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Using Machine Learning methods in our research at CiBreed 
 

Researcher: Selina Klees  
Paper: In Silico Identification of the Complex Interplay between Regulatory SNPs, 
Transcription Factors, and Their Related Genes in Brassica napus L. Using Multi-Omics Data 
Link: https://doi.org/10.3390/ijms22020789 
Another researcher we talked with is Selina Klees, who used Machine Learning Algorithms in 
order to combining the genomic, transcriptomic, and proteomic data of two different Brassica 
napus cultivars with either high or low oil content. The objective of the authors was to 
investigate the complex interplay between regulatory SNPs (rSNPs), transcription factors (TFs) 
and their corresponding genes. The study provides the first genome-wide collection of rSNPs 
for B. napus, among which those significantly associated with the phenotype were identified 
with a machine learning approach.   
For the assessment of the importance of single rSNPs, regarding their association to the B. 
napus cultivars, the authors implemented a machine learning approach known as random 
forest (RF)-based feature selection (i.e. the Boruta algorithm), which calculates the 
importance of a variable in a dataset by utilizing multiple decision trees. Using the Boruta 
algorithm, they identified a total of 1,141 genome-wide regulatory SNPs significantly 
associated with oil content, a higher number of significant SNPs than conventional methods 
such as GWAS.  By using a machine learning approach, they were thus able to identify and 
investigate the interplay between several rSNPs and TFs to unravel the regulatory 
mechanisms underlying several candidate genes of oil content in B. napus.  
The authors emphasize the applicability of ML to handle various data types, such as multi-
omics data, to find important biological features influencing a trait of interest. 
 
 

 
 
 
 
 
Figure 1. The basic scheme of the study illustrates that different types of multi-omics data were jointly analyzed to 
investigate rapeseed cultivars with high or low oil content (A).  
With Random Forest, the variable importance is calculated using genomics data by constructing several decision trees 
based on random subsets of data. At each tree split, the sample data are divided into subgroups based on the best splitting 
variable (i.e. SNP) in order to obtain the best prediction gain (B).  
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Researcher: Torsten Pook 
Paper: Using local convolutional neural networks for genomic prediction  
Link: https://www.frontiersin.org/articles/10.3389/fgene.2020.561497/full 
The methods commonly applied in the prediction of breeding values are based on linear 
mixed models or Bayesian approaches. A similarity between these approaches is that they 
are mainly based on modeling additive genetic effects. One challenge of these methods that 
the authors of this paper outlined is the computational demand when scaling to large datasets 
or including additional input factors such as weather, soil, or housing conditions into models. 
In their publication, Torsten and CiBreed colleagues proposed a method referred to as Local 
Convolutional Layers (LCL) which is an extension to a class of artificial neural networks (ANNs) 
known as Convolutional Layers. In their analysis with simulated and real datasets, they found 
that that the application of local convolutional neural networks (LCNN) substantially improves 
the accuracy of genomic prediction relative to more frequently applied ANNs architectures 
like multi-layer perceptrons (MLP) and classical convolutional neural networks (CNN). They 
found that the predictive ability of state-of-the-art methods like GBLUP outperformed the 
proposed LCNN method in small datasets. However, LCNN outperformed GBLUP in large 
datasets.  
 

 
Figure 2. Performance of different prediction methods according to the size of the training set. The advantage of using local 
convolutional neural networks becomes substantial at larger training set sizes (>2000). 

 
Researcher: Cathy Westhues 
Paper: Prediction of Maize Phenotypic Traits With Genomic and Environmental Predictors 
Using Gradient Boosting Frameworks 
Link: https://www.frontiersin.org/articles/10.3389/fpls.2021.699589/full 
 
In their article, Cathy Westhues et al. investigated the use of gradient boosted decision trees 
(GBDT) algorithms for prediction of quantitative traits (grain yield and plant height) in maize 
with genomic and environmental predictor variables. One of the objectives of the study was 
to determine whether these non-linear prediction methods were competitive with linear 
mixed models across four cross-validation (CV) schemes relevant in plant breeding, and to 
examine the effect of some environmental predictors on grain yield. One advantage expected 
by these sophisticated models is improved modeling of nonlinear interactions between 
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genomic-derived predictors (here, principal components from SNPs data) and environmental 
factors. 
The authors found a slight gain in using GBDT with weather data in some challenging 
prediction scenarios, such as predicting genotypes in a new year for grain yield. Variable 
importance scores from the full model dataset were obtained to examine the relative 
contribution of different covariates in the model, showing the importance of abiotic stress 
factors such as high temperatures at flowering time and precipitation at different growth 
stages. However, authors emphasize that GBDT frameworks might yield even more significant 
improvements of predictive ability by including a larger amount of phenotypic data, necessary 
to capture genotype-by-environment interactions. Regularization is also an important 
component of ML applications, for instance the authors found that three hyperparameters 
had a significant influence on model performance. Prior feature engineering aiming at 
reducing data dimensionality and at tailoring relevant input predictors in the context of plant 
breeding  - for instance by computing stress covariates from original weather data – was also 
critical and could potentially be further investigated in future studies. 

