Modulverzeichnis

für den Bachelor-Teilstudiengang "Informatik" zu Anlage II.20 der Prüfungs- und Studienordnung für den Zwei-Fächer-Bachelor-Studiengang (Amtliche Mitteilungen I Nr. 26/2024 S. 743)

Module

B.Inf.1101: Grundlagen der Informatik und Programmierung	17089
B.Inf.1102: Grundlagen der Praktischen Informatik	17091
B.Inf.1103: Algorithmen und Datenstrukturen	17093
B.Inf.1131: Data Science: Grundlagen	17094
B.Inf.1201: Theoretische Informatik	17096
B.Inf.1202: Formale Systeme	17098
B.Inf.1203: Betriebssysteme	17099
B.Inf.1204: Telematik / Computernetzwerke	17101
B.Inf.1206: Datenbanken	17102
B.Inf.1207: Proseminar I	17103
B.Inf.1208: Proseminar II	17104
B.Inf.1209: Softwaretechnik	17105
B.Inf.1210: Computersicherheit und Privatheit	17107
B.Inf.1211: Sensordatenverarbeitung	17108
B.Inf.1212: Technische Informatik	17110
B.Inf.1214: Types and Programming Languages	17111
B.Inf.1215: Compiler Construction	17113
B.Inf.1216: Compiler Lab	17114
B.Inf.1236: Machine Learning	17115
B.Inf.1237: Deep Learning for Computer Vision	17116
B.Inf.1240: Visualization	17117
B.Inf.1248: Language as Data	17118
B.Inf.1249: Introduction to Robotics	17119
B.Inf.1601: Fachdidaktik Informatik	17121
B.Inf.1602: Allgemeine Vermittlungskompetenz Informatik	17123
B.Inf.1603: Einführung in die Fachdidaktik Informatik	17124
B.Inf.1604: Programmierpraktikum für Lehramtsstudierende	17125
B.Inf.1605: Ausgewählte Aspekte des Themengebiets Datenbanken für Lehramtsstudierende	17127
B.Inf.1701: Vertiefung theoretischer Konzepte der Informatik	17129

Inhaltsverzeichnis

B.Inf.1704: Vertiefung technischer Konzepte der Informatik		
B.Inf.1706: Vertiefung Datenbanken	B.Inf.1704: Vertiefung technischer Konzepte der Informatik	17130
B.Inf.1707: Vertiefung Computernetzwerke	B.Inf.1705: Vertiefung Softwaretechnik	17131
B.Inf.1709: Vertiefung Algorithmen und Datenstrukturen 1713 B.Inf.1710: Vertiefung Computersicherheit und Privatheit 1714 B.Inf.1711: Vertiefung Sensordatenverarbeitung 1714 B.Inf.1712: Vertiefung Hochleistungsrechnen 1714 B.Inf.1713: Vertiefung Data Science 1714 B.Inf.1714: Vertiefung Praktische Informatik 1714 B.Inf.1801: Programmierkurs 1714 B.Inf.1802: Programmierpraktikum 1715 B.Inf.1803: Fachpraktikum I 1715 B.Inf.1806: Fachpraktikum III 1715 B.Inf.1806: Externes Praktikum II 1715 B.Inf.1806: Externes Praktikum II 1715 B.Inf.1813: Forschungsbezogenes Praktikum Informatik (2FBA) 1715 B.Inf.1814: Programmieren für Data Scientists: Python 1716 B.Mat.0841: Mathematik für Informationswissenschaften I 1716 B.Mat.0842: Mathematik für Informationswissenschaften II 1716 B.Mat.0922: Mathematics information services and electronic publishing 1716 B.WIWI-WIN.0002: Management der Informationswirtschaft 1717 B.WIWI-WIN.0002: Management der Informationswirtschaft 1717 B.WIWI-WIN.0002: Projektseminar zur Systementwicklung - Entwicklung von Web-Applikationen 1717<	B.Inf.1706: Vertiefung Datenbanken	17133
B.Inf.1710: Vertiefung Computersicherheit und Privatheit	B.Inf.1707: Vertiefung Computernetzwerke	. 17135
B.Inf.1711: Vertiefung Sensordatenverarbeitung 1714 B.Inf.1712: Vertiefung Hochleistungsrechnen 1714 B.Inf.1713: Vertiefung Data Science 1714 B.Inf.1714: Vertiefung Praktische Informatik 1714 B.Inf.1801: Programmierkurs 1714 B.Inf.1802: Programmierpraktikum 1715 B.Inf.1803: Fachpraktikum II 1715 B.Inf.1804: Fachpraktikum III 1715 B.Inf.1805: Fachpraktikum III 1715 B.Inf.1806: Externes Praktikum II 1715 B.Inf.1807: Externes Praktikum II 1715 B.Inf.1813: Forschungsbezogenes Praktikum Informatik (2FBA) 1715 B.Inf.1821: Ethische, gesellschaftliche und rechtliche Grundlagen für Data Science 1716 B.Mat.0841: Mathematik für Informationswissenschaften I 1716 B.Mat.0842: Mathematik für Informationswissenschaften II 1716 B.Mat.0922: Mathematics information services and electronic publishing 1716 B.WIWI-WIN.0001: Enterprise Architecture und Prozessmodellierung 1716 B.WIWI-WIN.0002: Management der Informationswirtschaft 1717 B.WIWI-WIN.0023: Projektseminar zur Systementwicklung - Entwicklung von Web-Applikationen 1717 B.WIWI-WIN.0027: Seminar zur Themen der Wirtschaftsinformatik	B.Inf.1709: Vertiefung Algorithmen und Datenstrukturen	. 17137
B.Inf.1712: Vertiefung Hochleistungsrechnen 1714 B.Inf.1713: Vertiefung Data Science 1714 B.Inf.1714: Vertiefung Praktische Informatik 1714 B.Inf.1801: Programmierkurs 1714 B.Inf.1802: Programmierpraktikum 1715 B.Inf.1803: Fachpraktikum I. 1715 B.Inf.1804: Fachpraktikum III 1715 B.Inf.1805: Fachpraktikum III 1715 B.Inf.1806: Externes Praktikum III 1715 B.Inf.1813: Forschungsbezogenes Praktikum Informatik (2FBA) 1715 B.Inf.1813: Ethische, gesellschaftliche und rechtliche Grundlagen für Data Science 1716 B.Inf.1842: Programmieren für Data Scientists: Python 1716 B.Mat.0841: Mathematik für Informationswissenschaften I 1716 B.Mat.0842: Mathematik für Informationswissenschaften II 1716 B.WIWI-WIN.0001: Enterprise Architecture und Prozessmodellierung 1716 B.WIWI-WIN.0002: Management der Informationswirtschaft 1717 B.WIWI-WIN.0003: Projektseminar zur Systementwicklung - Entwicklung von Web-Applikationen 1717 B.WIWI-WIN.0007: Seminar zur Themen der Wirtschaftsinformatik und BWL 1717 SK.Inf.1803: Computer Science for Environmental Sustainability 1717	B.Inf.1710: Vertiefung Computersicherheit und Privatheit	17140
B.Inf.1713: Vertiefung Data Science	B.Inf.1711: Vertiefung Sensordatenverarbeitung	17142
B.Inf.1714: Vertiefung Praktische Informatik	B.Inf.1712: Vertiefung Hochleistungsrechnen	17144
B.Inf.1801: Programmierkurs	B.Inf.1713: Vertiefung Data Science	17146
B.Inf.1802: Programmierpraktikum	B.Inf.1714: Vertiefung Praktische Informatik	17148
B.Inf.1803: Fachpraktikum II	B.Inf.1801: Programmierkurs	17149
B.Inf.1804: Fachpraktikum II	B.Inf.1802: Programmierpraktikum	17150
B.Inf.1805: Fachpraktikum III	B.Inf.1803: Fachpraktikum I	17152
B.Inf.1806: Externes Praktikum I	B.Inf.1804: Fachpraktikum II	17153
B.Inf.1807: Externes Praktikum II	B.Inf.1805: Fachpraktikum III	17154
B.Inf.1813: Forschungsbezogenes Praktikum Informatik (2FBA)	B.Inf.1806: Externes Praktikum I	. 17155
B.Inf.1831: Ethische, gesellschaftliche und rechtliche Grundlagen für Data Science	B.Inf.1807: Externes Praktikum II	. 17157
B.Inf.1842: Programmieren für Data Scientists: Python	B.Inf.1813: Forschungsbezogenes Praktikum Informatik (2FBA)	17159
B.Mat.0841: Mathematik für Informationswissenschaften I	B.Inf.1831: Ethische, gesellschaftliche und rechtliche Grundlagen für Data Science	17160
B.Mat.0842: Mathematik für Informationswissenschaften II	B.Inf.1842: Programmieren für Data Scientists: Python	17161
B.Mat.0922: Mathematics information services and electronic publishing	B.Mat.0841: Mathematik für Informationswissenschaften I	. 17162
B.WIWI-WIN.0001: Enterprise Architecture und Prozessmodellierung	B.Mat.0842: Mathematik für Informationswissenschaften II	. 17164
B.WIWI-WIN.0002: Management der Informationswirtschaft	B.Mat.0922: Mathematics information services and electronic publishing	17166
B.WIWI-WIN.0005: Projektseminar zur Systementwicklung - Entwicklung von Web-Applikationen 1717; B.WIWI-WIN.0023: Projektseminar zur Systementwicklung - Entwicklung von mobilen Anwendungen 1717; B.WIWI-WIN.0027: Seminar zu Themen der Wirtschaftsinformatik und BWL	B.WIWI-WIN.0001: Enterprise Architecture und Prozessmodellierung	17168
B.WIWI-WIN.0023: Projektseminar zur Systementwicklung - Entwicklung von mobilen Anwendungen 17174 B.WIWI-WIN.0027: Seminar zu Themen der Wirtschaftsinformatik und BWL	B.WIWI-WIN.0002: Management der Informationswirtschaft	17170
B.WIWI-WIN.0027: Seminar zu Themen der Wirtschaftsinformatik und BWL	B.WIWI-WIN.0005: Projektseminar zur Systementwicklung - Entwicklung von Web-Applikationen	17172
SK.Inf.1801: Funktionale Programmierung	B.WIWI-WIN.0023: Projektseminar zur Systementwicklung - Entwicklung von mobilen Anwendungen.	.17174
SK.Inf.1803: Computer Science for Environmental Sustainability	B.WIWI-WIN.0027: Seminar zu Themen der Wirtschaftsinformatik und BWL	17176
	SK.Inf.1801: Funktionale Programmierung	17178
SK.Inf.1804: KI Methoden im akademischen Alltag1718	SK.Inf.1803: Computer Science for Environmental Sustainability	17179
	SK.Inf.1804: KI Methoden im akademischen Alltag	17181

SK.Inf.1805: Dezentrale studentische Selbstverwaltung/Gremienarbeit	17183
SK.Inf.1806: Introduction into Web Development	17185
SK.Inf.1807: Projektarbeit - Erweiterung	17186
SK.Inf.1821: Data Carpentry Ecology/Social Sciences	17187

Übersicht nach Modulgruppen

I. Kerncurriculum

Es müssen Module im Umfang von 66 C nach Maßgabe der folgenden Bestimmungen erfolgreich absolviert werden.

1. Pflichtmodule

Es müssen die folgenden im Umfang von insgesamt 35 C erfolgreich absolviert werden.

B.Inf.1101: Grundlagen der Informatik und Programmierung (10 C, 6 SWS) - Orientierungsmodull 7089

B.Inf.1102: Grundlagen der Praktischen Informatik (10 C, 6 SWS)......17091

B.Inf.1801: Programmierkurs (5 C, 3 SWS).......17149

2. Wahlpflichtmodule "Mathematik"

Wird das Studienfach "Informatik" **nicht** mit dem Studienfach "Mathematik" kombiniert, muss eines der folgenden Modulpakete im Umfang von insgesamt mindestens 9 C erfolgreich absolviert werden.

Die folgenden Modulpakete können nicht absolviert werden, wenn das Studienfach "Informatik" mit dem Studienfach "Mathematik" kombiniert wird.

a. Modulpaket A

Es muss das folgende Modul im Umfang von 9 C erfolgreich absolviert werden.

b. Modulpaket B

Es müssen die folgenden Modul im Umfang von insgesamt 18 C erfolgreich absolviert werden.

B.Mat.0842: Mathematik für Informationswissenschaften II (9 C, 6 SWS)...... 17164

c. Modulpaket C

Für die Module B.Inf.0801-0804 des vorherigen Modulverzeichnisses werden keine Lehrveranstaltungen mehr angeboten. Zu möglichen Anrechnungen sowie zum Ablegen von Prüfungsleistungen in diesen Modulen kann die Studienberatung Informatik/Data Science Auskunft geben.

3. Wahlpflichtmodule "Informatik"

Es muss wenigstens eines der folgenden Module im Umfang von insgesamt mindestens 5 C erfolgreich absolviert werden.

