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Deletion of a DNA Polymerase IP Gene Segment in
T Cells Using Cell Type-Specific Gene Targeting
Hua Gu,* Jamey D. Marth, Paul C. Orban, Horst Mossmann,

Klaus Rajewsky
Deletion of the promoter and the first exon of the DNA polymerase P gene (polp) in the
mouse germ line results in a lethal phenotype. With the use of the bacteriophage-derived,
site-specific recombinase Cre in a transgenic approach, the same mutation can be se-
lectively introduced into a particular cellular compartment-in this case, T cells. The impact
of the mutation on those cells can then be analyzed because the mutant animals are viable.

Gene targeting in embryonic stem (ES)
cells provides a powerful tool for generating
mice carrying predesigned mutations in the
germ line (1). Current approaches to gene
inactivation usually involve the introduc-
tion of a null mutation directly into ES cells
from which homozygous mutant mice can
be generated. Because the null mutation is
carried in the germ line of the mutant
animals, it will exert its effects from the
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onset of animal development. Although
this approach to gene inactivation is valu-
able, for many applications it is important
that the inactivation of a particular gene
occurs in a conditional manner-for in-
stance, in a predefined cell lineage or at a
certain stage of development. Such condi-
tional gene targeting would not only over-
come problems posed by the fact that null
mutations in the germ line are often lethal,
but would also allow a more precise analysis
of the impact of a mutation on individual
cell lineages.

Somatic gene rearrangement and hyper-
mutation at lymphocyte antigen receptor
gene loci are unique events that require
DNA repair (2, 3). The pole gene has been
shown to be one of various enzymes in-
volved in the DNA repair machinery (4).
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However, despite its ubiquitous expression
(5) the importance of this enzyme for the
generation of cell lineages, the survival of
cells, and animal development in general
remains elusive. To explore the function of
the polp gene in mice, particularly in the
development of lymphocytes, one attrac-
tive approach is to generate pol-deficient
mice with the use of gene targeting. Be-
cause of the potential problem of embryonic
lethality caused by a null mutation of the
polpi gene, we developed a general method
for conditional gene inactivation with the
use of the poll gene as a model. This
method includes the concomitant produc-
tion of a conventional (nonconditional)
deletion mutant.

Our approach is based on the Cre-loxP
recombination system of bacteriophage P1
(6). We and others have previously shown
that this system is capable of mediating loxP
site-specific recombination in both ES cells
(7) and transgenic mice (8, 9). The strategy
for conditional gene targeting is shown
schematically in Fig. 1A. Two mouse
strains are required: One is a conventional
transgenic strain in which a cre transgene is

A
xyoh

expressed in a cell type-specific or develop-
mentally stage-specific manner. The second
strain carries the target gene flanked by two
loxP sites. In offspring derived from an
intercross between these strains carrying
the cre transgene and a loxP-flanked
("floxed") target gene, Cre-loxP site-depen-
dent recombination will occur in cells
where the cre gene is expressed, thereby
deleting the target gene. In contrast, the
target gene should remain functional in
cells of all the other tissues, where the cre
transgene is not expressed.

Depicted in Fig. 1B is a two-step strategy
for generating in parallel a floxed gene or
gene segment and a deletion of the same
piece of DNA in ES cells in vitro. In the
first step, three loxP sites, in addition to the
selection marker genes for neomycin resis-
tance (neor) and herpes simplex virus-thy-
midine kinase (HSV-tk), are introduced
into the flanking regions of the target gene

Table 1. Deletion of the pol$ gene in ES cells.
In clones not carrying a type or type 11 dele-
tion, only wild-type pole loci could be detected.

Experi- Clones Clones (n) with
ment analyzed deletion of

(n) Type Type II

1 24 2 4
2 24 1 3

through homologous recombination. In the
second step, the Cre enzyme is expressed in
the genetically modified ES cells. If the
expression of the Cre enzyme is transient,
we expect that in some ES cells the recom-
bination event will occur only once be-
tween any two of the three loxP sites, and
different types of deletion should be gener-
ated. Type I deletion results in the deletion
of the target gene from the genome of the
ES cells, and animals derived from the
corresponding ES cells will carry the dele-
tion in the germ line. In contrast, type II
deletion results in a floxed gene or gene
segment at the targeted locus. The third
possible type of deletion, which deletes the
target gene but leaves the neor and HSV-tk
genes in the genome, should not be ob-
served in the mutant progeny, because ES
cells carrying such a deletion should die
after ganciclovir treatment during selection
of type I and II deletion mutants (1).

