Pyramiding of target alleles PhD students' Summer Seminar 2014 Wolfgang Link

"Genomic selection is revolutionizing both animal and plant breeding"

Genomic selection in plant breeding: from theory to practice. Jannink, 2010.

Briefings in Functional Genomics 9, 166-177.

I intend to remind us that:

- In spite of same Breeding Value, outcome may be different (... if you look for 'best' genotype);
- When planning a cross, genotypic values may deceive you; detailed consideration of genes may be needed;
 - And I intend to show a 'real' example of markerassisted pyramiding of alleles

Homozygous genotypes at four unlinked loci & corresponding 'performances'. Average 'performance' of all homozygotes is 10.0

		D	D	dd		
		BB b		BB	bb	
CC	AA	<u>12.4</u>	<u>12.0</u>	10.4	10.0	
	aa	<u>12.0</u>	11.6	10.0	9.6	
	AA	10.4	10.0	8.4	8.0	
CC	aa	10.0	9.6	8.0	7.6	

Genc	otype	Additive effect 'a'
AA	aa	0.2
BB	bb	0.2
CC	CC	1.0
DD	dd	1.0

Genotypes and 'performance' of two 'testers' and of population

T1	T2	Population	Additive effect
Genot. Perf.	Genot. Perf.	Genotypes Perf.	'a'
AA	aa	aa	0.2
bb 12.0	BB 12.0	BB bb 1:1 CC 10.8	0.2
CC 12.0	BB CC 12.0	CC 10.0	1.0
DD	DD	DD dd 1:1	1.0

DH/RIL-offspring of 'T1 x Population' and of 'T2 x Population'

	T1 x Popula	tion	T2 x Population				
Genotypes Perf.				Genotypes			Perf.
AA BB DD	aa bb CC dd	1:1 1:3 - 3:1	11.4	aa BB CC DD	bb dd	- 3:1 - 3:1	11.4
	Min-Max: 9.6	- <u>12.4</u>	Min-Max: 9.6 – 12.0				

Breeding value of testers is 11.4 - 10.8 = 0.6

Genotypes and 'performance' of two 'testers' and of population

T1	T2	Population	Additive effect
Genot. Perf.	Genot. Perf.	Genotypes Perf.	'a'
AA	aa	aa	0.2
bb 12.0	BB 12.0	BB bb 1:1 CC 10.8	0.2
CC 12.0	BB CC 12.0	CC CC	1.0
DD	DD	DD dd 1:1	1.0

DH/RIL-offspring of 'T1 x Population' and of 'T2 x Population'

	T1xPopulat	ion		T2xPopulation				
	Genotypes Perf.				Genotypes			
AA BB	aa bb CC	1:1 1:3 -	11.4	aa BB CC		- 3:1 -	11.4	
DD	dd	3:1		DD	dd	3:1		
	Min-Max: 9.6	- <u>12.4</u>	Min-Max: 9.6 – 12.0					

Same <u>Breeding Value</u> of the two testers => same improvement of population; But not same ,best' genotype, because testers ,complement' the population differently: <u>Genes Count</u>! 7

Homozygous genotypes at four unlinked loci & corresponding 'performances'. Average 'performance' of all homozygotes is 10.0

		DD		dd		
		BB	bb	BB	bb	
CC	AA	<u>12.4</u>	12.0	10.4	10.0	
	aa	12.0	11.6	10.0	9.6	
	AA	10.4	10.0	8.4	8.0	
CC	aa	10.0	9.6	8.0	7.6	

You use a three-way cross to breed a superior **barley**. Performances are:

P1 = 8.40, P2 = 9.60, P3 = 9.60.

How to cross?

Expected performance of DH-offspring from:

 $\begin{array}{lll} (P1 \times P2) \times P3 &= \frac{1}{4}(8.4) + \frac{1}{4}(9.6) + \frac{1}{2}(9.6) = 9.3 \\ (P1 \times P3) \times P2 &= \frac{1}{4}(8.4) + \frac{1}{4}(9.6) + \frac{1}{2}(9.6) = 9.3 \\ (P2 \times P3) \times P1 &= \frac{1}{4}(9.6) + \frac{1}{4}(9.6) + \frac{1}{2}(8.4) = 9.0 \end{array}$

So, you choose the first or second option. Well ...; You take the average performance of the offspring as criterion.

What about the best single offspring that segregates from these crosses?

