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Abstract

We set up and estimate a large-scale unobserved components model of real GDP, inflation and

the real interest rate to identify the natural real interest rate of the euro area. Rather than resorting

to aggregate data, we estimate a multi-country model to exploit the information contained in the

national data of its 19 member countries. Our results confirm previous findings that the NRI displays

a secular decline, dropping close to zero percent towards the end of the sample period. However, we

find the NRI to follow a smoother path, and its decline after the Great Recession to be less sharp in

comparison to previous studies. The major advantage of using our multi-country model comes in the

form of a dramatic efficiency gain in estimating the euro-area NRI and a substantial improvement in

the reliability of its real time performance.
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1 Introduction

The natural real interest rate (NRI) is commonly defined as the real rate consistent with a zero

output gap and stable inflation. The NRI and the associated real rate gap as the difference between

the actual ex-ante real interest rate and the NRI are important measures for the stance of monetary

policy. Monetary policy is expansionary whenever the real short-term interest rate is below the NRI,

whereas a positive real rate gap is indicative of a contractionary monetary policy stance (Wynne and

Zhang, 2018). In an influential article, Laubach and Williams (2003, LW hereafter) develop a small

semi-structural unobserved components (UC) model to jointly estimate the NRI, the output gap and

the trend growth rate of output using quarterly U.S. data on GDP, inflation and the nominal short-

term interest rate for the time period 1961Q1 to 2002Q2. They model the NRI as a time-varying

process determined by the growth rate of potential output as well as other determinants reflecting

(global) patterns of savings and investment. Using the Kalman filter with maximum likelihood and

applying the sequential median unbiased estimator proposed by Stock and Watson (1998), LW find

that both of the above factors contribute to the time variation of the NRI, although their results are

subject to a substantial degree of estimation uncertainty.

Holston et al. (2017, HLW hereafter) re-estimate the U.S. NRI using a variant of the LW model

with a longer data set by extending the sample up to the period 2016Q3. They find that the NRI

has steadily declined over the past quarter century to historically low levels of close to zero. Apart

from the U.S. (as well as Canada and the UK), HLW also estimate the euro-area NRI with aggregate

data obtained from the Area Wide Model Database (AWM) of the European Central Bank (ECB).

As with the U.S. NRI, they find evidence of a secular decline of the aggregate euro-area NRI (as well

of the NRIs for Canada and the UK).1 However, all NRIs are measured very imprecisely despite the

use of longer time series compared to the original sample of LW. Beyer and Wieland (2019) confirm

that estimating the U.S. NRI with the LW model is subject to a very high degree of uncertainty,

but find that using AWM data for estimating the euro area NRI come with standard errors that are

even larger compared to those for the U.S. NRI. Moreover, the Federal Reserve Bank of New York

(FRBNY) maintains a website providing regular updates to the HLW estimates of the natural rate

for the U.S., the euro area, Canada and the United Kingdom (U.K.)2. The current values for the

euro-area NRI differ significantly from the earliest real-time estimation, at times by up to 1%. Also

noteworthy is the fact that HLW suspended their real-time updates with the onset of the COVID-19

pandemic3.

Whereas the above studies use aggregate data or estimate national NRIs, this paper is the first to

develop a full-fledged multi-country model taking in all 19 countries of the euro area. Our setup adopts

a model structure similar to that of HLW for each individual euro-area country. In particular, we

model a common euro-area growth rate as a major determinant for the euro-area NRI. The resulting

euro-area interest rate gap, i.e. the difference between the GDP-weighted ex-ante real interest rates

and the euro-area NRI aligns closely with the notion of the European Central Bank’s use of a euro-

area Taylor rule as a benchmark for interest rate setting, in which the common NRI functions as the

interest rate target (Giammarioli and Valla, 2003).

1The evidence on the euro area NRI is in line with previous estimates using variants of the LW model with AWM data,
such as Mésonnier and Renne (2007) and Garnier and Wilhelmsen (2009). Common factors accounting for the decline in the
NRIs of the U.S., the euro area and other countries include a slowdown in trend productivity growth, shifts in demographics,
and changes in national income distributions (Rachel and Smith, 2017).

2See https://www.newyorkfed.org/research/policy/rstar
3From November 30, 2020: Owing to the extraordinary volatility in GDP related to the COVID-19 pandemic, we are

suspending until further notice the posting of regular updates of the LW and HLW model estimates.
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Previewing our results, we confirm previous findings that the NRI displays a secular decline,

dropping close to zero percent towards the end of the sample period. However, we find the NRI

to follow a smoother path, and its decline after the Great Recession to be less sharp in comparison

to previous studies. The major advantage of using our multi-country model comes in the form of

a dramatic efficiency gain in estimating the euro-area NRI and a substantial improvement in the

reliability of its real time performance. Relative to a univariate model, we find the standard errors to

be much lower for the multivariate model, improving the precision of estimating the NRI by a factor

of up to 4. Technically, this result comes about as the use of multiple indicators reduces the filter

uncertainty regarding the latent factors of the model. Whereas filter uncertainty cannot be lowered

by a longer sample, a larger cross-section increases the information for estimating the latent factors.

In comparison to HLW, our model also offers a substantial improvement in the reliability of its real

time performance.