B.Inf.1131: Data Science: Grundlagen (6 C, 4 SWS).......17094

	B.Inf.1201: Theoretische Informatik (5 C, 3 SWS)	.17096
	B.Inf.1202: Formale Systeme (5 C, 3 SWS)	.17098
	B.Inf.1203: Betriebssysteme (5 C, 3 SWS)	.17099
	B.Inf.1204: Telematik / Computernetzwerke (5 C, 3 SWS)	.17101
	B.Inf.1206: Datenbanken (5 C, 4 SWS)	.17102
	B.Inf.1209: Softwaretechnik (5 C, 3 SWS)	.17105
	B.Inf.1210: Computersicherheit und Privatheit (5 C, 4 SWS)	. 17107
	B.Inf.1211: Sensordatenverarbeitung (5 C, 4 SWS)	. 17108
	B.Inf.1212: Technische Informatik (5 C, 3 SWS)	. 17110
	B.Inf.1214: Types and Programming Languages (8 C, 6 SWS)	.17111
	B.Inf.1215: Compiler Construction (6 C, 4 SWS)	.17113
	B.Inf.1236: Machine Learning (6 C, 4 SWS)	17115
	4. Wahlmodule Folgende Module können gewählt werden.	
	B.Inf.1216: Compiler Lab (6 C, 2 SWS)	.17114
	B.Inf.1802: Programmierpraktikum (6 C, 4 SWS)	. 17150
	B.Inf.1803: Fachpraktikum I (5 C, 3 SWS)	17152
	B.Inf.1831: Ethische, gesellschaftliche und rechtliche Grundlagen für Data Science (3 C, 2 SWS)17	160
	B.Inf.1842: Programmieren für Data Scientists: Python (5 C, 3 SWS)	17161
	B.Mat.0922: Mathematics information services and electronic publishing (3 C, 2 SWS)	17166
	SK.Inf.1801: Funktionale Programmierung (5 C, 3 SWS)	.17178
	SK.Inf.1803: Computer Science for Environmental Sustainability (5 C, 2 SWS)	17179
	SK.Inf.1804: KI Methoden im akademischen Alltag (5 C, 3 SWS)	17181
	SK.Inf.1806: Introduction into Web Development (6 C, 4 SWS)	.17185
	SK.Inf.1807: Projektarbeit - Erweiterung (3 C, 0,5 SWS)	17186
	5. Vermittlungskompetenz	
	Es muss folgendes Module im Umfang von 3 C erfolgreich absolviert werden.	
	B.Inf.1602: Allgemeine Vermittlungskompetenz Informatik (3 C, 2 SWS)	17123
II.	Studienangebot in Profilen des Zwei-Fächer-Bachelor-Studiengangs	

Eine Bewerbung für den zulassungsbeschränkten, konsekutiven Masterstudiengang "Angewandte Informatik" ist mit dem Abschluss des Bachelor-Teilstudiengangs "Informatik" möglich, sofern das fachwissenschaftliche Profil gewählt und die Bachelorarbeit im Fach "Informatik" abgelegt wurde.

1. Fachwissenschaftliches Profil

Studierende im Studienfach "Informatik" können zusätzlich zum Kerncurriculum das Fachwissenschaftliche Profil studieren. Dazu müssen Module im Umfang von insgesamt 18 C nach Maßgabe der folgenden Bestimmungen erfolgreich absolviert werden.

a. Wahlpflichtmodule I

Es müssen zwei der folgenden Module im Umfang von insgesamt mindestens 10 C erfolgreich absolviert werden; bereits innerhalb des Kerncurriculums erfolgreich absolvierte Module können nicht eingebracht werden.

B.Inf.1131: Data Science: Grundlagen (6 C, 4 SWS)	17094
B.Inf.1201: Theoretische Informatik (5 C, 3 SWS)	17096
B.Inf.1202: Formale Systeme (5 C, 3 SWS)	17098
B.Inf.1203: Betriebssysteme (5 C, 3 SWS)	17099
B.Inf.1204: Telematik / Computernetzwerke (5 C, 3 SWS)	17101
B.Inf.1206: Datenbanken (5 C, 4 SWS)	17102
B.Inf.1208: Proseminar II (5 C, 3 SWS)	17104
B.Inf.1209: Softwaretechnik (5 C, 3 SWS)	17105
B.Inf.1210: Computersicherheit und Privatheit (5 C, 4 SWS)	17107
B.Inf.1211: Sensordatenverarbeitung (5 C, 4 SWS)	17108
B.Inf.1212: Technische Informatik (5 C, 3 SWS)	17110
B.Inf.1214: Types and Programming Languages (8 C, 6 SWS)	17111
B.Inf.1215: Compiler Construction (6 C, 4 SWS)	17113
B.Inf.1216: Compiler Lab (6 C, 2 SWS)	17114
B.Inf.1236: Machine Learning (6 C, 4 SWS)	17115
B.Inf.1237: Deep Learning for Computer Vision (6 C, 4 SWS)	17116
B.Inf.1240: Visualization (6 C, 4 SWS)	17117
B.Inf.1248: Language as Data (6 C, 4 SWS)	17118
B.Inf.1249: Introduction to Robotics (6 C, 4 SWS)	17119
B.Inf.1701: Vertiefung theoretischer Konzepte der Informatik (5 C, 3 SWS)	17129
B Inf 1704: Vertiefung technischer Konzente der Informatik (5.C. 3 SWS)	17130

	B.Inf.1705: Vertiefung Softwaretechnik (5 C, 3 SWS)	17131
	B.Inf.1706: Vertiefung Datenbanken (6 C, 4 SWS)	17133
	B.Inf.1707: Vertiefung Computernetzwerke (5 C, 3 SWS)	17135
	B.Inf.1709: Vertiefung Algorithmen und Datenstrukturen (5 C, 4 SWS)	17137
	B.Inf.1710: Vertiefung Computersicherheit und Privatheit (5 C, 4 SWS)	17140
	B.Inf.1711: Vertiefung Sensordatenverarbeitung (5 C, 4 SWS)	17142
	B.Inf.1712: Vertiefung Hochleistungsrechnen (6 C, 4 SWS)	17144
	B.Inf.1713: Vertiefung Data Science (5 C, 3 SWS)	17146
	B.Inf.1714: Vertiefung Praktische Informatik (5 C, 3 SWS)	17148
	B.Inf.1802: Programmierpraktikum (6 C, 4 SWS)	17150
	B.Inf.1805: Fachpraktikum III (5 C, 3 SWS)	17154
	b. Wahlpflichtmodule II	
	Es muss wenigstens eines der folgenden Module im Umfang von insgesamt mindestens 5 C erfolgreich absolviert werden:	
	B.Inf.1207: Proseminar I (5 C, 3 SWS)	.17103
	B.Inf.1804: Fachpraktikum II (5 C, 3 SWS)	17153
	B.Inf.1813: Forschungsbezogenes Praktikum Informatik (2FBA) (8 C)	17159
2.	Berufsfeldbezogenes Profil	
	a. für Studierende des Studienfachs "Informatik"	
	Studierende des Studienfachs "Informatik" können zusätzlich zum Kerncurriculum das Berufsfeldbezogene Profil studieren. Dazu müssen wenigstens drei der folgenden Module im Umfang von insgesamt wenigstens 18 C erfolgreich absolviert werden; bereits innerhalb des Kerncurriculums erfolgreich absolvierte Module können nicht eingebracht werden.	
	B.Inf.1802: Programmierpraktikum (6 C, 4 SWS)	17150
	B.Inf.1804: Fachpraktikum II (5 C, 3 SWS)	17153
	B.Inf.1805: Fachpraktikum III (5 C, 3 SWS)	17154
	B.Inf.1806: Externes Praktikum I (5 C)	17155
	B.Inf.1807: Externes Praktikum II (5 C)	17157
	B.Inf.1813: Forschungsbezogenes Praktikum Informatik (2FBA) (8 C)	17159
	b. für Studierende anderer Studienfächer	

Studierende anderer Studienfächer können im Rahmen des Berufsfeldbezogenen Profils das Modulpaket "Informatik" absolvieren; dazu müssen folgende zwei Wahlpflichtmodule im Umfang von insgesamt 20 C erfolgreich absolviert werden:

B.Inf.1101: Grundlagen der Informatik und Programmierung (10 C, 6 SWS)......17089

B.Inf.1102: Grundlagen der Praktischen Informatik (10 C, 6 SWS)......17091

3. Lehramtbezogenes Profil

Studierende des Studienfaches "Informatik" mit dem lehramtbezogenen Profil müssen Module im Umfang von mindestens 14 C nach Maßgabe der folgenden Bestimmungen erfolgreich absolvieren.

a. Wahlpflichtmodule "Datenbanken"

Es muss eins der folgenden Modul im Umfang von insgesamt mindestens 3 C, das Ziffer I (Kerncurriculum) Nr. 3 (Wahlpflichtmodule "Informatik") zugerechnet wird, erfolgreich absolviert werden. Die Module schließen sich gegenseitig aus.

b. Wahlpflichtmodule "Programmierpraktikum"

Es muss das folgende Modul im Umfang von 5 C erfolgreich absolviert werden; diese 5 C werden dem Kerncurriculum zugerechnet und ersetzen das Modul B.Inf.1801, welches von Studierenden des lehramtbezogenen Profils nicht absolviert werden muss.

B.Inf.1604: Programmierpraktikum für Lehramtsstudierende (5 C, 4 SWS).......17125

c. Wahlpflichtmodule "Fachdidaktik"

Es muss das folgende Modul im Umfang von 6 C erfolgreich absolviert werden; 3 C werden dem Kerncurriculum zugerechnet und ersetzen das Modul B.Inf.1602, welches von Studierenden des lehramtbezogenen Profils nicht absolviert werden muss.

B.Inf.1601: Fachdidaktik Informatik (6 C, 4 SWS).......17121

III. Studienangebot im Bereich Schlüsselkompetenzen des Zwei-Fächer-Bachelor-Studiengangs

Folgende Wahlmodule können von Studierenden im Rahmen des Professionalisierungsbereichs (Bereich Schlüsselkompetenzen) absolviert werden.

Module, die bereits im Kerncurriculum oder im Rahmen der fachspezifischen Professionalisierung absolviert worden sind, können nicht erneut absolviert werden.

1. Angebot für Studierende aller Studiengänge

Folgende Wahlmodule können von Studierenden aller Studiengänge bzw. -fächer, inklusive des Studienfaches "Informatik", absolviert werden.

B.Inf.1101: Grundlagen der Informatik und Programmierung (10 C, 6 SWS)......17089

	B.Inf.1102: Grundlagen der Praktischen Informatik (10 C, 6 SWS)17091		
	B.Inf.1801: Programmierkurs (5 C, 3 SWS)		
	B.Inf.1802: Programmierpraktikum (6 C, 4 SWS)		
	B.Inf.1803: Fachpraktikum I (5 C, 3 SWS)		
	SK.Inf.1804: KI Methoden im akademischen Alltag (5 C, 3 SWS)		
	SK.Inf.1821: Data Carpentry Ecology/Social Sciences (3 C, 2 SWS)		
	2. Angebot für Studierende des Studienfachs "Informatik"		
	Folgende Wahlmodule können nur von Studierenden des Studienfaches "Informatik" absolviert werden.		
	B.Inf.1831: Ethische, gesellschaftliche und rechtliche Grundlagen für Data Science (3 C, 2 SWS)17160		
	B.Inf.1842: Programmieren für Data Scientists: Python (5 C, 3 SWS)		
	B.Mat.0922: Mathematics information services and electronic publishing (3 C, 2 SWS)17166		
	SK.Inf.1801: Funktionale Programmierung (5 C, 3 SWS)17178		
	SK.Inf.1803: Computer Science for Environmental Sustainability (5 C, 2 SWS)		
	SK.Inf.1805: Dezentrale studentische Selbstverwaltung/Gremienarbeit (3 C, SWS)17183		
	SK.Inf.1806: Introduction into Web Development (6 C, 4 SWS)		
	SK.Inf.1807: Projektarbeit - Erweiterung (3 C, 0,5 SWS)		
Ε	IV. Zweitfach "Informatik" im Bachelor-Studiengang "Wirtschaftspädagogik" Es müssen Module im Umfang von 36 C nach Maßgabe der folgenden Bestimmungen erfolgreich absolviert werden.		
	1. Pflichtmodule		
	Es müssen folgende vier Module im Umfang von insgesamt 25 C erfolgreich absolviert werden:		
	B.Inf.1101: Grundlagen der Informatik und Programmierung (10 C, 6 SWS)17089		
	B.WIWI-WIN.0001: Enterprise Architecture und Prozessmodellierung (6 C, 4 SWS)17168		
	B.WIWI-WIN.0002: Management der Informationswirtschaft (6 C, 6 SWS)		
	B.Inf.1603: Einführung in die Fachdidaktik Informatik (3 C, 2 SWS)		
	2. Wahlpflichtmodule		
	Es muss wenigstens eines der folgenden Module im Umfang von insgesamt wenigstens 11 C erfolgreich absolviert werden:		
	B.WIWI-WIN.0005: Projektseminar zur Systementwicklung - Entwicklung von Web-Applikationen (12 C, 3 SWS)		

Inhaltsverzeichnis

B.WIWI-WIN.0023: Projektseminar zur Systementwicklung - Entwicklung von mobilen Anwend (12 C, 3 SWS)	•
B.WIWI-WIN.0027: Seminar zu Themen der Wirtschaftsinformatik und BWL (6 C, 2 SWS)	
B.Inf.1801: Programmierkurs (5 C. 3 SWS)	17149

Georg-August-Universität Göttingen

Modul B.Inf.1101: Grundlagen der Informatik und Programmierung

English title: Introduction to Computer Science and Programming

10 C 6 SWS

Lernziele/Kompetenzen:

Studierende

- kennen grundlegende Begriffe, Prinzipien und Herangehensweisen der Informatik und kennen einige Programmierparadigmen.
- erlangen elementare Grundkenntnisse der Aussagenlogik, verstehen die Bedeutung für Programmsteuerung und Informationsdarstellung und können sie in einfachen Situationen anwenden.
- verstehen wesentliche Funktionsprinzipien von Computern und der Informationsdarstellung und deren Konsequenzen für die Programmierung.
- erlernen die Grundlagen einer Programmiersprache und k\u00f6nnen einfache Algorithmen in dieser Sprache codieren.
- kennen einfache Datenstrukturen und ihre Eignung in typischen Anwendungssituationen, können diese programmtechnisch implementieren.
- analysieren die Korrektheit einfacher Algorithmen und bewerten einfache Algorithmen und Probleme nach ihrem Ressourcenbedarf.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

216 Stunden

Lehrveranstaltung: Informatik I (Vorlesung, Übung)

Prüfung: Klausur (90 Minuten)

Prüfungsvorleistungen:

Die theoretischen und die praktischen Übungen aller Übungsblätter müssen jeweils mit mindestens 40% der erreichbaren Punkte bestanden werden, mit Ausnahme von maximal zwei theoretischen und zwei praktischen Übungen.

