Probeklausur für die Abschlussklausur Statistik II

Nachname:					
Vorname:					
Matrikelnummer:					_
Studiengang bitte ankreuzen	BA:	Diplom:	Magister:	anderes:	_

Studierende im BA-Studiengang müssen sich für die Abschlussklausur in FlexNow angemeldet haben!

Für die Beantwortung der folgenden Fragen haben Sie 90 Minuten Zeit. Die Punkte sind so kalkuliert, dass sie in den 90 Minuten der Klausur maximal 100 von insgesamt 150 Punkten erreichen können. Um mit der Note 4.0 gerade noch zu bestehen, benötigen Sie 50 Punkte. Aus jeder der beiden Übungsklausuren können Ihnen jeweils bis zu 5 Punkte auf die Abschlussklausur angerechnet werden, wobei aufgrund der unterschiedlichen Skalierung die Übungsklausurpunkte umgerechnet werden.

Suchen Sie sich zunächst die Aufgaben aus, die Sie am ehesten lösen können. Beachten Sie den für die Lösung vorgegebenen Raum. Achten Sie auch darauf, dass Ihre Antworten eindeutig und lesbar sind. Anderenfalls können Ihre Antworten nicht berücksichtigt werden.

Bei Aufgaben, die durch Ankreuzen der Antwortvorgaben "richtig" und "falsch" zu lösen sind, erhalten Sie bei einer falschen Lösung einen Punktabzug von 50% der Punktzahl für die richtige Antwort. Wenn Sie unsicher sind, kann es daher sinnvoll sein, gar nichts anzukreuzen.

Schreiben Sie auf jede Seite mit beantworteten Fragen der Klausur Ihren Namen und Ihre Matrikelnummer.

Ausgewählte Quantile von Testverteilungen

A: Quantile der T-Verteilung und der Standardnormalverteilung:

Df	75.0%	90.0%	95.0%	97.5%	99.0%	99.5%	99.9%	99.95%
1	1.000	3.078	6.314	12.71	31.82	63.66	318.3	636.6
2	0.816	1.886	2.920	4.303	6.965	9.925	22.33	31.60
3	0.765	1.638	2.353	3.182	4.541	5.841	10.21	12.92
4	0.741	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.727	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.718	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.711	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.706	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.703	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.700	1.372	1.812	2.228	2.764	3.169	4.144	4.587
20	0.687	1.325	1.725	2.086	2.528	2.845	3.552	3.850
30	0.683	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.681	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.679	1.296	1.671	2.000	2.390	2.660	3.232	3.460
120	0.677	1.289	1.658	1.980	2.358	2.617	3.160	3.373
∞	0.674	1.282	1.645	1.960	2.326	2.576	3.090	3.291

B: Quantile der Chiquadrat-Verteilung

df	90.0%	95.0%	99.0%
1	2.706	3.841	6.635
2	4.605	5.991	9.210
3	6.251	7.815	11.34
4	7.779	9.488	13.28
5	9.236	11.07	15.09
6	10.64	12.59	16.81
7	12.02	14.07	18.48

df	90%	95%	99%
8	13.36	15.51	20.09
9	14.68	16.92	21.67
10	15.99	18.31	23.21
15	22.31	25.00	30.58
20	28.41	31.41	37.57
25	34.38	37.65	44.31
30	40.26	43.77	50.89