The remainder of the paper is structured as follows. Section 2 introduces the model, section 3

discusses our estimation approach, section 4 illustrates our results, while a final section presents some

conclusions.

2 The Empirical Model

Following LW and HLW, we use a semi-structural UC model of real GDP, yt, inflation, πt, and the

real interest rate, rt, applied to all N = 19 euro area countries.

yi,t = y∗i,t + yci,t + εyi,t, εyi,t
iid∼ N (0, σ2

εi,y), i = 1, . . . , N (1)

πi,t = β0,i + β1,iπi,t−1 + β2,iπi,t−2,4 + β3,iy
c
i,t + επi,t, επi,t

iid∼ N (0, σ2
εi,π). (2)

Eq. (1) defines current output in each country as the sum of potential output y∗i,t, the output gap yci,t

and an idiosyncratic error term εyi,t. Eq. (2) is a reduced-form Phillips curve, where current inflation

πi,t is a function of its lagged value, inflation expectations and the output gap. Inflation expectations

are approximated by πi,t−2,4, i.e, the average of the second to fourth lags of past inflation.4 Potential

output follows a random walk with drift, i.e.

∆y∗i,t = gt−1 + ηy
∗

i,t , ηy
∗

i,t
iid∼ N (0, σ2

ηi,y∗), (3)

gt = gt−1 + ηgt , ηgt
iid∼ N (0, σ2

η,g). (4)

The growth rate of potential output ∆y∗i,t is driven by a short-run country-specific component ηy
∗

i,t

and by a long-run component gt, where we model the latter as common to all euro-area countries.

The notion of a common long-run growth rate of potential output for countries within a currency area

is based on a real convergence argument in the spirit of the neoclassical growth theory. According to

this argument, the removal of exchange rate risk and other barriers to trade generate capital flows to

economies with lower capital-output ratios and higher marginal products of capital, thereby boosting

investment and economic growth in these economies (Blanchard and Giavazzi, 2002; Tressel et al.,

2014).5 We note that this way of modelling potential output does not imply the trend growth in

4This way of defining inflation expectations is similar to HLW. However, contrary to their specification, we are not
imposing a unit root in the inflation dynamics as inflation rates in our sample are mean-reverting.

5The empirical evidence on real convergence in the euro-area since the start of the EMU is mixed. Whereas convergence
has taken place in the more recent EU accession states, there is a lack of convergence among the early adopters of the euro
(Franks et al., 2018). However, as Diaz del Hoyo et al. (2017) argue, focusing the analysis on just the past two decades does
not provide a sufficient understanding of the structural long-term drivers of real convergence. They find that since 1960
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all euro-area countries to be identical. Rather, we decompose trend growth into a common and a

country-specific component. The relative importance of these two components for each country is

given by the size of σ2
ηi,y∗ relative to σ2

η,g and determined by the data.

By modeling gt as a random walk, we allow for permanent changes in the growth rate as presum-

ably experienced during the Great Recession of 2007-09. The aggregate demand equation (5) relates

the output gap in each country to its own lag as well as the lag of the common real interest rate gap

(rt − r∗t ).6

yci,t = φyi y
c
i,t−1 + ρi

N∑
j=1

Ψi,j,ty
c
j,t−1 + ar,i(rt−1 − r∗t−1) + ηy

c

i,t ηy
c

i,t
iid∼ N (0, σ2

ηi,yc) (5)

As in Fries et al. (2018), we incorporate a trade channel into the model linking the individual countries’

output gaps to the GDP-weighted output gaps of the other euro-area countries.7 Here Ψi denotes the

time-varying GDP weights, with ρi measuring the strength of the trade channel for each individual

country i.8 Using weighted averages to model cross-country linkages is inspired by the Global VAR

literature (see Pesaran et al., 2004). The real interest rate rt is constructed as a GDP-weighted

average and common to all euro-area countries:

rt = r∗t + rct + εrt , εrt
iid∼ N (0, σ2

ε,r) (6)

r∗t = gt + zt, with zt = zt−1 + ηzt ηzt
iid∼ N (0, σ2

η,z) (7)

rct = φrrct−1 + ηr
c

t ηr
c

t
iid∼ N (0, σ2

η,rc) (8)

Eq. (6) decomposes the real interest rate of the euro area into the NRI, denoted r∗t , the interest

rate gap rct and a white-noise error component εrt .
9 The NRI of Eq. (7) is modeled as a function

of the area’s common long-run growth rate.10 Following LW and HLW, we allow for an additional

random-walk component zt, which captures time variation of the NRI arising from other deter-

minants impinging on the behavior of the NRI. These may include savings-investment imbalances,

demographic factors or the reduction of inflation risk premia and the disappearance of intra-euro-area

exchange rate risk premia since the introduction of the euro (ECB, 2004). Finally, Eq. (8) specifies a

process for the evolution of the interest rate gap. Although very similar to LW and HLW, our model

is closed as we include the interest rate in the observation equation (6) and model the interest rate

gap in the state equation (8) as an AR(1) process.

there has been clear evidence of income convergence among the original euro-area member countries, although this appears
to have been weakened by the Great Recession of 2007-09.