Prüfungsanforderungen:

In der Prüfung wird das Verständnis der vermittelten Grundbegriffe sowie die aktive Beherrschung der vermittelten Inhalte und Techniken nachgewiesen, z.B.

- Kenntnis von Grundbegriffen nachweisen durch Umschreibung in eigenen Worten.
- Standards der Informationsdarstellung in konkreter Situation umsetzen.
- Ausdrücke auswerten oder Bedingungen als logische Ausdrücke formulieren usw.
- Programmablauf auf gegebenen Daten geeignet darstellen.
- Programmcode auch in nicht offensichtlichen Situationen verstehen.
- Fehler im Programmcode erkennen/korrigieren/klassifizieren.
- Datenstrukturen für einfache Anwendungssituationen auswählen bzw. geeignet in einem Kontext verwenden.
- Algorithmen für einfache Probleme auswählen und beschreiben (ggf. nach Hinweisen) und/oder einen vorgegebenen Algorithmus (ggf. fragmentarisch) programmieren bzw. ergänzen.
- einfache Algorithmen/Programme nach Ressourcenbedarf analysieren.
- einfachsten Programmcode auf Korrektheit analysieren.
- einfache Anwendungssituation geeignet durch Modul- oder Klassenschnittstellen modellieren.

6 SWS

10 C

Die Klausur wird als **E-Prüfung** durchgeführt.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Dr. Henrik Brosenne
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: ab bis
Maximale Studierendenzahl: 300	

Georg-August-Universität Göttingen Modul B.Inf.1102: Grundlagen der Praktischen Informatik English title: Introduction to Computer Systems

Lernziele/Kompetenzen:

Die Studierenden

- beherrschen die Grundlagen einer deklarativen Programmiersprache und können Programme erstellen, testen und analysieren.
- beherschen die Grundlagen einer Programmiersprache, die als Skriptsprache nutzbar ist, und können Skripte erstellen, testen und analysieren.
- kennen Aufgaben und Struktur eines Betriebssystems, die Verfahren zur Verwaltung, Scheduling und Synchronisation von Prozessen und zur Speicherverwaltung, sie können diese Verfahren jeweils anwenden, analysieren und vergleichen.
- kennen Grundlagen und verschiedene Beschreibungen von formalen Sprachen, z.B. Automaten und Grammatiken, und können diese konstruieren, analysieren und vergleichen.
- kennen Grundlagen des Compilerbaus und können einfache Versionen der zugehörigen Softwarewerkzeuge, z.B. Lexer, Parser, Interpeter und Compiler, konstruieren und analysieren.
- kennen verschiedene Teilgebieten der formalen Logik, z.B. Aussagen- und Prädikatenlogik, und darauf beruhende Verfahren, z.B. Auswertung, Konstruktion und Resolution, und können diese anwenden.
- kennen die Schichtenarchitektur von Computernetzwerken, sowie sowohl Dienste als auch Protokolle und können diese analysieren und vergleichen.
- kennen unterschiedliche Verschlüsselungsverfahren, z.B. symmetrische und asymmetrische, sowie Methoden sowohl zum Schlüsselaustausch als auch zur Schlüsselvereinbarung und können diese anwenden, analysieren und vergleichen.
- kennen die Grundlagen einzelnen Teilgebiete der Softwaretechnik, z.B.
 Softwaretest, und können diese anwenden und analysieren.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

216 Stunden

Lehrveranstaltung: Grundlagen der Praktischen Informatik (Vorlesung, Ubung)	6 SWS
Prüfung: Klausur (90 Minuten)	10 C
Prüfungsvorleistungen:	
Die theoretischen und die praktischen Übungen aller Übungsblätter müssen jeweils	
mit mindestens 40% der erreichbaren Punkte bestanden werden, mit Ausnahme von	
maximal zwei theoretischen und zwei praktischen Übungen.	
Prüfungsanforderungen:	
Deklarative Programmierung, Programmierung von Skripten, Betriebssysteme, formale	
Sprachen, Compilerbau, formale Logik, Telematik, Kryptographie, Softwaretechnik	
Die Klausur wird als E-Prüfung durchgeführt.	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Inf.1101

Sprache: Deutsch	Modulverantwortliche[r]: Dr. Henrik Brosenne
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 300	

Georg-August-Universität Göttingen		10 C
Modul B.Inf.1103: Algorithmen und Datenstrukturen		6 SWS
English title: Algorithms and Data Structures		
Lernziele/Kompetenzen:		Arbeitsaufwand:
Erwerb grundlegender Fähigkeiten im Umgang mit de	n Konzenten der theoretischen	Präsenzzeit:
Informatik, insbesondere mit dem Verhältnis von Dete	•	84 Stunden
Analyse und Entwurfsmethoden für effiziente Algorithr	•	Selbststudium:
Problemstellungen.	g	216 Stunden
Lehrveranstaltung: Algorithmen und Datenstruktu	ren (Vorlesung,Übung)	6 SWS
Prüfung: Klausur (120 Minuten)		10 C
Prüfungsvorleistungen:		
Alle Übungsblätter müssen jeweils mit mindestens 40% der erreichbaren Punkte		
bestanden werden, mit Ausnahme von maximal zwei Übungsblättern.		
Prüfungsanforderungen:		
Effiziente Algorithmen für grundlegende Probleme (z.B. Suchen, Sortieren,		
Graphalgorithmen), Rekursive Algorithmen, Greedy-Algorithmen, Branch and Bound,		
Dynamische Programmierung, NP-Vollständigkeit		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	B.Inf.1101	
Sprache:	Modulverantwortliche[r]:	
Deutsch	Prof. Dr. Florin-Silviu Manea	
Angebotshäufigkeit:	Dauer:	
jedes Wintersemester	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
zweimalig		
Maximale Studierendenzahl:		
200		

Georg-August-Universität Göttingen Modul B.Inf.1131: Data Science: Grundlagen English title: Data Science: Basics

Lernziele/Kompetenzen:

Das Modul vermittelt grundlegende Kompetenzen im Umgang mit Daten und ihrer Analyse. Es gliedert sich in vier Teilbereiche

Konzepte. Nach erfolgreicher Teilnahme

- kennen Studierende verschiedene Datentypen und k\u00f6nnen sie mit deskriptiven Statistiken beschreiben
- kennen Studierende verschiedene Arten der Datenerhebung (experimentelles Design) und können deren Vorteile und Risiken benennen
- kennen Studierende verschiedene Formen von Voreingenommenheit (Bias) in den Daten und die resultierenden Risiken, und k\u00f6nnen neue Kontexte hinsichtlich Bias hewerten
- kennen Studierende Probleme der Fairness in Datenverarbeitung und Erhebung und können neue Kontexte hinsichtlich Fairness bewerten.

Software Werkzeuge. Erfolgreiche Teilnahme befähigt Studierende zum

- · benutzen einer Shell zur grundlegenden Datenvorverarbeitung
- analysieren von Daten mit grundlegenden Softwarebibliotheken für Datenverarbeitung in Python (Pandas, Numpy, Scipy, Matplotlib, ...)
- · testen von Software und statischen Algorithmen auf Korrektheit

Statistische Werkzeuge. Erfolgreiche Teilnahme befähigt Studierende zum

- · unterscheiden zwischen statistischer Inferenz und deskriptiver Statistik
- beherrschen der Grundlagen statistischer Inferenz (Fehler, p-Wert, Trennschärfe, Null-Hypothese, Konfidenzintervalle, ...) und vorhersagen welche Parameter diese beeinflussen
- durchführen einfacher statistischer Tests mit Bootstrap- und Permutationstests
- anwenden grundlegender Methoden des überwachten und unüberwachten Maschinellen Lernen (Klassifikation, Regression, Clustering).

Stil. Erfolgreiche Teilnahme befähigt Studierende zum

- anwenden guter Praktiken von Visualisierung von Daten
- · verfassen aussagekräftiger Projektberichte
- strukturieren von reproduzierbaren Daten- und Softwareprojekten
- strukturieren von Software für Wiederverwendbarkeit
- anwenden von Prinzipien guter Codestrukturierung und -praktiken
- anwenden grundlegende Formen des Projekt- und Team-Managements

Lehrveranstaltung: Data Science: Grundlagen (Vorlesung, Übung)	4 SWS
Prüfung: Take-Home-Klausur (Bearbeitungszeitraum: 1 Woche) oder Klausur (120	6 C
Minuten)	
Prüfungsanforderungen:	
Eigenständige Bearbeitung eines Data Science Problems, u.a.:	

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

- Fähigkeit grundlegende statistische Begrifflichkeiten und Konzepte anzuwenden (Statistiken, einfache Tests mit Permutationen oder Bootstrapping, Konfidenzintervalle, ...) und zu interpretieren
- Kenntnis verschiedener Datentypen, und die Fähigkeit sie mit deskriptiven Statistiken zu beschreiben und geeignet visuell darstellen
- Fertigkeit Daten mit geeigneten Softwarebibliotheken und Shell in Python zu verarbeiten
- Kenntnis verschiedener Arten der Datenerhebung und Fähigkeit zur Bewertung der Vorteile und Risiken
- Kenntnis verschiedener Formen von Voreingenommenheit (Bias) in den Daten und die resultierenden Risiken, und Fähigkeit zur Bewertung neuer Kontexte hinsichtlich Bias
- Fähigkeit zur Evaluation von Fairness in Datenverarbeitung und Erhebung in neuen Kontexten
- Kenntnis von Prinzipien guter Codestrukturierung und F\u00e4higkeit diese auf Code anwenden
- Fähigkeit statistische Algorithmen zu testen und debuggen
- Fähigkeit grundlegende Methoden des überwachten und unüberwachten Maschinellen Lernen auf neue Probleme anzuwenden
- Kenntnis guter Praktiken von Berichtverfassung und Fähigkeit sie auf neue Projekte anwenden
- Fähigkeit Daten und Softwareprojekte reproduzierbar zu strukturieren

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Grundkenntnisse in Python
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Fabian Sinz
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2
Maximale Studierendenzahl: 100	

Bemerkungen:

Durch erfolgreiches Lösen und Erklären der Übungsaufgaben können Bonus-Prozent für die Klausur erworben werden.

poor granguet erint erettat eettingen	5 C 3 SWS
Modul B.Inf.1201: Theoretische Informatik	3 3003
English title: Theoretical Computer Science	

Lernziele/Kompetenzen: Studierende • kennen grundlegende Begriffe und Methoden der theoretischen Informatik im Bereich formale Sprachen, Automaten und Berechenbarkeit. • verstehen Zusammenhänge zwischen diesen Gebieten und sowie Querbezüge zur praktischen Informatik. • wenden die klassischen Sätze, Aussagen und Methoden der theoretischen Informatik in typischen Beispielen an. • klassifizieren formale Sprachen nach Chomsky-Typen. • bewerten Probleme hinsichtlich ihrer (Semi-)Entscheidbarkeit. Arbeitsaufwand: Präsenzzeit: 42 Stunden Selbststudium: 108 Stunden

Lehrveranstaltung: Theoretische Informatik (Vorlesung, Übung)	3 SWS
Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.)	5 C
Prüfungsvorleistungen:	
Bearbeitung von 50% aller Übungsblätter, Vorführung mindestens einer Aufgabe	
während der Übung, kontinuierliche Teilnahme an den Übungen.	
Prüfungsanforderungen:	
In der Prüfung wird neben dem theoretischen Verständnis zentraler Begriffe der	
theoretischen Informatik die aktive Beherrschung der vermittelten Inhalte und Techniken	
nachgewiesen, z.B.	
durch Grammatik oder Akzeptormodell gegebene formale Sprache der	
nachweisbar richtigen Hierarchiestufe zuordnen, für gegebenes Wortproblem	
einen möglichst effizienten Entscheidungsalgorithmus konstruieren, dessen	
Laufzeitverhalten analysieren.	
aus Grammatik entsprechenden Akzeptor konstruieren (oder umgekehrt),	
Grammatik in Normalform überführen, reguläre Ausdrücke in endlichen Automaten	
überführen, Typ3-Grammatik in regulären Ausdruck usw.	
Algorithmus in vorgegebener Formalisierung darstellen, einfache	
Nichtentscheidbarkeitsbeweise durch Reduktion führen oder	
Abschlusseigenschaften von Sprachklassen herleiten, Semi-Entscheidbarkeit	
konkreter Probleme nachweisen.	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	Grundlagen der Informatik, der Programmierung und der diskreten Mathematik.
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Florin-Silviu Manea
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:

zweimalig	
Maximale Studierendenzahl: 100	

Georg-August-Universität Göttingen Modul B.Inf.1202: Formale Systeme English title: Formal Systems 5 C 3 SWS

Lernziele/Kompetenzen:

Die Studierenden

- können Sachverhalte in geeigneten logischen Systemen formalisieren und mit diesen Formalisierungen umgehen.
- verstehen grundlegende Begriffe und Methoden der mathematischen Logik.
- können die Ausdrucksstärke und Grenzen logischer Systeme beurteilen.
- beherrschen elementare Darstellungs- und Modellierungstechniken der Informatik, kennen die zugehörigen fundamentalen Algorithmen und können diese anwenden und analysieren.