I (P1 x P2) x P3 = $\frac{1}{4}(8.4) + \frac{1}{4}(9.6) + \frac{1}{2}(9.6) = 9.3$ II (P1 x P3) x P2 = $\frac{1}{4}(8.4) + \frac{1}{4}(9.6) + \frac{1}{2}(9.6) = 9.3$

III (P2 x P3) x P1 = $\frac{1}{4}(9.6) + \frac{1}{4}(9.6) + \frac{1}{2}(8.4) = 9.0$

I	P1			P2			P3		
	Gen.	Value		Gen.	Value		Gen.	Value	
	AA BB cc dd	8.4	Х	X aa bb CC 9.6 dd		Х	aa bb cc DD	10.4	
II	P1			P3			F	2	
	Gen.	Value		Gen.	Value		Gen.	Value	
	AA BB cc dd	8.4	Х	aa bb cc DD	10.4	Х	aa bb CC dd	10.4	
111	P2			P3			F	21	
	Gen.	Value		Gen.	Value		Gen.	Value	
	aa bb CC dd	10.4	X	aa bb cc DD	10.4	X	AA BB cc dd	8.4	

Frequency of ,best'

$$(\frac{1}{4})^2 (\frac{1}{4})^1 (\frac{1}{2})^1 = 1/128$$

$$(\frac{1}{4})^1 (\frac{1}{4})^2 (\frac{1}{2})^1 = 1/128$$

 $(\frac{1}{4})^1 (\frac{1}{4})^1 (\frac{1}{2})^2 = \frac{1}{64}$

	P1			P2			P3		
or	Gen.	Value		Gen.	Value		Gen.	Value	
I	AA		Х	aa		Х	aa		
	BB	8.4		bb	9.6		bb	10.4	
	CC	8.4		CC	0.0		CC	10.1	
	dd			dd			DD		
	P2	P3 P				1			

Frequency of ,best'

$$(\frac{1}{4})^2 (\frac{1}{4})^1 (\frac{1}{2})^1 = 1/128$$

$$(\frac{1}{4})^1 (\frac{1}{4})^1 (\frac{1}{2})^2 = 1/64$$

13

To maximize the frequency of best genotype in a segregating familiy, it may not be enough to know the parents' genotypic or breeding value but it may be necessary to consider the details, such as <u>gene number</u>, <u>complementation of genes</u> (and linkage and allele phase ...) RESEARCH

Third item

Application of Population Genetic Theory and Simulation Models to Efficiently Pyramid Multiple Genes via Marker-Assisted Selection

Jiankang Wang,* Scott C. Chapman, David G. Bonnett, Greg J. Rebetzke, and Jonathan Crouch

Published in Crop Sci 47:582–590 (2007). doi: 10.2135/cropsci2006.05.0341 © Crop Science Society of America 677 S. Segoe R.d., Madison, WI 53711 USA

Nine loci, their locations, the genotype for the three parents and the target alleles. Wang et al., 2007. Crop Science 47, 582-590.											
Gene / Locus	Rht- B1	Rht- D1	Rht8	Sr2	VPM	Cre1	Glu- B1	Glu- A3	tin		
Chromosome	4BS	4DS	2DL	3BS	7DL	2BL	1BL	1AS	1AS		
Marker type		Codominant Dominant Codomina								les	
Distance (cM)	0	0.0 0.6 1.1 0.0						0.8	Number of target alleles		
Rht-Rht-							Glu-	Glu-		of tar	
Target alleles	B1 a	D1 <mark>a</mark>	Rht8	S r2	VPM	Cre1	B1	A3	tin	mber	
		Dwarfing)	R	Rust Nema- tode Quality				Tiller	Nu	
Rht-B1b, Rft-D	D1b redu	uce plant	t height	<u>&</u> coleop	otile leng	th: <u>un</u> fav	vorable u	under dr	ought		
Rht8 reduc	ces plan	it height		reducing drought		ile lengtl	n: favora	able und	er		
HM14BS	а	а	R	S	V	С	а	е	Т	3	
	h	•	r	S	V	С		С	+	4	
Silverstar+tin	b	a		3	V		•	C	L	-	

Nine loci, their locations, the genotype for the three parents and the target alleles. Wang et al., 2007. Crop Science 47, 582-590.