6The Phillips curve of Eq. (2) and the IS equation of Eq. (5) are respectively specified with single lags of inflation and
the output and interest gaps in order to keep the model as parsimonious as possible. Robustness checks with alternative
lag structures show that this modeling choice does not materially affect our results.

7Rather than analyzing a common euro-area NRI, Fries et al. (2018) estimate country-specific NRIs for each of the four
largest euro-area economies France, Germany, Italy and Spain. To this end they develop a LW-type joint model for these
four economies by explicitly taking account of their high degree of economic integration in terms of both a trade channel
and a productivity channel as conduits for the international transmission of shocks.

8The GDP weights Ψ are computed as the ratio of each individual country’s GDP relative to the sum of the remaining
countries’ GDPs for every year of the sample starting in 2000. Countries that have become members of the euro area later
than 2000 have zero weights until the year they joined.

9We note that the ex-ante real interest rates in the euro area differ across countries because of country-specific inflation
expectations.

10Eq. (7) incorporates a one-for-one relationship between the trend growth rate of output and the NRI, corresponding to a
unitary intertemporal elasticity of substitution in consumption. LW have estimated this relationship and found a coefficient
of close to unity. Because this relationship is not well identified in the data, we follow HLW and impose a coefficient of
unity. This specification is also in line with theory. For example, Gaĺı and Monacelli (2008) lay out a model of optimal
monetary and fiscal policy in a currency union, in which the common NRI is a linear function of the trend growth rate of
output across the union with a unitary coefficient.
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3 Estimation approach

3.1 State space representation of the model

The model outlined by Eqs. (1)-(8) can be cast into a linear Gaussian state space model of the

following general form11

ωt = Bαt +Aκt + εt, εt ∼ N (0, H), (9)

αt = µ+Dαt−1 + ηt, ηt ∼ N (0, Q), (10)

where ωt is a p × 1 vector of p observed endogenous variables, modeled in the observation equation

(9), κt is a k×1 vector of k observed exogenous or predetermined variables and αt is a m×1 vector of

m unobserved states, modeled in the state equation (10). The vectors εt and ηt are assumed to hold

mutually independent Gaussian error terms with the former representing measurement errors and the

latter structural shocks. For given parameter matrices B, A, D, µ, H, and Q, the unobserved state

vector αt can be identified from the observations ω1, . . . , ωT and κ1, . . . , κT using the Kalman filter

and smoother. In practice these matrices generally depend on elements of an unknown parameter

vector ψ. One possible approach is to derive the log-likelihood function for the model under study

from the Kalman filter (see e.g. De Jong, 1991; Koopman and Durbin, 2000; Durbin and Koopman,

2012) and replace the unknown parameter vector ψ by its maximum likelihood (ML) estimate. This

is not the approach pursued in this paper. First, the large number of unobserved states as well as

unknown parameters makes the maximization of the log-likelihood function quite tedious. Second,

the ML estimator is subject to the so-called pile-up problem, stating that the ML estimator for the

variance of time-varying parameters can be biased downwards. The exact specification of the state

space form is provided in the Appendix.

3.2 Bayesian estimation

We analyze the state space model from a Bayesian point of view, i.e. we use prior information to

down-weight the likelihood function in regions of the parameter space that are inconsistent with out-

of-sample information and/or in which the structural model is not interpretable (Schorfheide, 2008).

More formally, we treat ψ as a random parameter vector with a known prior density p(ψ) and estimate

the posterior densities p(ψ | zt, κt) for the parameter vector ψ and p (α̂t | zt, κt) for the smoothed state

vector α̂t, by combining information contained in p (ψ) and the sample data. Specifically, we use the

Gibbs sampler to simulate draws from the joint and marginal posterior distributions of the unknown

parameters and the unobserved states using conditional distributions. Intuitively, this amounts to

reducing the high-dimensional model into a sequence of blocks for subsets of parameters conditional

on the other blocks in the sequence.

A major advantage of the Bayesian approach to the model outlined here is that the pile-up

problem can be handled by means of one-step estimation of states and parameters. The pile-up

problem states that the maximum likelihood estimator for the variance of time-varying parameters

has large point mass at zero, particularly if the true but unknown value is close to zero. To deal

with this problem, HLW, among others, employ the Median Unbiased Estimator (MUE) developed

by Stock and Watson (1998). This sequential estimation approach is based on parameter stability

11See e.g. Durbin and Koopman (2012) for an extensive overview of state space models.
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test statistics, computed under the null hypothesis of constant parameter values.12 A drawback of

this approach is that analyzing uncertainty of the unobserved components, such as the NRI, becomes

more complicated due to the fact that in the final estimation step a number of important parameters

are imposed rather than estimated. Also, as demonstrated by Buncic (2021), HLW’s implementation

of Stock and Watson’s MUE is unsound as it cannot recover λz required for the estimation of the

full structural model. This suggests that the model is far from robust and therefore inappropriate for

use in policy analysis. In contrast, as shown by Kim and Kim (2022), the Bayesian approach does

not suffer from the pile-up problem, even with uninformative priors. The reason is that these two

approaches are dealing with nuisance parameters differently. Integrating out nuisance parameters

within Bayesian estimation works substantially better than maximizing out nuisance parameters as

done by the maximum likelihood estimator.13

Moreover, the Bayesian approach yields the entire distribution of the NRI taking into account

both parameter and filter uncertainty, and is thus better suited for analyzing uncertainty around the

NRI.