Arbeitsaufwand:

Präsenzzeit: 42 Stunden Selbststudium:

108 Stunden

Lehrveranstaltung: Formale Systeme (Vorlesung,Übung)	
Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.)	5 C
Prüfungsvorleistungen:	
Aktive Teilnahme an den Übungen, belegt durch Nachweis von 50% der in den	
Übungsaufgaben eines Semesters erreichbaren Punkte.	
Prüfungsanforderungen:	
Strukturen, Syntax und Semantik von Aussagen- und Prädikatenlogik.	
Einführung in weitere Logiken (z.B. Logiken höherer Stufe).	
Entscheidbarkeit, Unentscheidbarkeit und Komplexität von logischen	
Spezifikationen.	
Grundlagen zu algebraischen Strukturen und partiell geordneten Mengen.	
Syntaxdefinitionen durch Regelsysteme und ihre Anwendung.	
Transformation und Analyseverfahren für Regelsysteme.	
Einfache Modelle der Nebenläufigkeit (z.B. Petrinetze).	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Inf.1101
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Winfried Kurth
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

coorg / tagact crittorollar collinger	5 C 3 SWS
Modul B.Inf.1203: Betriebssysteme	3 3 4 4 3
English title: Operating Systems	

Lernziele/Kompetenzen:

Die Studierenden

- kennen Aufgaben, Betriebsarten und Struktur eines Betriebssystems.
- kennen die Verfahren zu Verwaltung, Scheduling, Kommunikation und Synchronisation von Prozessen und Threads, sie k\u00f6nnen diese Verfahren jeweils anwenden, analysieren und vergleichen.
- kennen die Definition und die Voraussetzungen für Deadlocks, sowie Strategien zur Deadlock-Behandlung und können diese Strategien anwenden, analysieren und vergleichen.
- kennen die Unterschiede und den Zusammenhang zwischen logischem, physikalischem und virtuellem Speicher, sie kennen Methoden zur Speicherverwaltung und Verfahren zur Speicherabbildung und können diese anwenden, analysieren und vergleichen.
- kennen die Schichtung von Abstraktionsebenen zur Verwaltung von Ein-/Ausgabe-Geräten, sowie verschiedene Ein-/Ausgabe-Hardwareanbindungen.
- kennen unterschiedliche Konzepte zur Dateiverwaltung und Verzeichnisimplementierung und können diese anwenden, analysieren und vergleichen.
- kennen die Benutzerschnittstelle eines ausgewählten Betriebssystems und können diese benutzen.
- kennen die Systemschnittstelle eines ausgewählten Betriebssystems. Sie können Programme, die die Systemschnittstelle benutzen, in einer aktuellen Programmiersprache erstellen, testen und analysieren.

Arbeitsaufwand:

Präsenzzeit: 42 Stunden Selbststudium:

108 Stunden

Lehrveranstaltung: Betriebssysteme (Vorlesung,Übung)	3 SWS
Prüfung: Klausur (90 Minuten)	5 C
Prüfungsvorleistungen:	
Erarbeiten und Vorstellen der Lösung mindestens einer Übungsaufgabe (Präsentation	
und schriftliche Ausarbeitung), sowie die aktive Teilnahme an den Übungen.	
Prüfungsanforderungen:	
Aufgaben, Betriebsarten und Struktur eines Betriebssystems; Verwaltung, Scheduling,	
Kommunikation und Synchronisation von Prozessen und Threads; Deadlocks;	
Speicherverwaltung; Ein-/Ausgabe; Dateien und Dateisysteme; Benutzerschnittstelle;	
Programmierung der Systemschnittstelle.	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
B.Inf.1801 oder B.Inf.1841 oder B.Phy.1601	B.Inf.1101
Sprache:	Modulverantwortliche[r]:
Deutsch	Roland Leißa
Angebotshäufigkeit:	Dauer:

jährlich	1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

Georg-August-Universität Göttingen Module B.Inf.1204: Telematics / Computer Networks 5 C 3 WLH

Learning outcome, core skills: Workload: The students Attendance time: 42 h · know the core principles and concepts of computer networks. Self-study time: • know the principle of layering and the coherences and differences between the 108 h layers of the internet protocol stack. · know the properties of protocols that are used for data forwarding in wired and wireless networks. They are able to analyse and compare these protocols. · know details of the internet protocol. · know the different kinds of routing protocols, both in the intra-domain and interdomain level. They are able to apply, analyse and compare these protocols. · know the differences between transport layer protocols as well as their commonalities. They are able to use the correct protocol based on the demands of an application. · know the principles of Quality-of-Service infrastructures and networked multimedia · know the basics of both symmetric and asymmetric encryption with regards to network security. They know the various advantages and disadvantages of

Course: Computernetworks (Lecture, Exercise)	3 WLH
Examination: Written examination (90 minutes)	5 C
Examination requirements:	
Layering; ethernet; forwarding in wired and wireless networks; IPv4 and IPv6; inter-	
domain and intra-domain routing protocols; transport layer protocols; congestion control;	
flow control; Quality-of-Service infrastructures; asymmetric and symmetric cryptography	

each kind of encryption when compared to each other and can apply the correct

encryption method based on application demands.

Admission requirements:	Recommended previous knowledge: B.Inf.1101, B.Inf.1801
Language: English	Person responsible for module: Prof. Dr. Xiaoming Fu
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 100	

Georg-August-Universität Göttingen Modul B.Inf.1206: Datenbanken English title: Databases

Lernziele/Kompetenzen:

Die Studierenden kennen die theoretischen Grundlagen sowie technischen Konzepte von Datenbanksystemen. Mit den erworbenen Kenntnissen in konzeptueller Modellierung und praktischen Grundkenntnissen in der am weitesten verbreiteten Anfragesprache "SQL" können sie einfache Datenbankprojekte durchführen. Sie wissen, welche grundlegende Funktionalität ihnen ein Datenbanksystem dabei bietet und können diese nutzen. Sie können sich ggf. auf der Basis dieser Kenntnisse mit Hilfe der üblichen Dokumentation in diesem Bereich selbständig weitergehend einarbeiten. Die Studierenden verstehen den Nutzen eines fundierten mathematisch-theoretischen Hintergrundes auch im Bereich praktischer Informatik.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 94 Stunden

Lehrveranstaltung: Datenbanken (Vorlesung,Übung)

Inhalte:

Konzeptuelle Modellierung (ER-Modell), relationales Modell, relationale Algebra (als theoretische Grundlage der Anfragekonzepte), SQL-Anfragen, -Updates und Schemaerzeugung, Transaktionen, Normalisierungstheorie.

Literatur: R. Elmasri, S.B. Navathe: Grundlagen von Datenbanksystemen - Ausgabe Grundstudium (dt. Übers.), Pearson Studium (nach Praxisrelevanz ausgewählte Themen).

Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 20 Min.)

5 C

4 SWS

Prüfungsanforderungen:

Nachweis über aufgebaute weiterführende Kompetenzen in den folgenden Bereichen: theoretische Grundlagen sowie technische Konzepte von Datenbanksystemen, konzeptuelle Modellierung und praktische Grundkenntnisse in der am weitesten verbreiteten Anfragesprache "SQL" in ihrer Anwendung auf einfache Datenbankprojekte, Nutzung grundlegender Funktionalitäten von Datenbanksystem, mathematischtheoretischer Hintergründe in der praktischen Informatik. Fähigkeit, die vorstehenden Kompetenzen weiter zu vertiefen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Inf.1101
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Wolfgang May
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

Georg-August-Universität Göttingen Modul B.Inf.1207: Proseminar I English title: Proseminar I		5 C 3 SWS
Lernziele/Kompetenzen: Die Studierenden • vertiefen ihre Kenntnisse in einem der am Institut für Informatik vertretenen Teilgebiete der Kerninformatik, in dem bereits Grundkenntnisse und -fähigkeiten erworben wurden, durch eigenständige Ausarbeitung eines Themas. • erlernen Methoden der Präsentation von Themen aus der Informatik. • erwerben Fähigkeiten im Umgang mit (englischsprachiger) Fachliteratur, Präsentation eines informatischen Themas. • erlernen das Führen einer wissenschaftlichen Diskussion.		Arbeitsaufwand: Präsenzzeit: 42 Stunden Selbststudium: 108 Stunden
Lehrveranstaltung: Proseminar I (Proseminar) Prüfung: Vortrag (ca. 45 Min.) mit schriftlicher Ausarbeitung (max. 15 Seiten) Prüfungsvorleistungen: Teilnahme am Proseminar.		3 SWS 5 C
Prüfungsanforderungen: Nachweis der erworbenen Kenntnisse und Kompe durch Vortrag und Ausarbeitung.	tenzen auf dem Gebiet der Informatik	
Zugangsvoraussetzungen: B.Inf.1101 und die zugehörige Fachvorlesung.	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Florin-Silviu Manea	
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen Modul B.Inf.1208: Proseminar II English title: Proseminar II		5 C 3 SWS
Lernziele/Kompetenzen: Die Studierenden • vertiefen ihre Kenntnisse in einem der am Institut für Informatik vertretenen Teilgebiete der Kerninformatik, in dem bereits Grundkenntnisse und -fähigkeiten erworben wurden, durch eigenständige Ausarbeitung eines Themas. • erlernen Methoden der Präsentation von Themen aus der Informatik. • erwerben Fähigkeiten im Umgang mit (englischsprachiger) Fachliteratur, Präsentation eines informatischen Themas. • erlernen das Führen einer wissenschaftlichen Diskussion.		Arbeitsaufwand: Präsenzzeit: 42 Stunden Selbststudium: 108 Stunden
Lehrveranstaltung: Proseminar II (Proseminar) Prüfung: Vortrag (ca. 45 Min.) mit schriftlicher Ausarbeitung (max. 15 Seiten) Prüfungsvorleistungen: Teilnahme am Proseminar.		3 SWS 5 C
Prüfungsanforderungen: Nachweis der erworbenen Kenntnisse und Kompetenzen auf dem Gebiet der Informatik durch Vortrag und Ausarbeitung.		
Zugangsvoraussetzungen: B.Inf.1101 und die zugehörige Fachvorlesung.	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Florin-Silviu Manea	
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 14		

our grant contact cont	5 C
Modul B.Inf.1209: Softwaretechnik	3 SWS
English title: Software Engineering	

Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden Präsenzzeit: 42 Stunden • kennen Geschichte, Definition, Aufgaben und Wissensgebiete der Selbststudium: Softwaretechnik. 108 Stunden • wissen was ein Softwareprojekt ist, welche Personen und Rollen in Softwareprojekten ausgefüllt werden müssen und wie Softwareprojekte in Unternehmensstrukturen eingebettet werden können. · kennen unterschiedliche Vorgehens- und Prozessmodelle der Softwaretechnik, · kennen deren Vor- und Nachteile und wissen wie die Qualität von Softwareentwicklungsprozessen bewertet werden können. • kennen verschiedene Methoden der Kosten- und Aufwandsschätzung für Softwareprojekte. • kennen die Prinzipien und verschiedene Verfahren für die Anforderungsanalyse für Softwareprojekte. • kennen die Prinzipien und mindestens eine Vorgehensweise für den Software Entwurf. · kennen die Prinzipien der Software Implementierung. • kennen die grundlegenden Methoden für die Software Qualitätssicherung.