C: Ausgewählte Quantile der F-Verteilung-Verteilung

α		$df_1=1$	$df_1=2$	$df_1=3$	$df_1=4$	$df_1=5$	$df_1=6$	$df_1=7$	$df_1=8$	$df_1=9$	$df_1=10$
0.8	df ₂ =30	1.717	1.699	1.645	1.600	1.565	1.538	1.515	1.4975	1.481	1.468
0.9	$df_2 = 30$	2.881	2.489	2.276	2.142	2.049	1.980	1.927	1.884	1.849	1.819
0.95	$df_2 = 30$	4.171	3.316	2.922	2.690	2.534	2.421	2.334	2.266	2.211	2.165
0.99	$df_2 = 30$	7.562	5.390	4.510	4.018	3.699	3.473	3.305	3.173	3.067	2.979
0.999	$df_2 = 30$	13.293	8.773	7.054	6.125	5.534	5.122	4.817	4.581	4.393	4.239
0.8	$df_2 = 60$	1.679	1.653	1.595	1.548	1.511	1.481	1.457	1.437	1.420	1.406
0.9	$df_2 = 60$	2.791	2.393	2.177	2.041	1.946	1.875	1.819	1.775	1.738	1.707
0.95	$df_2 = 60$	4.001	3.150	2.758	2.525	2.368	2.254	2.167	2.097	2.040	1.993
0.99	$df_2 = 60$	7.077	4.977	4.126	3.649	3.339	3.119	2.953	2.823	2.718	2.632
0.999	$df_2 = 60$	11.973	7.768	6.171	5.307	4.757	4.372	4.086	3.865	3.687	3.541
0.8	$df_2 = 120$	1.661	1.631	1.571	1.522	1.484	1.454	1.429	1.408	1.390	1.375
0.9	$df_2 = 120$	2.748	2.347	2.130	1.992	1.896	1.824	1.767	1.722	1.68	1.652
0.95	$df_2 = 120$	3.920	3.072	2.680	2.447	2.290	2.175	2.087	2.016	1.959	1.910
0.99	$df_2 = 120$	6.851	4.787	3.949	3.480	3.174	2.956	2.792	2.663	2.559	2.472
0.999	$df_2 = 120$	11.380	7.321	5.781	4.947	4.416	4.044	3.767	3.552	3.379	3.237
0.8	$df_2 = \infty$	1.642	1.609	1.547	1.497	1.458	1.426	1.400	1.379	1.360	1.344
0.9	$df_2 = \infty$	2.706	2.303	2.084	1.945	1.847	1.774	1.717	1.670	1.632	1.599
0.95	$df_2 = \infty$	3.841	2.996	2.605	2.372	2.214	2.099	2.010	1.938	1.880	1.831
0.99	$df_2 = \infty$	6.635	4.605	3.782	3.319	3.017	2.802	2.639	2.511	2.407	2.321
0.999	$df_2 = \infty$	10.828	6.908	5.422	4.617	4.103	3.743	3.475	3.266	3.097	2.959

Aufgabe 1: (max. 27 Punkte)

Es wird vermutet, dass die Diskriminierungsbereitschaft gegenüber Ausländern durch Ängste vor Fremdheit und unterstellten negativen Folgen der Anwesenheit von Immigranten hervorgerufen wird. In einer (fiktiven) empirischen Erhebung werden alle drei Größen durch Likertskalen mit einem Wertebereich von 0 bis 10 erfasst, wobei die jeweiligen Minimalwerte für keine Diskriminierungsbereitschaft, keine Angst vor Fremdheit bzw. keine unterstellten negativen Folgen stehen und die Maximalwerte für hohe Diskriminierungsbereitschaft, große Angst und hohes Ausmaß an unterstellten negativen Folgen steht.

Die Mittelwerte, Stichprobenvarianzen und -kovarianzen von insgesamt n=1250 (fiktiven) gültigen Fälle sind im Folgenden wiedergegeben:

Variable	Mittelwerte	Stichprobenvarianzen und Kovarianzen		
Diskriminierungsbereitschaft	4.5	1.000		
Angst vor Fremdheit	5.5	1.200	4000	
unterstellte negative Folgen	4.0	1.200	3.600	9.000
(n=1250)				

Berechnen Sie die Koeffizienten der trivariaten Regression der Diskriminierungsbereitschaft auf die beiden erklärenden Variablen Angst vor Fremdheit und unterstellte negative Folgen.

Rechenweg und Ergebnis			Punkte		
1A: Berechnen Sie das partielle unstandardisiertes Regressionsgewicht von Angst vo	r Fremdheit	(3 Punkte	:)		
1B: Das partielle standardisierte Regressionsgewicht der unterstellten negativen Folg nen Sie aus diesem Wert den unstandardisierten Regressionskoeffizienten. (2 Punkte)		.0625. Bei	rech-		
1C: Angenommen, die beiden unstandardisierten Regressionsgewichte hätten die We Fremdheit und $b_2 = 0.1$ für unterstellte negative Folgen. Berechnen Sie unter der Annressionskonstante (2 Punkte)					
1D: Der Determinationskoeffizient beträgt $R^2 = 0.3625$.Berechen Sie den Standardfelte partielles Regressionsgewicht für unterstellte negative Folgen. (4 Punkte)	hler für das	unstandard	disier-		
1E: Angenommen, das unstandardisierte partielle Regressionsgewicht von Angst vor Fremdheit sei 0.3 und esen Standardfehler sei 0.015. Es soll die Forschungshypothese geprüft werden, dass das Regressionsgewicht der Population größer als 0.25 sei. Berechnen Sie eine geeignete Teststatistik für die Prüfung dieser Hypothe (3 Punkte)					
1F: Geben Sie den bzw. die kritischen Wert(e) an, wenn die Hypothese aus 1E mit einer Irrtumswahrschein keit von 5% geprüft werden soll. (2 Punkte)					
1G: Mit einer Irrtumswahrscheinlichkeit von 5% ist das unstandardisierte Regressionsgewicht in der Population größer 0.25. (2 Punkte)	Richtig:	Falsch:			