3.3 Priors

Prior information on the unknown parameter vector is included in the analysis by way of the prior

density. The prior distribution is assumed to be conditionally Gaussian for all slope parameters.

For the variance parameters we use the standard inverse gamma distribution IG(c0, C0), where the

shape parameter, c0 = ν0T , and the scale parameter, C0 = s0σ
2
0 , are calculated from the prior belief

about the variance parameter, σ2
0 , and the prior strength, ν0, which is expressed as a fraction of the

sample size T .14 As stated above, the main motivation for setting these priors is to down-weight

the likelihood function in regions of the parameter space that are inconsistent with out-of-sample

information and/or in which the structural model is not interpretable. Previous estimates as well as

economic theory give us an idea about the approximate value of the model’s parameters. However,

using previous studies to set priors should be done with caution particularly if these studies consider

the same time period. We therefore use previous estimates only as a rough indication for the prior

means but choose the prior variance fairly loose. Details on the prior distributions are shown in Table

2.

3.4 Gibbs sampling scheme

The posterior density of interest is f (α,ψ|ω). Given an arbitrary set of starting values
(
α{0}, ψ{0}

)
:

1. Block states

Sample α{1} from f
(
α|ω, ψ{0}

)
according to observation equation (9) and state equation (10).

2. Block parameters

Sample ψ{1} from f
(
ψ |ω, α{1}

)
Sampling from these blocks can then be iterated J times and, after a sufficiently long burn-in period

B, the sequence of draws (B + 1, ..., J) approximates a sample from the virtual posterior distribution

f (α,ψ|ω). Details on the exact implementation of each of the blocks can be found in the Appendix.

12Specifically, LW and HLW use a three-step estimation approach. By considering smaller versions of the models, in a
first step they determine the signal-to-noise ratio λg =

ση,g
ση,y∗

, in a second step they obtain λz =
arση,z
ση,yc

and in a third step

they impose these two ratios in the estimation of the final model.
13We refer to Kim and Kim (2022) for details.
14Since this prior is conjugate, ν0T can be interpreted as the number of fictitious observations used to construct the prior

belief σ2
0 .
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4 Results

4.1 Data

This section presents results obtained from the multivariate model using disaggregated data for all

19 euro-area countries. Our sample extends from 2000Q1 to 2021Q2. The data is gathered from

the Statistical Data Warehouse (SDW) of the European Central Bank (ECB) in the form of the

country-specific gross domestic product at constant prices (real GDP), the non-energy harmonized

index of consumer prices (core HCPI), and the 3-months Euro Interbank Offered Rate (Euribor).

Output is a seasonally-adjusted log real GDP multiplied by 100. We seasonally adjust the core HCPI

using the Census X-13 method, developed jointly by the Census Bureau and the Bank of Spain, and

then use it to construct inflation and inflation expectations as well as a real effective ex-ante interest

rate. Inflation expectations are approximated with a four-quarter moving average of past inflation.15

Effective short-term interest rates are based on the Euribor and expressed on a 365-day annualized

basis16. Then these data sequences are GDP-weighted to achieve a euro-area-wide real interest rate.

For countries joining the euro area after the beginning of our sample, we use country-specific 3-month

interbank rates for the respective period prior to their accession.

4.2 Euro-area NRI

Fig. 1 provides a visual comparison of our multivariate model with the corresponding estimate of

HLW for the euro-area NRI and its determinants. The figure reports the posterior means of the

one-sided estimates from our model (in red) and from HLW (in blue), as well as the real interest rate

(in black). As becomes apparent from panels (a)-(c), the dynamics of the NRI and its components g

and z are very similar in both models. The NRI follows a marked secular downward trend, reaching

historic lows of around zero percent towards the end of the sample period.

Figure 1: Euro-area NRI and its components
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(b) z component
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(c) trend growth

Note: Reported in red are the posterior means of the one-sided estimates, as well as the corresponding 5th and 95th

percentiles. The blue shaded area shows twice the standard deviation of the NRI as estimated by HLW. The grey shaded

area displays recessions in the euro-area as defined by the CEPR.

One notable difference concerns the size of the estimated decline of the NRI during the financial

crisis of 2008-09, which is less dramatic in our model compared to HLW. Due to our estimate being

significantly smoother, the decrease occurs gradually from 1.8% in 2008Q1 to 1.13% in 2009Q2, while

the findings of HLW show a drop from 2.35% to 0.73% in 2009Q1. It is also worth mentioning that the

15This way of constructing inflation expectations is similar to HLW, whereas LW use an AR(3) model over the past 40
quarters instead. We follow HLW rather than LW in order to have as many observations for estimation as possible.

16Specifically, iefft = 100
(

(1 + it/36000)365 − 1
)

, where it is the Euribor.
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NRI from the HLW model reaches a minimum of 0.14% in 2014Q2, while our estimated value declines

steadily over the subsequent 10 years and dropping to 0.006% during the COVID-19 recession. The

increase of the HLW NRI during the pandemic can generally be attributed to an extreme decline in

the estimated output gap, which is partially offset by a respective rise in the trend-growth component

g, thus driving up the NRI.