 
 
Figure 3. Feature importance ranking based on the average relative gain per feature obtained with the model XGBoost using 
environmental and genomic covariates, for the two traits grain yield and plant height, obtained from  multi-environment 
hybrid maize field datasets. The gain represents the improvement in accuracy when using a feature for splitting, across all 
trees in the model. The order of features is based on feature performance within covariate class for the trait grain yield. 

 
Researcher: Martin Wutke 
Paper: Detecting Animal Contacts—A Deep Learning-Based Pig Detection and Tracking 
Approach for the Quantification of Social Contacts 
Link: https://doi.org/10.3390/s21227512 
 
Another very interesting application of machine learning in animal breeding is phenotyping 
technologies. The scale and size of modern breeding farms make monitoring and caring for 
the health and welfare of animals by visual observation difficult. The monitoring of animal 
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social interactions is important to prevent stress-induced behaviours, which are often 
negatively correlated with the health, productivity, and welfare of animals.  
 
Martin and colleagues applied a novel object detection method introduced for the detection 
of different body parts of pigs, which were used the detected points for tracking individual 
animals. Based on the tracking results, they identified specific animal contacts and 
automatically construct a social network highlighting distinct contact types. The machine 
learning approach overcomes the limitation of manual data collection in Social Network 
Analysis (SNA). An ML-based technique particularly provides improvements to current SNA 
methods by providing automated social network construction and increasing the power of 
understanding and identifying social interactions. The study showed the suitability of CNN-
based object detection methods for the identification of distinct contact types and SNA 
construction. They evaluated the detection and tracking performance of the framework by 
utilizing well established evaluation metrics, and achieved state of the art performance 
results. They continue to develop this framework by expanding the training data and 
increasing the generalizability of the framework to a broader range of livestock environments. 
 

 
 
Figure 4. The social contact identification starts with a raw video frame (A). After detecting the shoulder and tail position (B), 
the trajectories are computed and analyzed over time (C). By identifying cases of close distances, a table of social contacts is 
constructed automatically (D). 

 
Machine learning algorithms, revolutionizing tools in plant and animal breeding? 
Machine Learning presents great potential for plant and animal breeding. ML algorithms can 
improve the prediction of genomic prediction, particularly when part of the genetic variance 
is non additive (Azodi et al., 2019; Pérez-Enciso and Zingaretti, 2019). It is worth emphasizing 
that the applications of machine learning are not limited to the genomic aspects of breeding. 
Machine learning increases the ability of breeders to collect and harness primary and 
secondary phenotypes from plants and animals. Machine learning also increases the option 
of indirect data sharing amongst companies through technologies such as transfer learning.  
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However, despite their immense versatility and their ability to uncover complex relationships 
in datasets, ML algorithms should not be considered as a “magical approach” to all problems 
in breeding. For many phenotypic traits, ML does not yet consistently outperform parametric 
models such as GBLUP for genomic prediction (Abdollahi-Arpanahi et al., 2020; Bellot et al., 
2018; Zingaretti et al., 2020). A common challenge faced by many applications of ML is the 
need for large training sets, so that these advanced methods are really able to capture hidden 
relationships in the dataset and outperform classical statistical approaches.  This remains 
challenging, as phenotyping has now become the major bottleneck, while high-throughput 
genotyping techniques have enabled the generation of genotypic data at reduced costs. 
Finding the best model architecture or the best hyperparameters, and efficient handling of 
large high-dimensional datasets, are also important requirements for an efficient use of ML 
methods. Inadequate model regularization can notably contribute to overfitting issues, i.e. 
preventing the model to generalize well when confronted with new data. Besides these 
aspects, ML models are still often considered as black boxes, although various interpretation 
methods, such as feature importance (Fisher et al., 2019), partial dependence plots, 
accumulated local effects plots (Apley et al., 2020), saliency maps and bias mitigation 
techniques have progressively gained interest, thereby demonstrating that ML applications 
are not restricted to make highly accurate quantitative predictions or classifications (Molnar, 
2020). Further studies are undoubtedly required for further improvement of ML 
methodologies, thereby enabling better selection decisions in plant and animal breeding. 
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