Rechenweg und Ergebnis				
1H: Berechnen Sie unter Verwendung des Determinationskoeffizienten aus Aufgabe	_	_		
tistik zur Prüfung der Forschungs Null hypothese, dass mindestens eines der beiden Re	egressionsge	wichte in	der	
Population ungleich Null ist. (4 Punkte)				
1I: Geben Sie den bzw. die kritischen Wert(e) an, wenn die Hypothese aus 1H mit ein	ner Irrtumsw	ahrschein	lich-	
keit von 1% geprüft werden soll. (1 Punkt)				
,				
1J: Bei einer Irrtumswahrscheinlichkeit von 1% kann nicht ausgeschlossen werden,	Richtig:	Falsch:		
dass Angst vor Fremden und unterstellte negative Folgen die Diskriminationsbe-	Tuvilig.	1 4154111		
	Richtig:	Falsch:		
1K: Das trivariate Regressionsmodell erklärt weniger als die Hälfte der Unter-				
schiede (Variation) der abhängigen Variable. (2 Punkte)				
reitschaft nicht beeinflussen (2 Punkte) 1K: Das trivariate Regressionsmodell erklärt weniger als die Hälfte der Unterschiede (Variation) der abhängigen Variable. (2 Punkte)	Richtig:	Falsch:		

Aufgabe 2: (max. 25 Punkte)

In einer schrittweisen Regression der Diskriminierungsbereitschaft werden bei einer Stichprobe des Umfangs n=1000 zusätzlich zu den beiden erklärenden Variablen Angst vor Fremdheit und unterstellte negative Folgen das Erhebungsgebiet (0 für alte Länder, 1 für neue Länder) und anschließend die Interaktionseffekte aufgenommen:

Prädiktor	В	SE(b)	b^*	Varianzzerlegung	(n=1000)
Schritt 1:				Quelle	Variation
(Konstante)	1.450	0.630	-	Vorhersagewerte	125.000
Angst vor Fremdheit	0.300	0.085	0.360	Residuen	875.000
Unterstellte negative Folgen	0.350	0.090	0.380		
Schritt 2:					
(Konstante)	1.668	0.630	-	Vorhersagewerte	204.836
Angst vor Fremdheit	0.255	0.075	0.340	Residuen	795.164
Unterstellte negative Folgen	0.260	0.026	0.370		
Region	1.300	0.130	0.400		
Schritt 3:					
(Konstante)	2.400	0.630	-	Vorhersagewerte	211.000
Angst vor Fremdheit	0.300	0.075	0.360	Residuen	789.000
Unterstellte negative Folgen	0.200	0.050	0.095		
Region	1.100	0.110	0.150		
Region*Angst	150	0.065	0.100		
Region*negative Folgen	0.200	0.065	0.120		

Beantworten Sie auf der Basis dieser Ergebnisse folgende Aufgaben:

