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Thomas Kneib Multi-State Models

Multi-State Models

e Multi-state models form a general class for the description of the evolution of discrete
phenomena in continuous time (i.e. event history analysis).

e \We observe paths of a process

X = {X(t),t >0} with X(t)e{l,...q).

e Yields a similar data structure as for Markov processes.

e Examples:

— Recurrent events:
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— Disease progression:
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e (Homogenous) Markov processes can be compactly described in terms of the transition
Intensities

— Competing risks:

Aij = lim P(X(t+ At) =j|X(t) =1)
At—0 At
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Human Sleep Data

e Human sleep can be considered an example of a recurrent event type multi-state
model.

e State Space:

Awake Phases of wakefulness
REM  Rapid eye movement phase (dream phase)
Non-REM  Non-REM phases (may be further differentiated)
e Aims of sleep research:
— Describe the dynamics underlying the human sleep process.

— Analyse associations between the sleep process and nocturnal hormonal secretion.

— (Compare the sleep process of healthy and diseased persons.)
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e Data generation:

— Sleep recording based on electroencephalographic (EEG) measures every 30 seconds
(afterwards classified into the three sleep stages).

— Measurement of hormonal secretion based on blood samples taken every 10
minutes.

— A training night familiarizes the participants of the study with the experimental
environment.

= Sleep processes of 70 participants.

e Simple parametric approaches are not appropriate in this application due to
— Changing dynamics of human sleep over night.

— The time-varying influence of the hormonal concentration on the transition
Intensities.

— Unobserved heterogeneity.

= Model transition intensities nonparametrically.
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Specification of Transition Intensities

Specification of Transition Intensities

e To reduce complexity, we consider a simplified transition space:

Awake

)\As(t)

)\SA(t)

Sleep

ANr(t)

Non-REM

Arn(t)

REM
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e Model specification:

Aas,i(t) = exp _fyéAS)(t) 4 bZ(AS)
Asai(t) = exp _fyéSA)(t) n bZ(SA)_
ANRi(t) = exp -’Y(gNR)(t) + Cz‘(t)VgNR) (t) + bz('NR)-
Aava(t) = exp [TV (@) + e (8) + o™
where
Gi(t) = {1 cort?sol > 60 n mol/I at t?me ¢
0 cortisol < 60 n mol/l at time ¢,
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transition- and individual-specific frailty terms.
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e Penalized splines for baseline and time-varying effects:

— Approximate v(t) by a weighted sum of B-spline basis functions
(1) =22, €Bi(t).

— Employ a large number of basis functions to enable flexibility.

— Penalize k-th order differences between parameters of adjacent basis functions to

ensure smoothness: |

s 2, (ARg)2

— Bayesian interpretation: Assume a k-th order random walk prior for &;, e.g.

Pen(&|72) =

& =281 —&_a+u;, uj~N(07T)  (RW2).
— This yields the prior distribution:

p(El7?) o exp (—%a’f@) .
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Counting Process Representation

e A multi-state model with k different types of transitions can be equivalently expressed
in terms of k counting processes Ny(t), h = 1,...,k counting these transitions.

awake => sleep sleep => awake
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e From the counting process representation we can derive the likelihood contributions.

e The counting process representation also provides a possibility for model validation
based on martingale residuals.

e Every counting process is a submartingale and can therefore be (Doob-Meyer-)
decomposed as

Npi(t) = Api(t) + Mpi(t)

= /0 )\hi(t)Yhi(t)du + Mhi<t)7

where My;(t) is a martingale and Ap;(t) is the (predictable) compensator process of
Npi(t).

e The martingales Mj},;(t) can be interpreted as continuous-time residuals.

e Plots of My;(t) against ¢t can be used to compare models, evaluate the model fit, etc.
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Bayesian Inference

e In principle, a multi-state model consists of several duration time models
= Adopt methodology developed for nonparametric hazard regression.

e Fully Bayesian inference based on Markov Chain Monte Carlo simulation techniques
(Hennerfeind, Brezger & Fahrmeir, 2006):
— Assign inverse gamma priors to the variance and smoothing parameters.

— Metropolis-Hastings update for the regression coefficients (based on IWLS-
proposals).

— Gibbs sampler for the variances (inverse gamma with updated parameters).

— Efficient algorithms make use of the sparse matrix structure of the matrices
involved.
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e Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2007):

— Consider the variances and smoothing parameters as unknown constants to be
estimated by mixed model methodology.

— Problem: The P-spline priors are partially improper.

— Mixed model representation: Decompose the vector of regression coefficients as
£§E= X0+ Zb,

where
p(B) o const and b~ N(0,7°1).

= [ is a fixed effect and b is an i.i.d. random effect.

— Penalized likelihood estimation of the regression coefficients in the mixed model
(posterior modes).

— Marginal likelihood estimation of the variance and smoothing parameters (Laplace
approximation).
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Software

e |Implemented in BayesX.

e Free software package for Bayesian inference in geoadditive and related models.

e Available from

http://www.stat.uni-muenchen.de/ bayesx
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Human Sleep Data Il

e Baseline effects:

awake —> sleep (mixed model)
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Semiparametric Event History Models for Analyzing Human Sleep Data

14



Thomas Kneib Human Sleep Data Il

e Time-varying effects for a high level of cortisol:

Non-REM —> REM (mixed model) REM —> Non-REM (mixed model)

e The fully Bayesian approach detects individual-specific variation for all transitions.

e The empirical Bayes approach only detects individual-specific variation for the
transition between REM and Non-REM.
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Martingale residuals REM => Non—-REM
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Human Sleep Data Il

awake => sleep

awake => sleep
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Summary and Outlook

e Computationally feasible semiparametric multi-state models for the analysis of event-
history data.

e Fully Bayesian and empirical Bayes inference.
e Model validation based on martingale residuals.

e Directly extendable to more complicated models including
— Nonparametric effects of continuous covariates.
— Spatial effects.

— Interaction surfaces and varying coefficients.

e Future work:
— Application to larger data sets and different types of multi-state models.

— Consider coarsened observations, i.e. interval censored multi-state data.
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k number of possible transitions.

Npi(t)  counting process for type h event and individual :.
Yrni(t)  at risk indicator for type h event and individual :.
event times of individual s.

n; number of events for individual <.

Oni(tij) transition indicator for type h transition.
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e Baseline effects:

awake —> sleep (MCMC) sleep —> awake (MCMC)
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e Time-varying effects for a high level of cortisol:

Non-REM -> REM (MCMC) REM —> Non-REM (MCMC)
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e Extensions for signal regression:
— Sleep stages are obtained from the aggregated EEG signals.
— Penalised splines can also be used in the analysis of the raw data.

— Example: Analyse differences in signal intensities between healthy and depressed
study participants.

— Logit signal regression:
P(Y =1) = h(Z7)

where Z is the matrix of signal intensities and « the corresponding regression
coefficient.

— Assume that the effect of the signals varies smoothly over time
= Model v = v(t) as a P-spline.

— First promising results have been achieved with this approach.

Semiparametric Event History Models for Analyzing Human Sleep Data 25