Lehrveranstaltung: Softwaretechnik (Vorlesung, Übung) Inhalte: Software-Qualitätsmerkmale, Projekte, Vorgehensmodelle, Requirements-Engineering, Machbarkeitsstudie, Analyse, Entwurf, Implementierung, Qualitätssicherung	3 SWS
Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.)	5 C
Prüfungsvorleistungen:	
B.Inf.1209.Ue: Erarbeiten und Vorstellen der Lösung mindestens einer Übungsaufgabe	
(Präsentation und schriftliche Ausarbeitung), sowie die aktive Teilnahme an den	
Übungen.	
Prüfungsanforderungen:	
Definition und Aufgaben der Softwaretechnik, Definition Softwareprojekt,	
Personen und Rollen in Softwareprojekten, Einbettung von Softwareprojekten in	
Unternehmensstrukturen, Vorgehens- und Prozessmodelle und deren Bewertung,	
Aufwands- und Kostenabschätzung, Anforderungsanalyse, Design, Implementierung	
und Qualitätssicherung	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Inf.1101, B.Inf.1801, B.Inf.1802
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Jens Grabowski
Angebotshäufigkeit:	Dauer:
jährlich	1 Semester

Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

Georg-August-Universität Göttingen Modul B.Inf.1210: Computersicherheit und Privatheit English title: Computer Security and Privacy 5 C 4 SWS

Lernziele/Kompetenzen: Nach erfolgreichem Abschluss des Modules können Studenten: • Grundbegriffe der Computersicherheit und Privatheit definieren. • Grundlegende kryptographische Verfahren benennen und beschreiben. • Methoden zur Authentisierung und Zugriffskontrolle erklären. • Angriffe und Schwachstellen in den Bereichen der Softwaresicherheit, Networksicherheit und Websicherheit erkennen und beschreiben. • geeignete Methoden und Lösungen benennen, vergleichen und auswählen, um Angriffe und Schwachstellen zu adressieren. • Grundkonzepte des Sicherheitsmanagements präsentieren.

4 SWS
5 C

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Delphine Reinhardt
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 50	

Georg-August-Universität Göttingen Modul B.Inf.1211: Sensordatenverarbeitung English title: Sensor Data Processing

Lernziele/Kompetenzen:

Die Studierenden können

- das Verhalten von Sensorsystemen mathematisch beschreiben und analysieren
- grundlegende Algorithmen zur Sensordaten- und Signalverarbeitung anwenden
- die physikalischen Messprinzipien und Funktionsweisen von g\u00e4ngigen Sensoren erkl\u00e4ren wie z.B. Dehnungsmessstreifen, Inertialsensoren, Kameras sowie Radarund Lidar-Sensoren
- wesentliche Begriffe der Messtechnik wie z.B. Messkennlinie, (relativer)
 Messkennlinienfehler und Messkette erklären
- systematische und stochastische Messfehler unterscheiden und modellieren
- die Fehlerfortpflanzung in Sensorsystemen untersuchen und Methoden der Fehlerreduzierung anwenden
- zeitkontinuierliche Signale mithilfe der Fouriertransformation im Frequenzbereich darstellen und analysieren
- frequenzselektive Filter wie z.B. Hoch- und Tiefpassfilter verwenden
- die Diskretisierung von zeitkontinuierlichen Signalen und das Abtasttheorem beschreiben
- grundlegende Verfahren zur Schätzung von (nichtmessbaren) Systemgrößen anhand von Sensordaten verwenden (wie z.B. das Kalman-Filter)

Arbeitsaufwand:

Präsenzzeit:

56 Stunden

Selbststudium:

94 Stunden

Lehrveranstaltung: Sensordatenverarbeitung (Vorlesung,Übung)	4 SWS
Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)	5 C
Prüfungsvorleistungen:	
Kontinuierliche Teilnahme an den Übungen.	
Prüfungsanforderungen:	
Mathematische Modellierung von Sensorsystemen, grundlegende Algorithmen	
zur Sensordaten- und Signalverarbeitung, physikalische Messprinzipien und	
Funktionsweisen von gängigen Sensoren, wesentliche Begriffe der Messtechnik,	
systematische und stochastische Messfehler, Fehlerfortpflanzung und	
Fehlerreduzierung, Fouriertransformation, frequenzselektive Filter, Abtasttheorem,	
Verfahren zur Schätzung von (nichtmessbaren) Systemgrößen.	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Marcus Baum
Angebotshäufigkeit:	Dauer:
jährlich	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	

Maximale Studierendenzahl:	
50	

Georg-August-Universität Göttingen Modul B.Inf.1212: Technische Informatik English title: Computer Engineering

Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden Präsenzzeit: 42 Stunden kennen die RISC--V Befehlssatzarchitektur und die verschiedenen RISC-V Selbststudium: Befehlssätze, z.B. RV32I 108 Stunden • kennen die Operationen und Operanden der Computerhardware • kennen die übliche Repräsentationen von ganzen Zahlen und Gleitkommazahlen, sowie die zugehörige Airthmetik und können diese anwenden • kennen Konzepte und Funktionsweise moderner Computersysteme und können diese vergleichen • kennen Speichertechnologien und Speicherorganisation • kennen die Funktionsweise ausgewählter mikroelektronischer Schaltungen, z.B. CSA (carry save adder) • kennen ausgewählte Themen der Elektrotechnik, z.B. Feldeffekt-Transistor • können Problemlösungen hardwarenah in RISC-V Assembler formulieren

Lehrveranstaltung: Technische Informatik (Vorlesung,Übung)	3 SWS
Prüfung: Klausur (90 Minuten)	5 C
Prüfungsvorleistungen:	
B.Inf.1212.Ue: Bearbeitung von mindestens 50% der Übungsblätter, Vorstellen der	
Lösung mindestens einer Übungsaufgabe (Präsentation und schriftliche Ausarbeitung).	
Prüfungsanforderungen:	
RISCV Befehlssatzarchitektur; RISC-V Befehlssätze; Operationen und	
Operanden der Computerhardware; ganzen Zahlen und Gleitkommazahlen und die	
zugehörige Airthmetik; Zeichencodierung; Konzepte und Funktionsweise moderner	
Computersysteme; Speichertechnologien; Speicherorganisation: Funktionsweise	
mikroelektronischer Schaltungen; Elektrotechnik; hardwarenahe Programmierung	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Inf.1101, B.Inf.1801
Sprache: Deutsch	Modulverantwortliche[r]: Dr. Henrik Brosenne
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

8 C Georg-August-Universität Göttingen 6 SWS Modul B.Inf.1214: Types and Programming Languages English title: Types and Programming Languages

Lernziele/Kompetenzen:

A type system is a syntactic method for enforcing levels of abstraction in programs. The study of type systems—and of programming languages from a type-theoretic perspective—has important applications in software engineering, language design, highperformance compilers, and security. In this lecture, we will discuss the following topics:

- Lambda calculus
- · Static and dynamic semantics of programming languages
- · Functional programming
- · Curry-Howard correspondence
- Computational logic
- · Proof assistants
- · Typed intermediate languages

Expertise:

· Get acquainted with the aims of the module

Methodological competence:

• Students will get familiar with the jargon used in scientific publications about programming languages

Personal competence:

- · Learn how to read scientific publications about programming languages
- · Teamwork skills

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium: 156 Stunden

Lehrveranstaltung: Types and Programming Languages (TaPL) (Vorlesung)	4 SWS
Types and Programming Languages. February 2002. Benjamin C. Pierce. The MIT	
Press. ISBN: 978-0-262-16209-8	
Prüfung: Klausur (90 Minuten)	8 C
Prüfungsvorleistungen:	
>=50% points in homework assignments in groups of 2-3 students	
Prüfungsanforderungen:	
Lambda calculus; Static and dynamic semantics of programming languages; Functional	
programming; Curry-Howard correspondence; Computational logic; Proof assistants;	
Typed intermediate languages	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Roland Leißa
Angebotshäufigkeit:	Dauer:

Lehrveranstaltung: Types and Programming Languages (TaPL) - Exercise (Übung) 2 SWS

jedes Sommersemester	1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 60	

		1
Georg-August-Universität Göttingen		6 C 4 SWS
Modul B.Inf.1215: Compiler Construction		7 3 7 7 3
English title: Compiler Construction		
Lernziele/Kompetenzen: Basic concepts of compiler design & implementation • Lexing, Parsing • Semantic Analysis, Type Checking • Program Analysis & Optimizations • SSA • LLVM		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltung: Compiler Construction (Vorles	ung)	2 SWS
 Aho, Alfred Vaino; Lam, Monica Sin-Ling; Sethi, Ravi; Ullman, Jeffrey David (2006). Compilers: Principles, Techniques, and Tools. ISBN 0-321-48681-1. Helmut Seidl, Reinhard Wilhelm, Sebastian Hack: Compiler Design - Analysis and Transformation. Springer 2012, ISBN 978-3-642-17547-3. Helmut Seidl, Reinhard Wilhelm, Sebastian Hack: Compiler Design - Syntactic and Semantic Analysis. Springer 2013, ISBN 978-3-642-17539-8. Andrew W. Appel, Jens Palsberg: Modern Compiler Implementation in Java, 2nd edition. Cambridge University Press 2002, ISBN 0-521-82060-X. 		
Prüfung: Klausur (90 Minuten)		6 C
Prüfungsvorleistungen:		
>=50% points in homework assignments in groups of 2-3 students		
Prüfungsanforderungen:	a La isa Bassisa Osasatia	
Basic concepts of compiler design and implementation: Lexing, Parsing; Semantic Analysis, Type Checking; Program Analysis and Optimizations; SSA; LLVM		
Analysis, Type Checking, Program Analysis and Optin	TIIZAUOTIS, OOA, ELVIVI	
Lehrveranstaltung: Compiler Construction - Exercise (Übung)		2 SWS
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache:	Modulverantwortliche[r]:	
Englisch	Prof. Dr. Roland Leißa	
Angebotshäufigkeit:	Dauer:	
jedes Wintersemester	1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		
60		

coorg / tagact crittorollat cottingon	6 C 2 SWS
Modul B.Inf.1216: Compiler Lab	2 3003
English title: Compiler Lab	

Lernziele/Kompetenzen:	Arbeitsaufwand:
Expertise:	Präsenzzeit:
Know basic concepts of compiler design & implementation.	28 Stunden
	Selbststudium:
Methodological competence:	152 Stunden
Students will be able to design and implement a compiler from scratch.	
Personal competence:	
Learn how to read software documentation and a language specification.	
Learn how to cope with a huge software stack.	
Teamwork skills.	
 Learn how to read software documentation and a language specification. Learn how to cope with a huge software stack. 	

Lehrveranstaltung: Compiler Lab (Vorlesung)	2 SWS
Prüfung: Project work (6 weeks in groups of 2 – 3 students) and oral project presentation (approx. 30 minutes per group)	6 C
Prüfungsanforderungen:	
Implementation of a compiler that translates a subset of C into executable code via LLVM. Automatic testing & project presentation.	

Zugangsvoraussetzungen: Compiler Construction (B.Inf.1215 or equivalent). Taking B.Inf.1215 and B.Inf.1216 concurrently is recommended.	Empfohlene Vorkenntnisse: Basic skills in C/C++ are advantageous but the course will include a crash course in C++.
Sprache: Englisch Angebotshäufigkeit: jedes Wintersemester	Modulverantwortliche[r]: Prof. Dr. Roland Leißa Dauer: 1 Semester
Wiederholbarkeit: zweimalig Maximale Studierendenzahl: 60	Empfohlenes Fachsemester:

Georg-August-Universität Göttingen Module B.Inf.1236: Machine Learning	6 C 4 WLH
Learning outcome, core skills:	Workload:

Learning outcome, core skills:	Workload:
Students	Attendance time:
 learn concepts and techniques of machine learning and understand their advantages and disadvantages compared with alternative approaches learn techniques of supervised learning for classification and regression learn techniques of unsupervised learning for density estimation, dimensionality reduction and clustering implement machine learning algorithms like linear regression, logistic regression, kernel methods, tree-based methods, neural networks, principal component analysis, k-means and Gaussian mixture models solve practical data science problems using machine learning methods 	56 h Self-study time: 124 h

Course: Machine Learning (Lecture)	2 WLH
Bishop: Pattern recognition and machine learning. https://cs.ugoe.de/prml	
Examination: Written examination (90 minutes)	6 C
Examination prerequisites:	
B.Inf.1236.Ex: At least 50% of homework exercises solved and N-1 attempts presented	
to tutors	
Examination requirements:	
Knowledge of the working principles, advantages and disadvantages of the machine	
learning methods covered in the lecture	

Course: Machine Learning - Exercise (Exercise)	2 WLH
Contents:	
Students present their solutions of the homework exercises to tutors and discuss them	
with their tutors.	