Rechenweg und Ergebnis	Punkte
2A: Berechnen Sie eine geeignete Teststatistik zur Prüfung der Nullhypothese, dass das Regressionmodell	von
Schritt 2 keine höhere Erklärungskraft aufweist als das Modell von Schritt 1 (4 Punkte)	
2B: Geben Sie den bzw. die kritischen Wert(e) an, wenn die Hypothese aus 2A mit einer Irrtumswahrsche	inlich-
keit von 1% geprüft werden soll. (1 Punkt)	
2C: Die Nullhypothese wird bei einer Irrtumswahrscheinlichkeit von 1% abge-	
lehnt. (2 Punkte)	
2D: Berechnen Sie eine geeignete Teststatistik zur Prüfung der Nullhypothese, dass das Regressionsmodel	l von
Schritt 3 keine höhere Erklärungskraft aufweist als das Modell von Schritt 2 (4 Punkte)	,
2E: Geben Sie den bzw. die kritischen Wert(e) an, wenn die Hypothese aus 2D mit einer Irrtumswahrschei	inlich-
keit von 1% geprüft werden soll. (1 Punkt)	,
2F: Bei einer Irrtumswahrscheinlichkeit von 1% unterscheidet sich der Einfluss der Richtig: Falsch:	
Angst vor Fremden und der unterstellten negativen Folgen auf die Diskriminie-	
rungsbereitschaft in den alten und neuen Ländern (3 Punkte)	
2G: Berechnen Sie anhand des Regressionsmodells aus Schritt 2 den Vorhersagewert für eine Person mit d	len
Prädiktorwerten Region=0, Angst vor Fremdheit = 5, unterstellte negative Folgen = 5. (2 Punkte)	1

Rechenweg und Ergebnis			Punkte
2H: Wie verändert sich in Modell 2 die Vorhersage, wenn bei ansonsten gleichen Be	dingungen d	ie Person	aus
den neuen Ländern kommt. (2 Punkte)			
21. Darachnan Sia anhand das Dagrassiansmodalls aus Sahritt 2 dan Vorbarsassayyart	fiir aina Dare	on mit da	<u> </u>
2I: Berechnen Sie anhand des Regressionsmodells aus Schritt 3 den Vorhersagewert		son mit de	11
Prädiktorwerten region=0, Angst vor Fremdheit = 5, unterstellte negative Folgen = 5	. (2 Punkte)		ı
2J: Schritt 3 zeigt, dass in den neuen Bundesländern das unstandardisierte Re-	Richtig:	Falsch:	
gressionsgewicht von Angst vor Fremdheit größer ist als das unstandardisierte			
Regressionsgewicht der unterstellten negativen Folgen. (4 Punkte)			

Aufgabe 3: (max. 27 Punkte)

Mit Hilfe einer logistischen Regression soll untersucht werden, ob die Wahlbeteiligung mit den Ausprägungen 0 für Wähler und 1 für Nichtwähler durch die Norm, sich an Wahlen zu beteiligen, mit den Ausprägungen 0 für "keine Wahlnorm" und 4 für "sehr hohe Wahlnorm", die wahrgenommene Beeinflussbarkeit des politischen Systems mit den Ausprägungen 0 für "keine Beeinflussbarkeit" und 6 für "sehr hohe Beeinflussbarkeit" und Demokratiezufriedenheit mit den Ausprägungen –2 für "sehr unzufrieden" und +2 für "sehr zufrieden" vorhergesagt werden kann.

Die Ergebnisse basierend auf n=2088 (fiktiven) Fällen zeigt folgende Tabelle:

Prädiktor	b_k	$SE(b_k)$	$b*s(X_k)$	$exp(b_k)$
Wahlnorm	-0.600	0.105	-0.400	0.549
Beeinflussbarkeit	-0.450	0.100	-0.350	0.638
Demokratiezufriedenheit	-0.550	0.110	-0.250	0.577
(Konstante)	-0.405	0.063	-	0.667
Modell (M ₁)	$-2\ln L = 2$	2588.727		
Konstantenmodell (M ₀)	$-2\ln L = 2$	2810.497		

Beantworten Sie auf der Basis dieser Ergebnisse folgende Aufgaben:

Rechenweg und Ergebnis			Punkte
3A: Berechnen Sie McFaddens Pseudo-R-Quadrat (2 Punkte)			
3B: Berechnen Sie die Teststatistik zur Prüfung der Nullhypothese, dass alle Regress	ionsgewicht	e in der G	rund-
gesamtheit Null sind. (3 Punkte)	ionisge wient	e iii dei o	14114
8			
	4D ': '	T .	1
3C: Geben Sie den bzw. die kritischen Wert(e) an, wenn die Hypothese aus Aufgabe	4B mit eine	r Irrtumsw	anr-
scheinlichkeit von 1% geprüft werden soll. (1 Punkt)			
3D: Die Nullhypothese wird mit einer Irrtumswahrscheinlichkeit von 1% abge-	Richtig:	Falsch:	
lehnt. (2 Punkte)			
3E: Berechnen Sie eine Teststatistik zur Prüfung der Hypothese, dass die Wahlnorm	einen signif	ikanten po	siti-
ven Effekt auf die Wahlbeteiligung hat. (3 Punkte)			
3F: Geben Sie den bzw. die kritischen Wert(e) an, wenn die Hypothese aus 4E mit ein	ner Irrtumsv	vahrscheir	lich-
keit von 5% geprüft werden soll. (1 Punkt)			
· · · · · · · · · · · · · · · · · · ·			
3G: Die Nullhypothese wird bei einer Irrtumswahrscheinlichkeit von 5% beibehal-	Richtig:	Falsch:	
ten. (2 Punkte)	raving.	1 415411	
3H: Berechnen Sie anhand der Schätzung die Wahrscheinlichkeit der Wahlbeteiligun	g fjir eine P	erson mit	den
Prädiktorwerten Wahlnorm = 0, Beeinflussbarkeit = 0, und Demokratiezufriedenheit			
o, zominacioni o, zominacioni o, and zominacioni o	2. (8 1 0)		

Rechenweg und Ergebnis			Punkte
3I: Um welchen Faktor verändert sich das Wahrscheinlichkeitsverhältnis nicht zu wählen statt zu wählen, w			
die Wahlnorm um +1 Einheit ansteigt? (2 Punkte)			
3J: Die Koeffizienten weisen darauf hin, dass mit steigender Wahlnorm die Wahl-	Richtig:	Falsch:	
beteiligung sinkt. (2 Punkte)			
3K: Das Modell besagt, dass je geringer die Einschätzung der Beeinflussbarkeit	Richtig:	Falsch:	
des politischen Systems ist, desto geringer ist die Wahlbeteiligung. (2 Punkte)			
3L: Die Demokratiezufriedenheit hat nach dem Modell einen positiven Einfluss auf	Richtig:	Falsch:	
die Wahlbeteiligung. (2 Punkte)			
3M: Von den drei Prädiktoren des Modells hat die Wahlnorm den größten relativen	Richtig:	Falsch:	
Effekt auf die Wahlbeteiligung. (2 Punkte)			

Aufgabe 4: (max. 23 Punkte)

Mit Hilfe eines log-linearen Modells soll untersucht werden, wie die Zusammenhangsstruktur zwischen sozialer Herkunft (Variable A: 1=Eltern aus Unterschicht, 2= Eltern aus Oberschicht), Bildung (Variable B: 1=geringe Bildung, 2=mittlere Bildung, 3=hohe Bildung) und dem sozialen Status (Variable C: 1=geringer Status, 2=hoher Status) aussieht. Datenbasis sind die Angaben von n=1105 (fiktiven) Befragten.

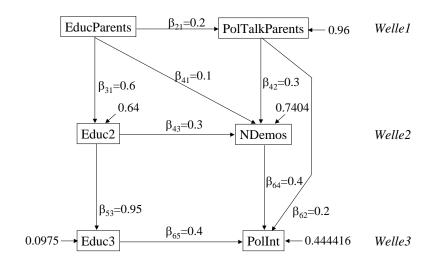
Im ersten Schritt liegen Anpassungsmaße für folgende Modelle vor:

Modell	Freiheitsgrade	Pearsons	LR-Test	Sign.(LR)
M1: A B C	7	103.702	96.526	<.001
M2: A B C A*B A*C	4	16.465	16.495	0.002
M3: A B C A*B B*C	3	10.265	10.277	0.016
M4: A B C A*C B*C	4	62.392	62.748	<.001
M5: A B C A*B A*C B*C	2	1.668	1.664	0.435