Figure 2: Interest rate gap and output gap
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(a) interest rate gap
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(b) output gap

Note: Reported are the posterior means of the one-sided estimates, as well as the corresponding 5th and the 95th

percentiles. The interest rate gap is the difference between the real interest rate and the NRI. The output gap is the

GDP-weighted average of the individual countries’ output gaps. The grey shaded area displays recessions in the euro area

as defined by the CEPR.

The GDP-weighted euro-area output gap and the common interest rate gap, i.e. the difference

between the ex-ante real rate and the NRI is visualized in Fig. 2. We find the values of the interest

rate gap to be almost identical to those reported by HLW, while the estimated output gap differs.

In particular, the drop during the Great Recession is slightly larger and more rapid. Moreover, the

effects of the sovereign debt crisis seem to be more persistent, while the subsequent recovery is not

as drastic. HLW find that the euro-area economy has been overheating since 2014 and up to the

COVID-19 recession, while our estimation yields an output gap of approximately zero during this

time period. Our results are in line with OECD (2022), which classifies 2017Q4 as a turning point

from the peak and the following 10 quarters as a recession. In fact our evidence shows a slight decline

in the output gap from 2017Q4 until 2018Q4.

Arguably the biggest discrepancy occurs at the start of the COVID-19 recession. The HLW

model yields extreme negative values of the output gap, implying comparatively higher values for

trend growth.17 In particular, the drop in 2020Q2 comprises an output gap of -16.1% and an increase

in gt from 1.13% in 2019Q4 to 1.46% in 2020Q1 and 1.25% in 2020Q2. Our model yields an estimated

output gap value of -9.6% in 2020Q2 and an additional drop in gt from 1.76% in 2019Q4 to 1.28% in

2020Q2. These findings are in line with existing literature, for instance, Bodnár et al. (2020) report

an annual output gap decline in 2020 of approximately 10%.

Comparing the results from the multivariate model with HLW, the major difference arises with

respect to the much reduced estimation uncertainty and the plausibility of the estimate in times of

large-scale recessions. We now turn to a quantitative assessment of these findings.

17HLW data is available up to 2020Q2 only, as the publication of new real-time estimates of the HLW model is currently
suspended.
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4.3 Real-time performance of the NRI estimate

Existing measures of the NRI are characterized by a high degree of estimation uncertainty. Both

HLW and Beyer and Wieland (2019) find the natural rate estimates for the euro area to be even

more imprecise than those for the U.S. In particular, HLW report standard errors of the euro-area

NRI of close to 4% at the end of the sample. Beside the U.S., Beyer and Wieland use data for both

Germany and the euro area. Estimating the NRI for Germany, they find standard errors persistently

above 2%, and reaching a maximum of close to 8% toward the end of their sample period in 2014.

They also report that the standard errors for the euro-area NRI are even larger than in the German

data.

Table 1: Uncertainty of the NRI and its components

NRI g z

HLW model 3.157 0.296 ≈ 2.860 18

Multivariate model 0.740 0.044 0.744

Table 1 quantifies the density intervals of the NRI and its components as visualized in Fig. 1.

Uncertainty is measured as the standard error of the posterior distribution (at the last observation)

of the respective component of the one-sided estimate. As becomes apparent, uncertainty of the

euro-area NRI is explained mostly by uncertainty of the ”other determinants” component z rather

than by uncertainty surrounding the area’s long-run growth g.19 These results reflect the problems

of estimating z reported in other studies. In particular, HLW find z never to be significantly different

from zero for the euro area, and Beyer and Wieland also report high uncertainty around z. We find

a dramatic efficiency gain when estimating a model with disaggregated data. Standard errors of our

multivariate model are substantially smaller compared to HLW, being about six times lower for g,

and almost four times smaller for the NRI as a whole20.

The reduced estimation uncertainty in our multivariate model results in a robust real-time per-

formance relatively to the HLW benchmark.21 Starting with an initial sample until 2015Q4, we

re-estimate the model subsequently in each quarter. Figure 3 shows the resulting NRIs obtained in

the first quarter of each year. The left panel displays the well-known property of the HLW NRI in

terms of large revisions when new data become available. For example, the HLW NRI estimate of

2016 is well below zero, however the final estimate turns out positive and about one percentage point

above the estimate in real time. In our multivariate model, revisions are substantially smaller. The

mean absolute error between the real-time estimate and the final NRI averages 0.6% in HLW and

0.2% in the multivariate NRI estimation. In fact, most of the observed differences between the real-

time and the revised estimates are the results of including the COVID-19 pandemic periods in the

sample. Including the most recent data from 2020Q2 onwards results in an estimated NRI that is well

above the NRIs estimated prior to the COVID-19 period. The strong influence of COVID-19-related

outliers in macroeconomic modeling is discussed in Lenza and Primiceri (2022).

18As HLW do not report the standard errors for zt, we approximate them by taking the difference between the NRI
uncertainty and the gt uncertainty. This approximation is performed under the assumption that g and z are uncorrelated.
The initialization of the Kalman filter assumes no correlation, but the real values for uncertainty could be higher if these
components are negatively correlated.