Admission requirements: none	Recommended previous knowledge: Knowledge of basic linear algebra and probability English language proficiency at level B2 (CEFR)
Language: English	Person responsible for module: Prof. Dr. Alexander Ecker
Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 4
Maximum number of students: 100	

Georg-August-Universität Göttingen Module B.Inf.1237: Deep Learning for Computer Vision	6 C 4 WLH
Learning outcome. core skills:	Workload:

Module B.Inf.1237: Deep Learning for Computer Vision	4 WLD
Learning outcome, core skills: Students I learn concepts and techniques of deep learning and understand their advantages and disadvantages compared to alternative approaches I learn to solve practical data science problems using deep learning implement deep learning techniques like multi-layer perceptrons, convolutional neural networks and other modern deep learning architectures learn techniques for optimization and regularization of deep neural networks learn applications of deep neural networks for computer vision tasks such as segmentation and object detection	Workload: Attendance time: 56 h Self-study time: 124 h
Course: Deep Learning for Computer Vision (Lecture) Goodfellow, Bengio, Courville: Deep Learning. https://www.deeplearningbook.org Bishop: Pattern Recognition and Machine Learning. https://cs.ugoe.de/prml	2 WLH
Examination: Written examination (90 minutes) Examination prerequisites: B.Inf.1237.Ex: At least 50% of homework exercises solved and N-1 attempts presented to tutors Examination requirements: Knowledge of basic deep learning techniques, their advantages and disadvantages and approaches to optimization and regularization. Ability to implement these techniques.	6 C
Course: Deep Learning for Computer Vision - Exercise (Exercise) Contents: Students present their solutions of the homework exercises to tutors and discuss them with their tutors.	2 WLH

Admission requirements: none	Recommended previous knowledge: Basic knowledge of linear algebra and probability Completion of B.Inf.1236 Machine Learning or equivalent
Language: English	Person responsible for module: Prof. Dr. Constantin Pape Prof. Dr. Alexander Ecker
Course frequency: each winter semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 5
Maximum number of students: 100	

Soor g / tagast Sint Stonat Sottings:	6 C
Module B.Inf.1240: Visualization	4 WLH

Learning outcome, core skills: Workload: Knowledge of Attendance time: 56 h • the potentials and limitations of data visualization Self-study time: • the fundamentals of visual perception and cognition and their implications for data 124 h visualization. Students can apply these to the design of visualizations and detect manipulative design choices • a broad variety of techniques for visual representation of data, including abstract and high-dimensional data. Students can select appropriate methods on new problems • integration of visualization into the data analysis process, algorithmic generation and interactive methods Course: Visualization (Lecture, Exercise) 4 WLH

Examination: Practical project (2-3 weeks) with presentation and questions during	6 C
oral exam in groups (approx. 20 minutes per examinee).	
Examination prerequisites:	
At least 50% of homework exercises solved.	
Examination requirements:	
Knowledge of potentials and limitations of data visualization, fundamentals of visual	
perception and their implications for good design choices, techniques for visual	
representation and how to use them.	

Admission requirements: none	Recommended previous knowledge: Foundations of linear algebra and analysis (e.g. B.Mat.0801 and B.Mat.0802) and programming skills (e.g. B.Inf.1842).
Language: English	Person responsible for module: Prof. Dr. Bernhard Schmitzer
Course frequency: once a year	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: 3 - 6
Maximum number of students: 50	

Georg-August-Universität Göttingen		6 C
Module B.Inf.1248: Language as Data		4 WLH
Learning outcome, core skills: After completion of this module, students can • make appropriate use of terminology and explain theoretical concepts to describe characteristics of language data • describe foundational knowledge of representation learning for language data • apply language technology software to text datasets and interpret the output • discuss limitations of language models and their ethical implications		Workload: Attendance time: 56 h Self-study time: 124 h
Course: Language as Data (Lecture)		2 WLH
Examination: Written exam (90 minutes) or oral exam (20 minutes) Examination prerequisites: successful completion of exercise projects Examination requirements: Students need to achieve the learning goals		6 C
Course: Language as Data - Exercise (Exercise)		2 WLH
Admission requirements:	Recommended previous knowledge: Python programming skills Foundations of machine learning	
Language: English	Person responsible for module: Prof. Dr. Lisa Beinborn	
Course frequency: irregular	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester:	
Maximum number of students: 50		

Georg-August-Universität Göttingen	6 C	
		4 WLH
Module B.Inf.1249: Introduction to Robotics		
 Learning outcome, core skills: After successful completion of this course, students: Explain the basics of serial kinematic chains, their mathematical representations, and perform computations of forward and backward kinematics. Apply these mathematical models to transfer them to parallel kinematics. Describe the basic principles of motion planning along trajectories, including obstacle avoidance and dynamics. Discuss the challenges of operating robots in the real world and apply solutions in application scenarios, including calibration, localization, and robot control. 		Workload: Attendance time: 56 h Self-study time: 124 h
Course: Introduction to Robotics (Lecture) Contents: Robot types, serial kinematic chains, mathematical models of kinematic chains, forward kinematics, backward kinematics, kinematics of parallel robotics, mobile robotics, trajectory planning, control strategies, calibration Literature: M. Spong et al.: Robot Modeling and Control - Wiley & Sons, 2005 S. Niku: Introduction to Robotics: Analysis, Control, Applications - Wiley & Sons, 2010		2 WLH
Examination: Written Exam (90 Min.) or Oral Exam (ca. 20 Min.) Examination prerequisites: At least 50% of homework exercises solved and N-1 attempts presented to tutors. Examination requirements: The students must be able to: • repeat and explain lecture material • perform kinematic calculations • apply and adopt algorithms discussed in the lecture to specific application scenarios		6 C
Course: Introduction to Robotics - Exercise (Exercise) Contents: Students present their solutions of the homework exercises to tutors and discuss them with their tutors.		2 WLH
Admission requirements: none Recommended previous knowled Basic knowledge of linear algebra		_
Language: English	Person responsible for module: Prof. Dr. Jannis Hagenah	
Course frequency:	Duration:	

1 semester[s]

Recommended semester:Bachelor: 5 - 6; Master: 1 - 3

each winter semester

twice

Number of repeat examinations permitted:

Maximum number of students:	
100	

Georg-August-Universität Göttingen		6 C
Modul B.Inf.1601: Fachdidaktik Informatik		4 SWS
English title: Didactics of computer science		
Lernziele/Kompetenzen: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Grundwissen im Bereich "Fachdidaktik Informatik" vertraut. Sie		Arbeitsaufwand: Präsenzzeit: 28 Stunden
 verfügen über didaktisches Grundwissen über lerntheoretische und - psychologische Hintergründe für das Lernen und Lehren von Informatikinhalten; kennen zentrale didaktische Konzepte und Materialien für die Vermittlung des Stoffgebiets; strukturieren Lehr-Lern-Prozesse mit den Konzepten fundamentaler Ideen und Grundvorstellungen; verstehen didaktische Befunde und Konzepte sowie konkrete Ansätze zu typischen Lernsituationen bei der Vermittlung von Informatikinhalten; konkretisieren ihr Grundlagenwissen am Beispiel von typischen Stoffgebieten aus der Informatik; kennen die formalen Grundlagen für Informatikunterricht; beherrschen bereichsspezifische Argumentationsweisen und Problemlösungsstrategien, sowie typische Lernperspektiven im Stoffgebiet (insbesondere Vorstellungen, Fehlermuster, Verständnishürden, Anknüpfungspunkte). 		Selbststudium: 152 Stunden
Lehrveranstaltung: Seminar "Informatik und Allgemeinbildung" (Seminar) Angebotshäufigkeit: jedes Wintersemester		2 SWS
Prüfung: Klausur oder Hausarbeit oder mündliche Prüfung Prüfungsvorleistungen: Anwesenheit bei mindestens 80% der Sitzungen.		3 C
Lehrveranstaltung: Seminar "Ausgewählte fachdidaktische Themen" (Seminar) Angebotshäufigkeit: jedes Sommersemester		2 SWS
Prüfung: Klausur oder Hausarbeit oder mündliche Prüfung Prüfungsvorleistungen: Anwesenheit bei mindestens 80% der Sitzungen.		3 C
Prüfungsanforderungen: Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Bereich "Fachdidaktik Informatik" erworben, insbesondere • Vermittlungskompetenz von Informatikinhalten; • stoffdidaktische und sachbezogene Analyse von Lerninhalten der Informatik.		
Zugangsvoraussetzungen: Grundlagen der Informatik und der Programmierung.	Empfohlene Vorkenntnisse:	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Kerstin Strecker	

Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 10	

Georg-August-Universität Göttingen 3 C 2 SWS Modul B.Inf.1602: Allgemeine Vermittlungskompetenz Informatik English title: Communication skills in computer science Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Grundwissen der Präsenzzeit: nicht-schulbezogenen Vermittlungskompetenz für Inhalte und fachbezogene Fähigkeiten 28 Stunden der Informatik vertraut. Selbststudium: 62 Stunden

Sie

- · verfügen über didaktisches Grundwissen für das Lernen und Lehren;
- kennen zentrale Konzepte und Materialien für die Vermittlung von Inhalten und Fähigkeiten;
- verstehen konkrete Ansätze zu typischen Lernsituationen;
- · konkretisieren ihr Grundlagenwissen am typischen Beispielen;
- · beherrschen bereichsspezifische Argumentationsweisen und Problemlösungsstrategien, sowie typische Lernperspektiven (insbesondere Vorstellungen, Fehlermuster, Verständnishürden, Anknüpfungspunkte).

2 SWS Lehrveranstaltung: Seminar "Informatik und Gesellschaft" (Seminar) Angebotshäufigkeit: jährlich 3 C Prüfung: Klausur oder Hausarbeit oder mündliche Prüfung Prüfungsvorleistungen: Aktive Teilnahme am Seminar.

Prüfungsanforderungen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen der nicht-schulbezogenen Vermittlungskompetenz für Informatik erworben.

Insbesondere

- Vermittlungskompetenz f
 ür Informatikinhalte und fachbezogene F
 ähigkeiten;
- Fähigkeit zur sachbezogenen Analyse von Lerninhalten der Informatik;
- Erste diagnostische Kompetenzen, insbesondere zu typischen Fehlvorstellungen.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
Grundlagen der Informatik und der Programmierung.	keine
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Caroline Sporleder
Angebotshäufigkeit:	Dauer:
jedes Wintersemester	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	
Maximale Studierendenzahl:	
20	

Georg-August-Universität Göttingen Modul B.Inf.1603: Einführung in die Fachdidaktik Informatik English title: Introduction to didactics of computer science

Lernziele/Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Grundwissen im Bereich "Fachdidaktik Informatik" vertraut. Sie

- verfügen über didaktisches Grundwissen über lerntheoretische und psychologische Hintergründe für das Lernen und Lehren von Informatikinhalten;
- kennen zentrale didaktische Konzepte und Materialien für die Vermittlung des Stoffgebiets;
- strukturieren Lehr-Lern-Prozesse mit den Konzepten fundamentaler Ideen und Grundvorstellungen;
- verstehen didaktische Befunde und Konzepte sowie konkrete Ansätze zu typischen Lernsituationen bei der Vermittlung von Informatikinhalten;
- beherrschen bereichsspezifische Argumentationsweisen und Problemlösungsstrategien, sowie typische Lernperspektiven im Stoffgebiet (insbesondere Vorstellungen, Fehlermuster, Verständnishürden, Anknüpfungspunkte).

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

62 Stunden

Lehrveranstaltung: Seminar "Informatik und Allgemeinbildung" (Seminar)	2 SWS
Prüfung: Klausur oder Hausarbeit oder mündliche Prüfung	3 C
Prüfungsvorleistungen:	
Anwesenheit bei mindestens 80% der Sitzungen.	
Prüfungsanforderungen:	
Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende	
Kompetenzen im Bereich "Fachdidaktik Informatik" erworben, insbesondere	
Vermittlungskompetenz von Informatikinhalten;	
stoffdidaktische und sachbezogene Analyse von Lerninhalten der Informatik.	

Zugangsvoraussetzungen: Grundlagen der Informatik und der Programmierung	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Kerstin Strecker
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

Georg-August-Universität Göttingen

Modul B.Inf.1604: Programmierpraktikum für Lehramtsstudierende

English title: Programming Lab for Education Majors

5 C 4 SWS

Lernziele/Kompetenzen:

Lernziele:

Die Studierenden entwickeln eigene Programme in einer schulrelevanten Programmiersprache unter Nutzung objektorientierter und imperativer Konzepte.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls können die Studierenden...