To generate polo mutant mice, we trans-

Table 2. Genotypic analysis of the offspring of
poll/p+ mice.

Mice (n) with genotype

Age po/$I pol/' +/
polp,' + +

10.5 days (embryos) 5 19 8
4 weeks (mice) 0 22 7

B |-EEEE~r----71 |Germ line gene

.I_ Targeting construct

Homogou
recombination , ~~Homolo~ouI..--.F. *. recombinant

Cre-/oxP-mediated.
recombination

Type II deletion Type deletion

Fig. 1. (A) Scheme for cell type-specific gene
targeting. (Upper left) A mouse strain in which a
gene in the germ line (black bar) is flanked by
two IoxP sequences (triangles). (Upper right) A
cre transgenic mouse strain. The gray area
represents the tissue in which the Cre enzyme
is expressed. (Bottom) F1 mouse derived from
the two mouse strains above. The target gene is
deleted in the tissue in which the Cre enzyme is
expressed. (B) Strategy for generating a gene
flanked by loxP sites in ES cells. Shown are a
genetic locus, a corresponding targeting con-
struct, the resulting homologous recombinant,
and the two types of Cre-mediated deletions.
The gene segment to be excised is depicted as
a black bar. The IoxP sequences are represent-
ed by triangles. The position of the selection
marker cassette containing the neor and HSV-
tk genes is indicated.

Fig. 2. Southern blot analysis of ho- 0 c

mologous recombination and Cre- 1 2 3 4 1 2 3 4
IoxP-mediated recombination at the A i kb B kb kb
mouse pol$ locus. The targeting and -10.0 10.0
deletion experiments were per- .0
formed as described (10) (Fig. 1). - 40
DNA was digested with Bamn Hi. (A)
Targeting of loxP sites into the pol0/
locus of ES cells. Shown are DNA
samples from two candidate mutant B E X B E
ES cell clones (PT14 and PT19). The ClIll I
DNA from wild-type (wt) ES cells is ProbA Pr~b.a
shown as a control. The 5.5-kb band E B B B E
represents the targeted pole allele. B

---A
+

a
-

(B) Cre-/oxP mediated deletion of *Ii
the promoter and first exon of the F ' fl

B B Bpol1 gene in ES cells. Genomic DNA A Type deletion
was obtained from the parental mu- B BF B
tant ES cell (13T14) and four sub- Type 11 deletion
clones (1 to 4) carrying deletions at
the pol locus. Clones 1 and 2 carry 10.0kb
a type deletion, as shown by a 5.5 kb 0

5.5-kb band when they were hybrid-
ized with probe A (left panel) and the 4.5 kb
absence of a 4.5-kb band when they 4.0 kb
were hybridized with probe B (right
panel) (C). Clones 3 and 4 have a type 11 deletion, as shown by a 4.5-kb band when they were
probed with probe B (C). (C) Restriction maps for (from top to bottom) the 5' portion of the mouse
pols locus, the targeting construct, the homologous recombinant, and the type I and type 11 deletion
mutants. The dark rectangles represent the first and second exons of the polo gene; the ovals
represent the pol promoter; the loxP sites are represented by triangles; and the black bars
represent the probes used for hybridization. Restriction sites of Bam HI (B), Eco RI (E), and Xho
(X) are indicated. Numbers on the right side of the blots indicate the sizes of the bands.
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fected the linearized targeting vector
pMGO9 (Fig. 2C) into ES cells, and ho-
mologous recombinants were identified by
Southern (DNA) blot analysis (10). Out of
288 G418-resistant clones analyzed, 16
were homologous recombinants, represent-
ing a frequency of 1 in 18. All these
recombinants also carried a co-integrated
loxP site approximately 1.5 kb upstream
from the poll gene promoter (Fig. 2A). To
generate type I and type II deletions, we
transfected two mutant ES cell clones tran-
siently with Cre-encoding plasmid DNA.
Subclones carrying desired deletions at the
polo locus were identified by Southern blot
hybridization (Fig. 2B). In two indepen-
dent experiments, both type I and type II
deletions were consistently obtained (Table
1). For convenience, we refer to the type I
deletion at the polo locus as polpA and the
type II deletion as polIAX.