19The level of uncertainty of z in our model is larger than for the NRI as a whole. This is because g and z display a
(moderate degree) of negative correlation.

20Mirroring our results, Basistha and Startz (2008) estimate the U.S. NAIRU using a multiple-indicator unobserved
components model similar to ours, where they consider a single gap driving the dynamics of cyclical fluctuations in GDP
and unemployment. In particular, they show that their 4-variable model lowers overall uncertainty by about half.

21Due to limited data availability, we do not use vintage data in this excercise.
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Figure 3: Real-time estimation
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Note: Pseudo real-time estimates for the multivariate model from 2015Q1 to 2021Q2 and real-time HLW estimates from

2016Q1 to 2020Q2. The grey shaded area displays recessions in the euro area as defined by the CEPR.

Table 2 reports on the prior and posterior distributions of the model parameters22. The columns

on the right show the mean as well as the 2.5 and the 97.5 percentiles form the posterior distribution,

averaged over all countries. We take these averages at each iteration of the sampling scheme to obtain

a distribution of each averaged parameter. It turns out that all parameters are (much) tighter than

their prior distributions, indicating that the posterior is driven by the likelihood, i.e. by information

contained in the data.

In terms of the model coefficients, we follow HLW in restricting ar to be negative by using a

truncated prior. HLW find ar very hard to estimate with euro-area data. They state that ”For the

euro-area, the slope of the IS equation is considerably flatter, and the average standard error for r∗

is very large, primarily driven by draws of the parameter vector in which ar is very close to zero and

hence r∗ is barely identified” (p.S65). We obtain a similar result in which the restriction ar < 0 is

clearly binding and ar has a large probability mass at values close to zero. Yet its mean is slightly

more negative than that of HLW, with an average of -0.145 versus -0.037. Potentially, the inclusion

of white-noise processes in equations (1) and (6) partially cover the effect of a flattening IS curve and

a decreasing role of the interest rate gap in the output-gap determination in the second half of the

sample.

Since we define inflation expectations as a moving average of past inflation, the sum of the co-

efficients β1 and β2 can be interpreted as a measure of inflation persistence, which is found to be

significantly smaller in our model. Only for four countries, namely, Finland, Italy, Ireland and Slove-

nia this parameter approaches or exceeds the 0.693 mark from HLW. The slope of the Phillips Curve,

β3, is much lower in HLW than in our sample. In fact, we obtain a higher β3 coefficient for 18 of

the 19 euro-area member states, particularly so for Southern and Eastern European countries. We

also find the strength of the trade channel, ρ, to be positive for almost every country, being most

pronounced for Eastern Europe but turning out rather low for Northern Europe.

22Individually specified priors from section 3.3 and their respective distributions are presented in Appendix B.
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Table 2: Prior and posterior distributions of model parameters

Inverse Gamma priors Posterior distribution

IG(c0, C0) = IG(ν0T, ν0Tσ2
0)

σ2
0 ν0 2.5% 97.5% 2.5% mean 97.5%

σ2
ηi,y∗ 1 0.01 0.25 602.5 2.366 2.760 3.221

σ2
ηi,yc 1 0.01 0.25 602.5 0.684 0.874 1.121

σ2
ηcr

1 0.01 0.25 602.5 0.097 0.139 0.205

σ2
g 0.05 0.01 0.01 30.1 9×10−6 16×10−6 31×10−6

σ2
z 0.05 0.01 0.01 30.1 4×10−6 11×10−6 29×10−6

σ2
εi,y 1 0.01 0.25 602.5 0.717 0.915 1.154

σ2
εi,π 1 0.01 0.25 602.5 1.930 2.194 2.536

σ2
εr 1 0.01 0.25 602.5 0.030 0.048 0.079

Gaussian priors: N (a0, A0)

a0
√
A0 2.5% 97.5% 2.5% mean 97.5%

β0,i 1 3 -4.84 6.88 0.841 1.258 1.735

β1,i 0.5 1 -1.45 2.46 -0.040 0.046 0.135

β2,i 0.5 1 -1.45 2.46 -0.068 0.104 0.270

β3,i 0.25 0.25 -0.24 0.74 0.311 0.442 0.560

ar,i -0.15 0.15 -0.45 0∗ -0.203 -0.145 -0.095

φyi 0.95 0.25 0.46 0.99∗ 0.731 0.807 0.868

φr 0.9 0.25 0.41 0.99∗ 0.902 0.957 0.988

ρi 0.1 0.25 -0.39 0.59 0.245 0.360 0.453

Notes: Parameter from the multivariate model are country averages.
∗Prior is truncated. In 4 out of 19 countries, σ2

η,yc is set somewhat
tighter to obtain robust results. See Appendix B for details.

5 Conclusion

The natural real interest rate (NRI) is a key concept in modern macroeconomics and an important

tool in gauging the size of the output gap and the inflationary pressure in an economy. In fact, whether

a given short-term real interest rate is inflationary or deflationary depends crucially on the level of

the NRI. As an inherently unobservable variable, obtaining precise estimates of the NRI not only

improves on the assessment of the state of the economy in general, but constitutes an indispensable

input for informing monetary policy decisions in particular. In an influential article, Holston et al.

