Smart Cities

Up to now, the developed mechanisms have been tailored to participatory

sensing and only consider data collected using the participants’ mobile phones.

However, participatory sensing may not evolve to a stand-alone paradigm. In

the future, it may be integrated into the vision of the Internet of Things, where

all participants’ devices and appliances are foreseen to be connected and collab-

orate to fulfill di↵erent tasks. In this scenario, the sensor readings collected by

the mobile phones might complete the information provided by other devices.

By extending the scale of this vision, mobile phones can also be part of the

next concept of Smart Cities. Again, bystander privacy (or “passive sensing”)

plays a major role here because building owners can collect data about people

without their consent. Their integration will however pose new privacy threats

and solutions to cover the collection of multidimensional information about the

citizens are still to be designed.

6. Conclusions

We have reported on the latest trends in the area of privacy in participa-

tory sensing. For this purpose, we have classified and analyzed recently pro-

posed privacy-preserving approaches. Based on this analysis, we have refined

the threat model that apply in this field and studied how solutions recently

emerged address the research challenges identified in [61]. While some chal-

lenges have been tackled, there is a strong need to future research, especially

when considering the integration of participatory sensing in larger visions, such

as the Internet of Things or Smart Cities. By introducing more and more in-

formation about the physical world into the digital space, the privacy of the

citizens’ will be increasingly endangered and novel approaches tailored to such

scenarios are needed.
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