Mice carrying the polpA and poltbfx mu-
tations in the germ line were generated by
the standard protocol (11). The impact of
the polpA mutation was examined in off-
spring derived from an intercross between
poles heterozygous mice. No lethality was

observed among the offspring from the time
of birth to the age of 4 months. Genotypic
examination of 4-week-old offspring re-
vealed the absence of homozygous mutant
animals (Table 2). However, at day 10.5 of
fetal life, embryos homozygous for the polep
mutation were present at the frequency
predicted by Mendelian laws (Table 2). On
the basis of these results, we conclude that
the homozygous mutant animals die in the
course of fetal development.

As expected, animals homozygous for
the polIIl°ox mutation are viable. The overall
development of these mutant mice also
appears normal. These results indicate that
the polIAJX mutation does not severely ham-
per polp expression in vivo.

Cell type-specific deletion of the polp
gene was investigated in polIlox/+ mice
carrying a creIk transgene. The cre trans-
gene in these mice is driven by the Ick
proximal promoter and is, therefore, selec-
tively expressed in T lineage cells (9). The
extent of pole gene deletion was assessed in
various tissues of the animals by Southern
hybridization (12). As expected, deletion
occurred selectively in T cells. Quantitative

Table 3. Efficiency of polp gene deletion in T lineage cells from polp"xlx+; creIck (control) and
polp oxlpol$; creeCk (experimental) mice. The total mutant alleles present (po/3flax + polp3') are
defined as 100%. The percentage of cells of genotype polp,/pol^p was calculated with the
assumption that B cells carry equal proportions of polls& and polptox alleles, because no polp
deletion was detectable in B cells from polpflox/+; creick transgenic mice (Fig. 3A).

Cells polpflOx pOlpA Cells of genotypeallele (%) allele (%) pol0/Plpol/P (%)

Control mice
CD4+CD8+ thymocytes 36 64
Splenic T* 37 or 1 6t 63 or 84t

Experimental mice
CD4+CD8+ thymocytes 31 69 38
Splenic T 31 69 38
Splenic B 51 49 0

*Defined as Thy-i+ cells (14). tThese different percentages are values obtained in an independent
experiment with mice from a different litter.

Fig. 3. Southern blot analysis of cell type-specific
deletion of the pole gene. DNA was obtained from
various tissues of mutant mice. T lineage and B
cells were purified with a FACS sorter (12). Sym-
bols are as in Fig. 2. (A) Cell type specificity of
pol gene deletion. Shown are Southern blot anal-
yses of various tissues from pol1''Oxl+; creeck
transgenic mice. Genomic DNA was obtained from
liver (L), kidney (K), splenic B lymphocytes (B),
and splenic Thy-1 + (T) cells and digested with
Bam Hi. The probe used for hybridization is indi-
cated in (C) as a black bar. (B) Efficiency of polp
gene deletion in T lineage cells. Samples were
obtained from mice of the following genotypes:
pol pfloxl+; creick (lanes 1 and 2), polpf'oxlpolpA;
creiCk (lane 3, 4, and 5), and polpfloxlpolpflox;
creIck (lane 6). Lanes 1 and 3 represent DNA from
thymic CD4+CD8+ cells; lanes 2, 4, and 6 from
splenic Thy-1 + cells; and lane 5 from splenic B cells. (C) Restriction maps of the 5' portion of the
pol gene. Symbols are as in Fig. 2.
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analysis indicated that 63 to 84% of splenic
T cells carried the deletion (Table 3). In
contrast, no detectable deletion of the polp
gene was observed in either kidney, liver,
or B lymphocytes (Fig. 3A). These results
demonstrate that cell type-specific gene
inactivation can be achieved through our
approach.

To obtain T cells homozygous for the
poleP mutation, we mated mice carrying
the polX mutation and the creck trans-
gene to heterozygous poles mice. We chose
for further analysis offspring of genotype
polpltx/polpA that carried the crekk trans-
gene, because in such animals every single
cell has only a single functional polp
(namely, pollx) gene, the deletion of
which will result in homozygosity for the
polep mutation.

The overall development of pollp/
polIAlx; crekk transgenic mice appeared nor-
mal. Of these mice, both males and females
were able to generate offspring when mated
to normal mice, which suggests that germ
cells developed normally in these animals.
Flow cytometric analysis of T lineage cells
in the thymus revealed no difference be-
tween the mutant mice and the wild-type
controls in terms of total number of thymo-
cytes and the distribution of CD4 and CD8
expression (13) on the surface of these cells
(Fig. 4). In the blood of the mutants,
essentially all T cells [as identified by the
Thy-1 surface marker (13)1 express the ad
T cell receptor (TCR), and the number of
splenic Thy-1' cells is also normal com-
pared to that in wild-type mice (14).