Rechenweg und Ergebnis			Punkte
4A: Modell 5 unterscheidet sich bei einer Irrtumswahrscheinlichkeit von 5% nicht signifikant von einem saturierten Modell. (2 Punkte)	Richtig:	Falsch:	
4B: Modell 2 postuliert, dass es bei Kontrolle von Bildung keine Beziehung zwischen Herkunft und Status gibt. (3 Punkte)	Richtig:	Falsch:	
4C: Modell 3 spricht für einen indirekten Effekt von sozialer Herkunft auf Status- über Bildung. (3 Punkte)	Richtig:	Falsch:	
4D: Modell 4 postuliert keine direkte Beziehung zwischen Status und Bildung (3 Punkte)	Richtig:	Falsch:	
4E: Modell 5 postuliert, dass es sowohl zwischen Status und Herkunft wie zwischen Status und Bildung einen Zusammenhang gibt. (3 Punkte)	Richtig:	Falsch:	
4F: Die Analysen weisen daraufhin, dass es einen Interaktionseffekt zweiter Ordnung zwischen sozialer Herkunft, Bildung und Status gibt. (3 Punkte)	Richtig:	Falsch:	
4G: Berechnen Sie eine Teststatistik zur Prüfung der Nullhypothese, dass die Model Irrtumswahrscheinlichkeit von 1% nicht signifikant schlechter ist als die von M5. (3		von M3 be	i einer
4H: Geben Sie den bzw. die kritischen Wert(e) an, wenn die Hypothese aus 4B mit einer Irrtumswahrscheinlikeit von 1% geprüft werden soll. (1 Punkt)			
4I: Die Nullhypothese wird mit einer Irrtumswahrscheinlichkeit von 1% abgelehnt. (2 Punkte)	Richtig:	Falsch:	

Aufgabe 5: (max. 24 Punkte)

Die folgende Tabelle zeigt die Parameterschätzung für das loglineare Modell M5 aus Aufgabe 4. Für die Berechnung wurde die Poisson-Verteilung mit Dummykodierung der Designvariablen herangezogen. Referenzkategorie ist jeweils der kleinste Wert der Variablen A (soziale Herkunft), B (Bildung) und C (Status).


Parameter	Schätzung	Standardfehler	Z-Statistik	$exp(\beta)$
Konstante	4.958	0.081	61.447	142.309
A=2	-1.330	0.148	-8.998	0.264
B=2	-0.179	0.117	-1.533	0.836
B=3	-0.243	0.116	-2.097	0.784
C=2	-0.474	0.122	-3.892	0.623
A=2 & B=2	0.213	0.182	1.172	1.237
A=2 & B=3	1.109	0.165	6.716	3.031
A=2 & C=2	0.383	0.131	2.928	1.467
B=2 & C=2	0.490	0.161	3.049	1.632
B=3 & C= 3 2	0.558	0.154	3.633	1.747

Rechenweg und Ergebnis			Punkte
5A: Wie hoch ist nach dem Modell die erwartete Häufigkeit, wenn die Eltern aus der	Unterschic	ht kommer	1
(A=1), eine geringe Bildung aufweisen (B=1) und einen hohen Status (C=2) haben (S			
	<u> </u>		
5B: Um welchen Faktor verändert sich die erwartete Häufigkeit, wenn bei ansonsten	gleichen Be	edingunger	wie.
in 5A statt einer geringen Bildung eine hohe Bildung (B=3) vorliegt? (2 Punkte)	Brotomen 2		
and the same and germany and none and any (2 1 and 2)			
5C: Es wird vermutet, dass die erwartete Häufigkeit um mindestens den Faktor 1.2 a	nsteigt, wen	ın bei kons	tanter
geringer Bildung die und geringem Status die Eltern aus der Oberschicht statt aus der			
Formulieren Sie aus dieser Forschungshypothese Null- und Alternativhypothese. (2 l			•
5D: Berechnen Sie eine geeignete Teststatistik zur Prüfung der Nullhypothese. (3 Pu	nkte)		
32. Detectmen ble eme georgiete Testsaatistik zur Hufung der Ivanny potnese. (31 d	ince)		
5E: Geben Sie den bzw. die kritischen Wert(e) an, wenn die Hypothese aus 4B mit e.	in an Inntuma	ahaaahair	ali ah
keit von 5% geprüft werden soll. (1 Punkt)	iller Illtuills	wanischen	IIICII-
keit von 5% gepruit werden som (1 Funkt)			
	D: 1.:	F 1 1	
5F: Die Nullhypothese wird bei einer Irrtumswahrscheinlichkeit von 5% abgelehnt. (2 Punkte)	Richtig:	Falsch:	
5G. Die Schätzung der Modellparameter besagt, dass es einen positiven Zusam-	Diahtia	Falsch:	
menhang zwischen Bildung und Status gibt. (3 Punkte)	Richtig:	raiscii.	
5H: Auch bei Kontrolle von Bildung besteht nach den Ergebnissen der Parameter-	Richtig:	Falsch:	
schätzung ein positiver Zusammenhang zwischen sozialer Herkunft und Status. (3	Kiching.	raiscii.	
Punkte)			
5I: Bei Kontrolle von Status unterscheiden sich die erwarteten Häufigkeiten bei	Richtig:	Falsch:	
Herkunft aus der Oberschicht bei geringer und mittlerer Bildung nicht. (3 Punkte)	Miching.	i aiscii.	
5J: Bei hoher statt geringer Bildung steigt die erwartete Häufigkeit das erwartete	Richtig:	Falsch:	
Häufigkeitsverhältnis (Odd)eines hohen zu einen niedrigen Status um über 60%	Kiching.	raiscii.	
an. (2 Punkte)			
un. (2 I unixu)	1	1	