(2017) provide estimates for the euro-area NRI on the basis of a small semi-structural unobserved

components (UC) model using data from the Area Wide Model Database (AWM) of the European

Central Bank (ECB). However, their estimates come with very large standard errors and are subject

to a rather weak real-time performance.

In this paper we adopt a semi-structural modeling approach similar to Holston et al. (2017).

Instead of resorting to aggregate data, we exploit the information contained in the country-level data

of the 19 member states of the euro area. Our results confirm previous findings that the euro-area

NRI displays a secular decline, dropping close to zero percent towards the end of the sample period.

At the same time, we find the NRI to follow a smoother path, thereby improving the plausibility of

the estimates particularly during the recessionary episodes of the financial crisis and the COVID-19
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lockdowns. The major advantage of using our multi-country model comes in the form of a dramatic

efficiency gain in estimating the euro-area NRI and a substantial improvement in the reliability of its

real time performance.
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Appendix A Gibbs sampling algorithm

In this appendix we provide details on the Gibbs sampling algorithm used to jointly sample the

unobserved components α and the parameters ψ.

Block 1: Sampling the unobserved components α

For notational convenience, let ỹt = {yi,t}Ni=1 denote yi,t stacked over all N countries. A similar nota-

tion is used for all observed and all latent variables. Likewise, we stack parameters over countries, i.e.

ξ̃ = (ξ1, . . . , ξN ). We first filter and draw the state vector αt = (ỹ∗t , ỹ
c
t , r

c
t , gt, zt) conditionally on the

parameters ψ using the standard forward-filtering-backward-sampling approach. More specifically,

using the general notation in equations (9)-(10), the state space representation is given by

ωt︷ ︸︸ ︷
ỹt

π̃t

rt

 =

B︷ ︸︸ ︷
IN IN 0N,1 0N,1 0N,1

0N,N diag(β3) 0N,1 0N,1 0N,1

01,N 01,N 1 4 1



αt︷ ︸︸ ︷

ỹ∗t

ỹct

rct

gt

zt


+

A︷ ︸︸ ︷
0N,N 0N,N 0N,N

diag(β0) diag(β1) diag(β2)

01,N 01,N 01,N



κt︷ ︸︸ ︷
1T,N

π̃t−1

π̃t−2,4

+

εt︷ ︸︸ ︷
ε̃yt

ε̃πt

εrt

,

(A-1)

with εt
iid∼ N

(
02N+1,1, I2N+1

(
σ̃2
ε,y, σ̃

2
ε,π, σ

2
ε,r

)′)
. IN is the identity matrix of order N , 0m,n, denote

m× n matrices with all elements equal to zero. The NRI is computed as 4× gt + zt, since gt is the

quarterly growth rate of potential output, while rt is measured in percent per annum.

αt︷ ︸︸ ︷

ỹ∗t

ỹct

rct

gt

zt


=

D︷ ︸︸ ︷

IN 0N,N 0N,1 1N,1 0N,1

0N,N Φy ãr 0N,1 0N,1

01,N 01,N φr 0 0

01,N 01,N 0 1 0

01,N 01,N 0 0 1



αt−1︷ ︸︸ ︷

ỹ∗t−1

ỹct−1

rct−1

gt−1

zt−1


+

ηt︷ ︸︸ ︷

η̃y
∗

t

η̃y
c

t

ηr
c

t

ηgt

ηzt


, (A-2)

where ηt
iid∼ N

(
02N+3,1, I2N+3

(
σ̃2
η,y∗ , σ̃

2
η,yc , σ

2
η,rc , σ

2
η,g, σ

2
η,z

)′)
and Φy =


φy1 ρ1Ψ1,2 · · · ρ1Ψ1,N

ρ2Ψ2,1 φy2 · · · ρ2Ψ2,N

...
...

. . .
...

ρNΨN,1 ρNΨN,2 · · · φyN

.

All initial elements of the state vector αt are assumed to follow a normal distribution, i.e. α0 ∼

N (a0, P0). We initialize stationary states by drawing from their conditional stationary distribution.

We set the initial value for potential output equal to the starting value of yt with a reasonable vari-

ance of P0 = 5. This corresponds to a0 = 0 for yct and is consistent with its initialization. For gt,

we approximate the first value as an estimated constant by regressing the first 12 values of potential

output on its own lag. We also set a0 for zt to -1, such that the sum of gt (annualized) and zt

resembles the HLW value for the NRI. The initial variances for these two components are P0 = 0.1

and P0 = 1 respectively. Sampling αt from its conditional distribution can then be done using the

multimove Gibbs sampler of Shephard (1994).