To estimate the fraction of T cells ho-
mozygous for the polpA mutation in these
mice, we performed Southern blot analysis
using DNA from purified T and B cells (Fig.
3B) (12). We found that approximately
40% of CD41CD8C thymocytes were ho-
mozygous for the polpA mutation (Table 3).
The percentage of such cells was not in-
creased in the peripheral T cells, which
suggests that no further deletion of the polp
gene occurred in T cells after the
CD41CD8C stage ofT cell development in
the thymus. This is consistent with the

po°pltpox+;crelck pol/l3Ox/polPA +;creck

~.)

Fig. 4. Flow cytometric analysis of the thymo-
cytes from mutant mice. The cells were stained
with CD4 and CD8 antibodies and analyzed
with a FACStar (12). The genotypes of the mice
are indicated on top of each profile.
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observation that the creck transgene is not
expressed in mature T cells (9).

There may be two main reasons for the
incompleteness of polo gene deletion in our
experimental system. First, the Ick proximal
promoter is active only at early stages ofT cell
development (15). Earlier data also indicate
that the crelck transgene is expressed only
transiently in the thymus (9). It is therefore
conceivable that in the transgenic T cells the
poltx alleles have only a brief period of time
to accomplish Cre-loxP-mediated recombina-
tion. Second, the cre gene that we have used
corresponds to the wild-type cre gene of PI
phage (6). It is known that the expression of
this gene in eukaryotic cells is suboptimal, but
it can be improved by appropriate genetic
manipulation (7, 16). Thus, there are
straightforward ways in which our experimen-
tal system can be improved to obtain a more
efficient deletion of the target gene.

Our data provide no direct evidence at
this stage about a possible involvement of
poll in the control ofTCR gene rearrange-
ments. However, we might interpret the
lesser extent of polp deletion in polpa/
polI?/lX; crekck mice as compared to that in
polptx/+; crelck transgenic mice (Table 3)
to mean that in the former case Cre-loxP-
mediated poll inactivation results in cell
death if it happens to occur before the
completion of TCR gene rearrangement.

In principle, Cre-loxP-mediated gene
targeting should allow the inactivation of
any gene in any tissue at any stage of
development. It can also be adapted to
conditional reconstitution of gene func-
tion. Furthermore, through lineage-specific
inactivation of genes critical for cell surviv-
al, this approach can potentially be used for
the ablation of cell lineages in vivo.
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Regulation of MHC Class 11 Expression by
Interferon-y Mediated by the
Transactivator Gene CIITA

Viktor Steimle, Claire-Anne Siegrist, Annick Mottet,
Barbara Lisowska-Grospierre, Bernard Mach*

Major histocompatibility complex (MHC) class 11 genes are expressed constitutively in only
a few cell types, but they can be induced in the majority of them, in particular by interferon-y
(IFN-y). The MHC class 11 transactivator gene CIITA is defective in a form of primary MHC
class 11 deficiency. Here it is shown that CIITA expression is controlled and induced by
IFN-y. A functional CIITA gene is necessary for class 11 induction, and transfection of CIITA
is sufficient to activate expression of MHC class 11 genes in class Il-negative cells in the
absence of IFN-y. CIITA is therefore a general regulator of both inducible and constitutive
MHC class 11 expression.

MHC class II molecules present antigens
to T helper lymphocytes, and the tight
regulation of their expression is of critical
importance for the control of the immune
response both in physiological and patho-
logical situations. However, the mecha-
nism of IFN-y-induced MHC class II ex-
pression remains obscure (1-4). Induction
of MHC class II genes by IFN-y is charac-
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terized by an unusually long lag period and
total dependence on de novo protein syn-
thesis (5-7). These genes thus exhibit a
"secondary" response to IFN--y (8, 9),
which has led to the postulation of an
intermediary activator, itself induced by
IFN-y (5-7). Despite considerable effort it
has not been possible to define "interferon
response elements" convincingly in MHC
class II genes (2). The same DNA sequence
elements seem to be required for IFN-y-
induced transcription and constitutive ex-
pression in B cells (2, 3). The factors
implicated thus far in the regulation of
MHC class II genes are expressed constitu-
tively, and their binding to MHC class II
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