Semiparametric Event History Models for Analyzing Human Sleep Data

Thomas Kneib & Andrea Hennerfeind

Department of Statistics Ludwig-Maximilians-University Munich

Joint work with Alexander Yassouridis (Max-Planck-Institute for Psychiatry Munich) Ludwig Fahrmeir (Ludwig-Maximilians-University Munich)

Thomas Kneib Multi-State Models

Multi-State Models

• Multi-state models form a general class for the description of the evolution of discrete phenomena in continuous time (i.e. event history analysis).

• We observe paths of a process

$$X = \{X(t), t \ge 0\}$$
 with $X(t) \in \{1, \dots, q\}$.

- Yields a similar data structure as for Markov processes.
- Examples:
 - Recurrent events:

Thomas Kneib Multi-State Models

Disease progression:

– Competing risks:

(Homogenous) Markov processes can be compactly described in terms of the transition intensities

$$\lambda_{ij} = \lim_{\Delta t \to 0} \frac{P(X(t + \Delta t) = j | X(t) = i)}{\Delta t}$$

Thomas Kneib Human Sleep Data

Human Sleep Data

 Human sleep can be considered an example of a recurrent event type multi-state model.

• State Space:

Awake Phases of wakefulness

REM Rapid eye movement phase (dream phase)

Non-REM Non-REM phases (may be further differentiated)

- Aims of sleep research:
 - Describe the dynamics underlying the human sleep process.
 - Analyse associations between the sleep process and nocturnal hormonal secretion.
 - (Compare the sleep process of healthy and diseased persons.)

Thomas Kneib Human Sleep Data

Thomas Kneib Human Sleep Data

Data generation:

 Sleep recording based on electroencephalographic (EEG) measures every 30 seconds (afterwards classified into the three sleep stages).

- Measurement of hormonal secretion based on blood samples taken every 10 minutes.
- A training night familiarizes the participants of the study with the experimental environment.
- \Rightarrow Sleep processes of 70 participants.
- Simple parametric approaches are not appropriate in this application due to
 - Changing dynamics of human sleep over night.
 - The time-varying influence of the hormonal concentration on the transition intensities.
 - Unobserved heterogeneity.
- ⇒ Model transition intensities nonparametrically.

Specification of Transition Intensities

• To reduce complexity, we consider a simplified transition space:

Model specification:

$$\lambda_{AS,i}(t) = \exp \left[\gamma_0^{(AS)}(t) + b_i^{(AS)} \right]$$

$$\lambda_{SA,i}(t) = \exp \left[\gamma_0^{(SA)}(t) + b_i^{(SA)} \right]$$

$$\lambda_{NR,i}(t) = \exp \left[\gamma_0^{(NR)}(t) + c_i(t) \gamma_1^{(NR)}(t) + b_i^{(NR)} \right]$$

$$\lambda_{RN,i}(t) = \exp \left[\gamma_0^{(RN)}(t) + c_i(t) \gamma_1^{(RN)}(t) + b_i^{(RN)} \right]$$

where

$$c_i(t) \quad = \quad \begin{cases} 1 & \text{cortisol} > 60 \text{ n mol/l at time } t \\ 0 & \text{cortisol} \leq 60 \text{ n mol/l at time } t, \end{cases}$$

$$b_i^{(j)} \sim N(0, \tau_j^2) \quad = \quad \text{transition- and individual-specific frailty terms.}$$

- Penalized splines for baseline and time-varying effects:
 - Approximate $\gamma(t)$ by a weighted sum of B-spline basis functions

$$\gamma(t) = \sum_{j} \xi_{j} B_{j}(t).$$

- Employ a large number of basis functions to enable flexibility.
- Penalize k-th order differences between parameters of adjacent basis functions to ensure smoothness:

$$\operatorname{Pen}(\xi|\tau^2) = \frac{1}{2\tau^2} \sum_j (\Delta^k \xi_j)^2.$$

– Bayesian interpretation: Assume a k-th order random walk prior for ξ_j , e.g.

$$\xi_j = 2\xi_{j-1} - \xi_{j-2} + u_j, \quad u_j \sim N(0, \tau^2)$$
 (RW2).

– This yields the prior distribution:

$$p(\xi|\tau^2) \propto \exp\left(-\frac{1}{2\tau^2}\xi'K\xi\right).$$

Counting Process Representation

• A multi-state model with k different types of transitions can be equivalently expressed in terms of k counting processes $N_h(t)$, $h = 1, \ldots, k$ counting these transitions.

700

720

740

760

780

800

sleep => awake

- From the counting process representation we can derive the likelihood contributions.
- The counting process representation also provides a possibility for model validation based on martingale residuals.
- Every counting process is a submartingale and can therefore be (Doob-Meyer-) decomposed as

$$N_{hi}(t) = A_{hi}(t) + M_{hi}(t)$$
$$= \int_0^t \lambda_{hi}(t) Y_{hi}(t) du + M_{hi}(t),$$

where $M_{hi}(t)$ is a martingale and $A_{hi}(t)$ is the (predictable) compensator process of $N_{hi}(t)$.