Aufgabe 6: (max. 24 Punkte)

Eine Politologin beschäftigt sich mit den Determinanten des politischen Interesses. Sie vermutet, dass das politische Interesse von Personen im Alter von 50 Jahren vom Bildungshintergrund des jeweiligen Elternhauses, der Häufigkeit von politischen Gesprächen im Elternhaus, der Bildung der Personen sowie der Häufigkeit der Teilnahme an Demonstrationen in der Jugend und im frühen Erwachsenenalter zwischen 16 und 30 Jahren abhängt. In einer dreiwelligen Panelstudie wurden in der ersten Welle Schülerinnen und Schüler im Alter von 15 Jahren zum Bildungshintergrund der Etern (Variable **EducParents**) gemittelt aus dem Bildungsabschlüssen der Eltern) und der Häufigkeit politischer Gespräche im Elternhaus (Variable **PolTalkParents**) gefragt. In der zweiten Welle wurden die gleichen Personen im Alter von 30 Jahren nach ihrem Bildungsgrad (Variable **Educ2**) und der Häufigkeit der Teilnahme an Demonstrationen seit dem 16. Lebensjahr (Variable: **NDemos**) gefragt. In der dritten Welle wurden die Personen im Alter von 50 Jahren ein weiteres Mal nach ihrem Bildungsgrad (Variable **Educ3**) sowie nach der Höhe ihres politischen Interesses (Variable: **PolInt**) gefagt.

Auf der Basis von n=1000 Personen hat die Politologin folgendes (standardisiertes) Pfadmodell geschätzt:

Rechenweg und Ergebnis			Punkte
5A: Berechnen Sie den totalen Effekt von EducParents auf NDemos (5 Punkte)			
5B: Berechnen Sie den korrelierten Effekt zwischen Educ2 und NDemos (4 Punkte)			
5C: Der Bildungshintergrund der Eltern EducParents hat keinen Einfluss auf das	Richtig:	Falsch:	
politische Interesse ihrer Kinder im Alter von 50 Jahren PolInt . (2 Punkte)			
5D: Der bis zum Alter von 30 Jahren erreichte Bildungsgrad Educ2 wirkt nur indi-	Richtig:	Falsch:	
rekt auf das politische Interesse im Alter von 50 Jahren PolInt . (2 Punkte)	_		
5F: Der indirekte Effekt der Bildung der Eltern EducParents auf die Teilnahme an	Richtig:	Falsch:	
Demonstrationen NDemos ist kleiner als der direkte Effekt (3 Punkte)			
5G: Politische Gespräche im Elternhaus PolTalkParents wirkt nur indirekt auf das	Richtig:	Falsch:	
auf das politische Interesse im Alter von 50 Jahren PolInt . (2 Punkte)			
5H: Der direkte Effekt der politischen Gespräche im Elternhaus PolTalkParents	Richtig:	Falsch:	
auf das politische Interesse PolInt ist geringer als der Effekt der Teilnahme an			
Demonstrationen im Alter zwischen 16 und 30 NDemos . (3 Punkte)			
5I: Die Beziehungen im Pfaddiagramm bestätigen die Vermutung der Politologin,	Richtig:	Falsch:	
dass der Bildungshintergrund der Eltern und die Häufigkeit politischer Gespräche			
im Elternhaus neben der früheren Teilnahme an Demonstrationen und der eigenen			
Bildung das politische Interesse von 50jährigen beeinflussen. (3 Punkte)			