Instead of taking the entire observational vectors, we follow the univariate treatment of multivari-

ate series approach of Koopman and Durbin (2000) in which each of the 2×N + 1 variables in ωt is

brought into the analysis one at a time. This not only offers significant computational gains, but it

also avoids the risk that the prediction error variance matrix becomes non-singular.
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Block 2: Sampling the parameter vector ψ

In this block of the Gibbs sampler we estimate and draw the parameters ψ. Conditioning on the

states αt, these are all unknown parameters in the standard linear regression model

yt = b′xt + ut, ut ∼ N
(
0, σ2) , (A-3)

where xt and b are (`× 1) vectors. The matrix version of (A-3) is y = Xb+ u with obvious notations

X (T × ` matrix), y and u (T × 1 vectors). We follow the approach outlined in Bauwens et al. (1999,

p. 56-61). Prior information is represented through the following normal-inverted gamma-2 density

ϕ
(
b, σ2) = fNIG

(
b, σ2|b0,M0, s0, V0

)
, (A-4)

with the prior information being summarized by the hyperparameters (b0,m0, σ
2
0 , v0). First, b0 is the

prior belief about the coefficient vector b with corresponding prior strength M0 = m0M such that

m0 is defined as being the prior precision proportional to the sample precision matrix M = X ′X.

Second, σ2
0 is the prior belief about the error variance σ2, such that s0 = σ2

0V0 is the prior belief about

the residual sum of squares s with V0 being the corresponding prior strength defined as V0 = v0T ,

where v0 is the prior degrees of freedom proportional to the sample size T .

The posterior density of b and σ2 in the linear regression model (A-3) with prior density (A-4) is

a normal-inverted gamma-2 distribution

ϕ
(
b, σ2|y,X

)
= fNIG

(
b, σ2|b∗,M∗, s∗, V∗

)
, (A-5)

with hyperparameters defined by

M∗ = M0 +X ′X,

b∗ = M−1
∗

(
M0b0 +X ′Xb̂

)
,

s∗ = s0 + s+
(
b0 − b̂

)′ (
M−1

0 +
(
X ′X

)−1
)−1 (

b0 − b̂
)
,

V∗ = V0 + T,

and b̂ the LS estimator for b in (A-3). Sampling b and σ2 from the posterior distribution (A-5) can

then be done separately from

b ∼ N
(
b∗,

s∗
V∗ − 2

M−1
∗

)
, (A-6)

σ2 ∼ IG2 (V∗, s∗) . (A-7)

If X = [.], the posterior density in (A-5) reduces to

ϕ
(
σ2|y,X

)
= fIG

(
σ2|s∗, V∗

)
, (A-8)

with s∗ = s0 + s and V∗ as defined above. For common variables, we can obtain the posterior

distribution of the parameter vector as follows:

• sample φr and σ2
ηcr

conditioning on and rct from (A-6) and (A-7) respectively by using (A-5) and

yt = rct and xt = rct−1.

• sample σ2
η,g conditioning on gt and gt−1 from (A-7) by using (A-8), setting yt = gt − gt−1 and
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xt = [.] in (A-3).

• sample σ2
η,z conditioning on zt and zt−1 from (A-7) by using (A-8), setting yt = zt − zt−1 and

xt = [.] in (A-3).

• sample σ2
εr conditioning on rct , gt and zt from (A-7) by using (A-8), setting yt = rt−rct−4gt−zt

and xt = [.] in (A-3).

For i = 1, . . . , N we follow sample parameters one by one:

• sample β0,i, β1,i, β2,i, β3,i and σ2
εi,π conditioning on yci,t from (A-6) and (A-7) respectively by

using (A-5) and yt = πi,t as well as xt = [1T,1, πi,t−1, πi,t−2,4, y
c
i,t].

• sample φyi , ρi, ar,i and σ2
ηi,yc conditioning on yci,t and (rt−r∗t ) from (A-6) and (A-7) respectively

by using (A-5) and yt = yci,t as well as xt = [yci,t−1, ȳ
c
t−1, (rt−1 − r∗t−1)], with ȳct−1 denoting the

weighted average of all countries’ output gaps other than country i.

• sample σ2
εi,y conditioning on yci,t and y∗i,t from (A-7) by using (A-8), setting yt = yi,t−y∗i,t−yci,t

as well as xt = [.] in (A-3).

• sample σ2
ηi,y∗ conditioning on y∗i,t and gt from (A-7) by using (A-8), setting yt = y∗i,t − y∗i,t−1 −

gt−1 as well as xt = [.] in (A-3).
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Appendix B Prior parameters

Table B-1: Prior distributions which differ from the rest of the sample

Inverse Gamma priors Gaussian priors:

IG(c0, C0) = IG(ν0T, ν0Tσ2
0) N (a0, A0)

σ2
0 ν0 2.5% 97.5% a0

√
A0 2.5% 97.5%

Germany σ2
ηi,yc 0.3 1 0.24 0.39 - - - - -

Spain σ2
ηi,yc 0.5 1 0.4 0.66 - - - - -

Belgium - - - - - φyi 0.95 0.1 0.75 1.15

Luxembourg - - - - - β3,i 0.25 0.1 0.05 0.45

Malta - - - - - β3,i 0.25 0.1 0.05 0.45

ρi 0.1 0.1 -0.1 0.3

Portugal σ2
εi,y 1 0.1 0.52 2.8 β3,i 0.25 0.1 0.05 0.45

Italy σ2
ηi,yc 0.5 1 0.4 0.66 φyi 0.95 0.1 0.75 1.15

France σ2
ηi,yc 0.5 1 0.4 0.66 φyi 0.95 0.1 0.75 1.15

β3,i 0.25 0.1 0.05 0.45
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