- The martingales $M_{hi}(t)$ can be interpreted as continuous-time residuals.
- Plots of $M_{hi}(t)$ against t can be used to compare models, evaluate the model fit, etc.

Thomas Kneib Bayesian Inference

Bayesian Inference

- In principle, a multi-state model consists of several duration time models
 - ⇒ Adopt methodology developed for nonparametric hazard regression.
- Fully Bayesian inference based on Markov Chain Monte Carlo simulation techniques (Hennerfeind, Brezger & Fahrmeir, 2006):
 - Assign inverse gamma priors to the variance and smoothing parameters.
 - Metropolis-Hastings update for the regression coefficients (based on IWLS-proposals).
 - Gibbs sampler for the variances (inverse gamma with updated parameters).
 - Efficient algorithms make use of the sparse matrix structure of the matrices involved.

Thomas Kneib Bayesian Inference

Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2007):

- Consider the variances and smoothing parameters as unknown constants to be estimated by mixed model methodology.
- Problem: The P-spline priors are partially improper.
- Mixed model representation: Decompose the vector of regression coefficients as

$$\xi = X\beta + Zb,$$

where

$$p(\beta) \propto const$$
 and $b \sim N(0, \tau^2 I)$.

- $\Rightarrow \beta$ is a fixed effect and b is an i.i.d. random effect.
- Penalized likelihood estimation of the regression coefficients in the mixed model (posterior modes).
- Marginal likelihood estimation of the variance and smoothing parameters (Laplace approximation).

Thomas Kneib Software

Software

- Implemented in BayesX.
- Free software package for Bayesian inference in geoadditive and related models.

• Available from

http://www.stat.uni-muenchen.de/~bayesx

Thomas Kneib Human Sleep Data II

Human Sleep Data II

• Baseline effects:

Thomas Kneib Human Sleep Data II

Time-varying effects for a high level of cortisol:

- The fully Bayesian approach detects individual-specific variation for all transitions.
- The empirical Bayes approach only detects individual-specific variation for the transition between REM and Non-REM.

Thomas Kneib

Human Sleep Data II

Martingale residuals REM => Non-REM

Thomas Kneib Human Sleep Data II

Thomas Kneib Summary and Outlook

Summary and Outlook

• Computationally feasible semiparametric multi-state models for the analysis of event-history data.

- Fully Bayesian and empirical Bayes inference.
- Model validation based on martingale residuals.
- Directly extendable to more complicated models including
 - Nonparametric effects of continuous covariates.
 - Spatial effects.
 - Interaction surfaces and varying coefficients.
- Future work:
 - Application to larger data sets and different types of multi-state models.
 - Consider coarsened observations, i.e. interval censored multi-state data.

Thomas Kneib References

References

• Brezger, Kneiß & Lang (2005): BayesX: Analyzing Bayesian structured additive regression models. $Journal\ of\ Statistical\ Software,\ 14\ (11)$.

- Hennerfeind, Brezger, and Fahrmeir (2006): Geoadditive survival models. Journal of the American Statistical Association, **101**, 1065-1075.
- KNEIB & FAHRMEIR (2007): A mixed model approach for geoadditive hazard regression. Scandinavian Journal of Statistics, **34**, 207-228.
- Kneiß & Hennerfeind (2007): Bayesian semiparametric multi-state models. Statistical Modelling, to appear.
- A place called home:

http://www.stat.uni-muenchen.de/~kneib

Thomas Kneib References

$$l_{i} = \sum_{h=1}^{k} \left[\int_{0}^{T_{i}} \log(\lambda_{hi}(t)) dN_{hi}(t) - \int_{0}^{T_{i}} \lambda_{hi}(t) Y_{hi}(t) dt \right]$$

$$= \sum_{j=1}^{n_{i}} \sum_{h=1}^{k} \left[\delta_{hi}(t_{ij}) \log(\lambda_{hi}(t_{ij})) - Y_{hi}(t_{ij}) \int_{t_{i,j-1}}^{t_{ij}} \lambda_{hi}(t) dt \right].$$

k number of possible transitions.

 $N_{hi}(t)$ counting process for type h event and individual i.

 $Y_{hi}(t)$ at risk indicator for type h event and individual i.

 t_{ij} event times of individual i.

 n_i number of events for individual i.

 $\delta_{hi}(t_{ij})$ transition indicator for type h transition.

400

600

200

800

Thomas Kneib References

Thomas Kneib References

Baseline effects:

• Time-varying effects for a high level of cortisol:

Thomas Kneib References

- Extensions for signal regression:
 - Sleep stages are obtained from the aggregated EEG signals.
 - Penalised splines can also be used in the analysis of the raw data.
 - Example: Analyse differences in signal intensities between healthy and depressed study participants.
 - Logit signal regression:

$$P(Y=1) = h(Z\gamma)$$

where Z is the matrix of signal intensities and γ the corresponding regression coefficient.

- Assume that the effect of the signals varies smoothly over time
 - \Rightarrow Model $\gamma = \gamma(t)$ as a P-spline.
- First promising results have been achieved with this approach.