	9	,			, .,			÷		
HM14BS	а	a	R	S	V	С	а	е	Т	3
Silverstar+tin	b	а	r	S	V	С	i	С	t	4
Sunstate	а	b	r	S	V	С	i	b	Т	5
Segregation 3-way F1	1:1	-	1:1	-	-	1:1	1:1	-	1:1	%
MAS in	aa	a b	Rr	<mark>S</mark> s	٧v	Cc	ii	bc be	tΤ	3.125%
3-way F1	1/2	-	1⁄2	-	-	1⁄2	1⁄2	-	1⁄2	£
Segregation 3-way F2	-	1:2:1	1:2:1	1:2:1	1:2:1	1:2:1	-	1:2:1	1:2:1	
MAS in 3- way-F2	aa	ab aa	RR	Ss SS	Vv VV	Сс СС	ii	bc/e bb	t⊤ tt	3.96%
('enrichment')	-	3/4	1⁄4	3⁄4	3/4	3/4	-	Repuls	ion 3cM	
DHs derived	-	2/3	-	2/3	2/3	2/3	-			%0
from enriched F2	aa	aa	RR	SS	VV	CC	ii	bb	t t	1.60%

Nine loci, their locations, the genotype for the three parents and the target alleles. Wang et al., 2007. Crop Science 47, 582-590.												
Gene / Locus	Rht- B1	Rht- D1	Rht8	Sr2	VPM	Cre1	Glu- B1	Glu- A3	tin			
Chromosome	4BS	4DS	2DL	3BS	7DL	2BL	1BL	1AS	1AS			
Marker type		Codor	ninant		Dom	inant	Co	domina	nt	eles		
Distance (cM)	0	.0	0.6	1.1		0.	0)		get alle		
Target alleles	Rht- B1 a	Rht- D1 a	Rht8	S r2	VPM	Cre1	Glu- B1	Glu- A3 D	tin	Number of target alleles		
Dwarfing Rust Nema- tode Quality Tiller												
Rht-B1b, Rft-D1b reduce plant height <u>&</u> coleoptile length: <u>un</u> favorable under drought R ht8 reduces plant height without reducing coleoptile length: favorable under drought												
HM14BS	а	а	R	S	V	С	а	е	Т	3		
Silverstar+tin	b	а	r	S	V	С	i	С	t	4		
Sunstate	а	b	r	S	V	С	i	b	Т	5		
Segregation 3-way F1	1:1	-	1:1	-	-	1:1	1:1	-	1:1	%		
MAS in	aa	<mark>a</mark> b	Rr	<mark>S</mark> s	٧v	<mark>С</mark> с	ii	bc be	tΤ	3.125%		
3-way F1	1⁄2	-	1⁄2	-	-	1⁄2	1⁄2	-	1⁄2	£		
Segregation 3-way F2	-	1:2:1	1:2:1	1:2:1	1:2:1	1:2:1	-	1:2:1	1:2:1			
MAS in 3-way F2	aa	ab aa	RR	Ss SS	Vv VV	Сс СС	ii	bc/e bb	t⊤ tt	3.96%		
('enrichment')	-	3⁄4	1⁄4	3⁄4	3⁄4	3⁄4	-	Repulsi	on 3cM			
DHs derived	-	² /3	-	² /3	2/3	² / ₃	-			%0		
from 'enriched' F2	aa	aa	RR	SS	VV	CC	ii	bb	t t	1.60%		

Minimum population size to get at least one with 99% probability

$$N_{min} = 146$$

 $N_{min} = 114$

 $N_{min} = 286$

"Genomic selection is revolutionizing both animal and plant breeding"

Genomic selection in plant breeding: from theory to practice. Jannink, 2010.

Briefings in Functional Genomics 9, 166-177.

I intended to remind us that:

- In spite of same Breeding Value, outcome may be different (... if you look for 'best' genotype);
- When planning a cross, genotypic values may deceive you; detailed consideration of genes may be needed;

And I showed a 'real' example of markerassisted pyramiding of alleles

P2			P3			F	21	
Gen.	Value		Gen.	Value		Gen.	Value	
aa bb CC	10.4	Х	X aa bb	10.4	X	AA BB	8.4	Frequency of ,best' $(\frac{1}{4})^1 (\frac{1}{4})^1 (\frac{1}{2})^2 = 1/64$
CC dd			cc DD			cc d		

How many offspring individual do you need to be – say – 99%, sure' to have on of these ,best' in your offspring family? I mean, if you just take N=64 you may not be sure to get the expected 1 out of 64!

- If you take one offspring, the probability to NOT HAVE the best one is **63/64**.
- If you take 44 offspring, the probability to NOT HAVE at least one best is $[63/64]^{44} = 0.50$.

How many do you need to bring this to <0.01?

Probability to not have at least one best < 0.01?

N= log(**0.01**) / log(**63/64**) = 293