- schulrelevante Entwicklungsumgebungen zur Entwicklung eigener Programme nutzen, auch unter Einbindung grafischer Benutzeroberflächen (GUI).
- eigene Algorithmen unter Verwendung algorithmischer Grundbausteine (z.B. Verzweigung, Schleife, ...) entwerfen und implementieren.
- eigene Operationen/ Methoden entwerfen und implementieren.
- die gängigen Datentypen und Datenstrukturen (z.B. Array, Zeichenkette, ...) bei der Erstellung und Implementierung eigener Algorithmen nutzen.
- Konzepte der objektorientierten Programmierung beschreiben.
- Grundsätze und Techniken des objektorientierten Programmentwurfs (z.B. Klassen, Objekte, Kapselung, Vererbung, Polymorphismus) anwenden.
- eigene Algorithmen unter Verwendung von gegebenen und eigenen Klassen und Objekten entwerfen und implementieren.
- eigene Klassen zur Implementierung der Datenstrukturen Schlange, Stapel, Liste und Binärbaum entwerfen und implementieren.
- Algorithmen unter Nutzung der Datenstrukturen Schlange, Stapel, Liste und Binärbaum entwerfen und implementieren.
- gegebene Algorithmen analysieren und erweitern.
- formale Darstellungen (z.B. UML-Diagramme) zur Entwicklung und Dokumentation eigener Programme nutzen.
- Programme erstellen, die konkrete Anforderungen erfüllen, und deren Korrektheit durch geeignete Testläufe überprüfen.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden

Selbststudium:

94 Stunden

Lehrveranstaltung: Programmierpraktikum für Lehramtsstudierende (Praktikum, Vorlesung)

4 SWS

Prüfung: Klausur (90 Minuten)

Prüfungsvorleistungen:

Erfolgreiche Bearbeitung von praktischen Aufgaben. Regelmäßige Teilnahme an der Lehrveranstaltung.

Prüfungsanforderungen:

Erstellung und Implementierung eigener Algorithmen und Programme unter Verwendung imperativer und objektorientierter Konzepte sowie gängiger Datentypen und Datenstrukturen in einer schulrelevanten Programmiersprache. Erstellung und Implementierung eigener Algorithmen auf Basis der in der Lehrveranstaltung vertieften Konzepte. Analyse und Erweiterung gegebener Algorithmen und Codefragmente.

Anwendung formaler Darstellungen zur Beschreibung ausgewählter Aspekte eigener und gegebener Programme.

Zugangsvoraussetzungen: Nur für Studierende des 2-Fächer-Bachelors Informatik mit lehramtsbezogenem Profi.	Empfohlene Vorkenntnisse: Grundlagen der Informatik und Programmierung.
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Kerstin Strecker
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 20	

Georg-August-Universität Göttingen

Modul B.Inf.1605: Ausgewählte Aspekte des Themengebiets Datenbanken für Lehramtsstudierende

English title: Selected Topics of Database Systems for Education Majors

3 C 1 SWS

Lernziele/Kompetenzen:

Lernziele:

Die Studierenden verfügen über anschlussfähiges fachliches Wissen im Bereich Datenmodellierung und Datenbanksysteme und vertiefen schultypische Aspekte in den Themenbereichen: Modellierung mit ER-Diagrammen, Normalisierung von Tabellen und SQL.

Arbeitsaufwand:

Präsenzzeit: 14 Stunden Selbststudium:

76 Stunden

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls können die Studierenden...

- Grundkonzepte des relationalen Modells beschreiben.
- eine SQL-Abfrage in einen Ausdruck der relationalen Algebra übersetzen und umgekehrt.
- die Abfragesprache SQL im schultypischen Umfang nutzen, indem sie SQL-Abfragen erstellen und erweitern.
- gegebene SQL-Abfragen interpretieren.
- Grundkonzepte im Bereich der Datenintegrität beschreiben.
- eine Tabelle auf Redundanzen und Anomalien untersuchen.
- begründet Schlüsselkandidaten bestimmen und begründet einen Primärschlüssel für eine Tabelle auswählen.
- eine Tabelle systematisch in die 1. Normalform, 2. Normalform und 3. Normalform überführen.
- Zusammenhänge der Daten eines Welt-Ausschnitts in einem ER-Diagramm im schultypischen Umfang modellieren.
- ein gegebenes ER-Diagramm interpretieren, erweitern und optimieren.
- ein ER-Diagramm in ein relationales Schema (Tabellen) überführen.
- eine Anwendungssituation unter datenschutzrechtlichen Gesichtspunkten beurteilen.
- Grundkonzepte des Transaktionsmanagements beschreiben.

Lehrveranstaltung: Ausgewählte Aspekte des Themengebiets Datenbanken für
Lehramtsstudierende (Vorlesung)

1 SWS

Prüfung: Klausur (90 Minuten)

Prüfungsvorleistungen:

Teilnahme an einem zweitägigen Blockkurs zur Prüfungsvorbereitung.

Prüfungsanforderungen:

Entwicklung, Erweiterung und Interpretation eines ER-Diagramms im schultypischen Umfang. Überführung eines ER-Diagramms in ein relationales Schema (Tabellen). Untersuchen gegebener Tabellen hinsichtlich Anomalien und Redundanzen. Bestimmen von Schlüsselkandidaten und Festlegen eines Primärschlüssels für eine Tabelle. Systematische Überführung einer Tabelle in die 1., 2. und 3. Normalform. Erstellung,

3 C

Erweiterung und Interpretation einer Datenbankabfrage in der Sprache SQL. Erstellen von Abfragen mithilfe des SQL-SELECT-Befehls im schultypischen Umfang (der Sprachumfang wird bei der Blockveranstaltung bekannt gegeben)

Zugangsvoraussetzungen: Nur für Studierende des 2-Fächer-Bachelors Informatik mit lehramtsbezogenem Profi.	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Kerstin Strecker
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 20	

Bemerkungen:

Zum Erlangen der für die Prüfung notwendigen Kompetenzen wird dringend das Selbststudium der Online-Materialien der Lehrveranstaltung zum Modul B.Inf.1206 Datenbanken empfohlen.

Georg-August-Universität Göttingen		5 C
Modul B.Inf.1701: Vertiefung theoretischer Konzepte der Informatik English title: Advanced Theoretical Computer Science		3 SWS
Lernziele/Kompetenzen: Dieses Modul baut die Kompetenzen aus dem Modul B.Inf.1201 aus. Es geht um den Erwerb fortgeschrittener Kompetenz im Umgang mit theoretischen Konzepten der Informatik und den damit verbundenen mathematischen Techniken und Modellierungstechniken.		Arbeitsaufwand: Präsenzzeit: 42 Stunden Selbststudium: 108 Stunden
Lehrveranstaltung: Vorlesungen zur Codierungstheorie, Informationstheorie oder Komplexitätstheorie (Vorlesung, Übung) Inhalte: Vertiefung in einem der folgenden Gebiete: Komplexitätstheorie (Erkundung der Grenzen effizienter Algorithmen), Datenstrukturen für boolesche Funktionen, Kryptographie, Informationstheorie, Codierungstheorie, Signalverarbeitung.		
Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.)		5 C
Prüfungsanforderungen: Nachweis über den Erwerb vertiefter weiterführender Kompetenzen aus dem Kompetenzbereich der Module B.Inf.1201 Theoretische Informatik oder B.Inf.1202 Formale Systeme.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Inf.1201, B.Inf.1202	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Florin-Silviu Manea	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 30		

5 C Georg-August-Universität Göttingen 3 SWS Modul B.Inf.1704: Vertiefung technischer Konzepte der Informatik English title: Advanced Computer Engineering Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden haben vertiefte Kenntnisse und Kompetenzen auf einem Gebiet der Präsenzzeit: 42 Stunden technischen Informatik erworben, z.B. auf dem Gebiet Sensorik und Aktorik. Selbststudium: 108 Stunden Lehrveranstaltung: Sensorik und Aktorik (Vorlesung, Übung) Inhalte: Die Studierenden kennen die Grundlagen der Mess- und Regelungstechnik für die Sensorik und Aktorik • können die Begriffe Sensor und Aktor definieren · kennen Verfahren, Prinzipien und Methoden für die Messung mit Sensoren und Steuerung mit Aktoren • kennen Eigenschaften realer Sensoren und Aktoren · kennen Sensor- und Aktor-Systeme • kennen speicherprogrammierbare Steuerung (programmable logic controller, PLC) • kennen ein Feldbus (fieldbus) und ein Industrial-Ethernet-System, sowie die zugehörigen Protokolle • können Informations- und Echtzeitsysteme unterscheiden Angebotshäufigkeit: jährlich 5 C Prüfung: Klausur (90 Minuten) Prüfungsanforderungen: Grundlagen der Mess- und Regelungstechnik; Definition von Sensor und Aktor; Mess-/ Steuerungsverfahren; Mess-/Steuerungsprinzipien; Mess-/Stuerungsmethoden; Eigenschaften realer Sensoren und Aktoren; Sensor- und Aktorik-Systeme; speicherprogrammierbare Steuerung; Feldbus; Industrial-Ethernet; Informationssystem; Echtzeitsysteme Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** B.Inf.1212 keine Sprache: Modulverantwortliche[r]: Deutsch, Englisch Dr. Henrik Brosenne Dauer: Angebotshäufigkeit: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig Maximale Studierendenzahl:

30

Georg-August-Universität Göttingen Modul B.Inf.1705: Vertiefung Softwaretech English title: Advanced Software Engineering	nnik	5 C 3 SWS
Lernziele/Kompetenzen: Die Studierenden haben vertiefte Kenntnisse und Kom der Softwaretechnik erworben. Beispiele für Gebiete d vertiefte Kenntnisse und Kompetenzen erworben werd Engineering, Qualitätssicherung oder Softwareevolution	ler Softwaretechnik in denen den können sind Requirements	Arbeitsaufwand: Präsenzzeit: 42 Stunden Selbststudium: 108 Stunden
 Lehrveranstaltung: Software Testing (Vorlesung, Übung) Inhalte: The students can define the term software quality and acquire knowledge on the principles of software quality assurance. become acquainted with the general test process and know how the general test process can be embedded into the overall software development process. gain knowledge about manual static analysis and about methods for applying manual static analysis. gain knowledge about computer-based static analysis and about methods for applying computer-based static analysis. gain knowlege about black-box testing and about the most important methods for deriving test cases for black-box testing. gain knowlege about glass-box testing and about the most important methods for deriving test cases for glass-box testing. acquire knowledge about the specialities of testing of object oriented software. acquire knowledge about tools that support software testing. gain knowledge about the principles of test managment. 		3 SWS
Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.) Prüfungsvorleistungen: Develop and present the solution of at least one exercise (presentation and report) and active participation in the exercises. Prüfungsanforderungen: Software quality, principles of software quality assurance, general test process, static analysis, dynamic analysis, black-box testing, glass-box testing, testing of object-oriented systems, testing tools, test management		5 C
Zugangsvoraussetzungen: keine Sprache: Englisch	Empfohlene Vorkenntnisse: B.Inf.1101, B.Inf.1209 Modulverantwortliche[r]: Prof. Dr. Jens Grabowski	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	

Wiederholbarkeit:

Empfohlenes Fachsemester:

zweimalig	
Maximale Studierendenzahl: 30	

	1
Georg-August-Universität Göttingen	6 C 4 SWS
Modul B.Inf.1706: Vertiefung Datenbanken	4 3003
English title: Advanced Databases	
Lernziele/Kompetenzen:	Arbeitsaufwand:
Die Studierenden haben vertiefte Kenntnisse und Kompetenzen aus einem Gebiet der	Präsenzzeit:
Datenbanken erworben. Beispiele für Gebiete der Datenbanktechnik in denen vertiefte	56 Stunden
Kenntnisse und Kompetenzen erworben werden können sind Semistrukturierte Daten	Selbststudium:
und XML, Semantic Web, sowie Deduktive Datenbanken.	124 Stunden
Lehrveranstaltung: Semistrukturierte Daten und XML (Vorlesung,Übung)	4 SWS
Lehrveranstaltung: Semantic Web (Vorlesung,Übung)	4 SWS
Lehrveranstaltung: Deduktive Datenbanken (Vorlesung,Übung)	4 SWS
Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 25 Min.)	6 C
Prüfungsanforderungen:	
Semistrukturierte Daten und XML	
Konzepte semistrukturierter Datenmodelle und die Parallelen sowie Unterschiede	
zum "klassischen" strukturierten, relationalen Datenmodell;. Fähigkeit zur	
Beurteilung, welche Technologien in einer konkreten Anwendung zu wählen	
und zu kombinieren sind; praktische Grundkenntnisse in den üblichen Sprachen	
dieses Bereiches; Überblick über die historische Entwicklung von Modellen und	
Sprachen im Datenbankbereich; Fähigkeit zum Nachvollziehen wissenschaftlicher	
Fragestellungen und Vorgehensweisen.	
Semantic Web	
Kenntnisse der theoretischen Grundlagen und technischen Konzepte des	
Semantic Web; Fähigkeit zum Abschätzen des Nutzens und der Grenzen der	
verwendeten Technologien; Fähigkeit zur Abwägung realer Szenarien; Fähigkeit	
zum Nachvollziehen wissenschaftlicher Fragestellungen und Vorgehensweisen.	
Deduktive Datenbanken	
Vertiefte Kenntnisse der im Datenbankbereich zugrundeliegenden Theorie.	
Praktische Anwendung logikbasierter Programmiersprachen.	
	1

Zugangsvoraussetzungen: Semistrukturierte Daten und XML: B.Inf.1206 Semantic Web: B.Inf.1202 und B.Inf.1206 Deduktive Datenbanken: B.Inf.1202 und B.Inf.1206	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Wolfgang May
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:

Maximale Studierendenzahl:	
30	

Georg-August-Universität Göttingen 5 C 3 WLH Module B.Inf.1707: Advanced Computernetworks Learning outcome, core skills: Workload: Die Studierenden haben vertiefte Kenntnisse und Kompetenzen aus einem Gebiet Attendance time: der Computernetzwerke erworben. Beispiele für Gebiete der Computernetzwerke in 42 h denen vertiefte Kenntnisse und Kompetenzen erworben werden können sind z.B. Self-study time: Mobilkommunikation, Sensornetzwerke, Computer- und Netzwerksicherheit. 108 h Course: Mobile Communication (Lecture, Exercise) 3 WLH Contents: On completion of the module students should be able to: · explain the fundamentals of mobile communication including the use of frequencies, modulation, antennas and how mobility is managed distinguish different multiple access schemes such as SDMA (Space Division Multiple Access), FDMA (Frequency Division Multiple Access), TDMA (Time Division Multiple Access), CDMA (Code Division Multiple Access) and their variations as used in cellular networks describe the history of cellular network generations from the first generation (1G) up to now (4G), recall their different ways of functioning and compare them to complementary systems such as TETRA explain the fundamental idea and functioning of satellite systems classify different types of wireless networks including WLAN (IEEE 802.11), WPAN (IEEE 802.15) such as Bluetooth and ZigBee, WMAN (IEEE 802.16) such as WiMAX and recall their functioning explain the challenges of routing in mobile ad hoc and wireless sensor networks • compare the transport layer of static systems to the transport layer in mobile systems and explain the approaches to improve the mobile transport layer performance differentiate between the security concepts used in GSM and 802.11 security as well as describe the way tunnelling works 5 C Examination: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.) **Examination prerequisites:** Erarbeiten und Vorstellen der Lösung mindestens einer Übungsaufgabe (Präsentation und schriftliche Ausarbeitung), sowie die aktive Teilnahme an den Übungen. **Examination requirements:** Fundamentals of mobile communication (frequencies, modulation, antennas, mobility management); multiple access schemes (SDMA, FDMA, TDMA, CDMA) and their variations; history of cellular network generations (first (1G) up to current generation (4G) and outlook to future generations); complementary systems (e.g. TETRA); fundamentals of satellite systems; wireless networks (WLAN (IEEE 802.11), WPAN (IEEE 802.15) such as Bluetooth and ZigBee, WMAN (IEEE 802.16) such as WiMAX); routing in MANETs and WSNs; transport layer for mobile systems; security challenges in

mobile networks such as GSM and 802.11 and tunneling

Admission requirements:	Recommended previous knowledge: B.Inf.1101, B.Inf.1204
Language: English	Person responsible for module: Prof. Dr. Xiaoming Fu
Course frequency: unregelmäßig	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 30	

Georg-August-Universität Göttingen

Modul B.Inf.1709: Vertiefung Algorithmen und Datenstrukturen

English title: Advanced Algorithms and Data Structures

5 C 4 SWS

Lernziele/Kompetenzen:

Die Studierenden haben vertiefte Kenntnisse und Kompetenzen auf einem Gebiet aus dem Bereich Algorithmen und Datenstrukturen erworben. Beispiele für solche Gebiete sind Algorithms on Sequences und Advanced Topics on Algorithms.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 94 Stunden

4 SWS

Lehrveranstaltung: Algorithms on Sequences (Vorlesung, Übung) *Inhalte*:

This course is an introduction into the theory of stringology, or algorithms on sequences of symbols (also called words or strings). Our main intention is to present a series of basic algorithmic and combinatorial results, which can be used to develop efficient word-processing tools. While the emphasis of the course is on the theoretical side of

stringology, we also present a series of applications of the presented concepts in areas

like data-compression or computational biology.

We expect that the participants to this course will gain an understanding of classical string-processing tools. They are supposed to understand and be able to use in various situations: classical text algorithms (e.g., pattern matching algorithms, edit distance), classical text indexing data structures (e.g., suffix arrays / trees), and classical combinatorial results that are useful in this context (e.g., periodicity lemmas).

The main topics our course will cover are: basic combinatorics on words, pattern matching algorithms, data structures for text indexing (suffix arrays, suffix trees), text compression (Huffman encoding, Lempel-Ziv method), detection of regularities in words, algorithms for words with don't care symbols (partial words), word distance algorithms, longest common subsequence algorithms, approximate pattern matching. The presentation of each theoretical topic from the above will be accompanied by a brief discussion on its possible applications.

Literature

- T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein: Introduction to Algorithms (3rd Edition), MIT Press, 2009.
- M. Crochemore, C. Hancart, T. Lecroq: Algorithms on Strings, Cambridge University Press, 2007.
- M. Crochemore, W. Rytter: Jewels of Stringology, World Scientific, 2002.
- D. Gusfield. Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press, 1997.

Angebotshäufigkeit: unregelmäßig

Lehrveranstaltung: Advanced Topics on Algorithms (Vorlesung, Übung) *Inhalte*:

In this course we present a series of selected results on data structures and efficient algorithms, and discuss a series of areas in which they can be applied successfully. The

4 SWS

emphasis of the course is on the theory, we also approach the problem of a practical implementation of the presented algorithms.

We expect that the students that will participate in this lecture will become familiar with efficient sorting and searching methods, advanced data structures, dynamic data structures, as well as other efficient algorithmic methods, they will be able to estimate the complexity of those algorithms, and they will be able to apply those algorithms to particular programming problems (from practical or theoretical settings).

The main topics our course will cover are: efficient sorting and searching (non-comparison based methods, van Emde Boas trees, Radix Sort), advanced treestructures (Fibonacci heaps, B-Trees, structures for working with disjoint sets), dynamic data structures (range minimum queries, lowest common ancestor, applications to string algorithms: suffix arrays, suffix trees), Hashing and Dictionaries, Young tableaux, geometric algorithms (convex hull), number theoretic algorithms. The presentation of each theoretical topic from the above will be accompanied by a brief discussion on its possible applications.

Literature

- T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein: Introduction to Algorithms (3rd Edition), MIT Press, 2009.
- E. Demaine: Advanced Data Structures, MIT Course nr. 6.851, 2012.
- Pawel Gawrychowski and Mayank Goswami and Patrick Nicholson: Efficient Data Structures, MPI Course, Summer 2014.

Angebotshäufigkeit: unregelmäßig

Prüfung: Mündlich (ca. 20 Minuten)

Prüfungsanforderungen:

Algorithms on Sequences

- · basic combinatorics on words
- · pattern matching algorithms
- data structures for text indexing (suffix arrays, suffix trees)
- text compression (Huffman encoding, Lempel-Ziv method)
- detection of regularities in words
- algorithms for words with don't care symbols (partial words)
- · word distance algorithms
- · longest common subsequence algorithms
- · approximate pattern matching

Advanced Topics on Algorithms

- efficient sorting and searching (non-comparison based methods, van Emde Boas trees, Radix Sort)
- advanced tree-structures (Fibonacci heaps, B-Trees, structures for working with disjoint sets)
- dynamic data structures (range minimum queries, lowest common ancestor, applications to string algorithms: suffix arrays, suffix trees)
- · Hashing and Dictionaries
- · Young tableaux

5 C

- geometric algorithms (convex hull)
- number theoretic algorithms

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Inf.1101, B.Inf.1103
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Florin-Silviu Manea
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 50	

Georg-August-Universität Göttingen Modul B.Inf.1710: Vertiefung Computersicherheit und Privatheit	5 C 4 SWS
English title: Advanced Computer Security and Privacy	
Lernziele/Kompetenzen: Die Studierenden haben vertiefte Kenntnisse und Kompetenzen auf einem Gebiet aus dem Bereich Computersicherheit und Privatheit erworben. Beispiele für solche Gebiete sind "Usable Security and Privacy" und "Privacy in Ubiquitous Computing".	Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 94 Stunden
Lehrveranstaltung: Usable Security and Privacy (Vorlesung, Übung)	4 SWS
On completion of the lecture, students should be able to:	
 Understand the needs for usability in secure and privacy-preserving solutions and the associated challenges, Present and discuss selected themes addressed in the research area of usable security and privacy, 	
 Define and understand the principles and guidelines to apply when designing new solutions, 	
 Describe and compare different methodologies to conduct user studies, Plan user studies from their design to the processing and presentation of the results. 	
Angebotshäufigkeit: unregelmäßig	
Lehrveranstaltung: Privacy in Ubiquitous Computing (Vorlesung, Übung) Inhalte:	4 SWS
After successful completion of the lecture, students are able to:	
 Define and understand the key concepts of privacy and ubiquitous computing, Identify and classify threats to privacy in ubiquitous computing, Describe, compare, and choose fundamental techniques to protect privacy, Understand and analyze cutting-edge solutions. 	
Angebotshäufigkeit: unregelmäßig	
Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.) Prüfungsanforderungen: Usable Security and Privacy	5 C
 Introduction to usable security and privacy, selected topics in the research field of usable security and privacy, human-computer interaction principles and guidelines, methods to design and evaluate usable solutions in the area of security and privacy. 	
Privacy in Ubiquitous Computing	
 Introduction to privacy and ubiquitous computing, privacy threats, privacy- enhancing technologies, wireless sensor networks, smart meters, participatory sensing, RFIDs, Internet-of-Things. 	

Zugangsvoraussetzungen:

Empfohlene Vorkenntnisse:

keine	B.Inf.1101, B.Inf.1210
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Delphine Reinhardt
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 20	

Georg-August-Universität Göttingen 5 C 4 SWS Modul B.Inf.1711: Vertiefung Sensordatenverarbeitung English title: Advanced Sensor Data Processing Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden haben vertiefte Kenntnisse und Kompetenzen auf einem Gebiet aus Präsenzzeit: dem Bereich Sensordatenverarbeitung erworben. Beispiele für solche Gebiete sind 56 Stunden "Sensor Data Fusion" und "Mobile Robotics". Selbststudium: 94 Stunden Lehrveranstaltung: Sensor Data Fusion (Vorlesung, Übung) 4 SWS Inhalte: This lecture is concerned with fundamental principles and algorithms for the processing and fusion of noisy (sensor) data. Applications in the context of navigation, object tracking, sensor networks, robotics, Internet-of-Things, and data science are discussed. After completion, students are able to · define the notion of data fusion and distinguish different data fusion levels formalize data fusion problems as state estimation problems · develop distributed and decentralized data fusion architectures describe the basic concepts of linear estimation theory • explain the fundamental formulas for the fusion of noisy data deal with unknown correlations in data fusion understand the Bayesian approach to data fusion and estimation formulate dynamic models for time-varying phenomena · describe the concept of a recursive Bayesian state estimator • explain and apply the Kalman filter for state estimation in dynamic systems • explain and apply basic nonlinear estimation techniques such as the Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) assess the properties, advantages, and disadvantages of the discussed (nonlinear) estimators explain different approaches to deal with uncertainty such as probability theory, fuzzy theory, and Dempster-Shafer theory • identify data fusion applications and assess the benefits of data fusion Angebotshäufigkeit: unregelmäßig Lehrveranstaltung: Mobile Robotics (Vorlesung, Übung) 4 SWS Inhalte: This lecture is concerned with fundamental principles and algorithms for mobile robot navigation and perception. After completion, the students are able to · model the locomotion of wheeled mobile robots

· describe the most common sensors for mobile robots, e.g., inertial sensors and

· understand the concept of dead reckoning

beam-based sensors

5 C

- employ probabilistic state estimation methods such as Kalman filters and sequential Monte Carlo methods (particle filters) for robot navigation and perception
- describe and distinguish different concepts for localization such as trilateration and triangulation
- implement and evaluate basic algorithms for localization
- understand the robot mapping problem and explain different map representations such as occupancy grids
- describe the problem of Simultaneous Localization and Mapping (SLAM)
- implement and evaluate basic algorithms for SLAM such as graph-based approaches and Rao-Blackwellized particle filters
- implement and evaluate basic feature extraction methods such as Random Sample Consensus (RANSAC)
- design basic planning algorithms for mobile robots using, e.g., a Markov Decision Process (MDP)

Angebotshäufigkeit: unregelmäßig

Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.) Prüfungsanforderungen:

Sensor Data Fusion

 Definition of data fusion; data fusion levels; formalization of data fusion problems; distributed and decentralized fusion architectures; linear estimation theory; fundamental fusion formulas; dynamic state estimation; Kalman filter; Extended Kalman filter (EKF); Unscented Kalman filter (UKF), algorithms for dealing with unknown correlations; fuzzy theory; Dempster-Shafer theory

Mobile Robotics

Motion models for wheeled robots; dead reckoning; mobile robot sensors;
 Kalman filter; particle filter; localization concepts and algorithms; robot mapping;
 Simultaneous Localization and Mapping (SLAM); feature extraction methods;
 planning algorithms

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Inf.1101, B.Inf.1211
Sprache:	Modulverantwortliche[r]:
Englisch	Prof. Dr. Marcus Baum
Angebotshäufigkeit:	Dauer:
unregelmäßig	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	
Maximale Studierendenzahl:	
50	

Georg-August-Universität Göttingen	6 C
Modul B.Inf.1712: Vertiefung Hochleistungsrechnen English title: Advanced High Performance Computing	4 SWS
Lernziele/Kompetenzen: Die Studierenden haben vertiefte Kenntnisse und Kompetenzen auf einem Gebiet aus dem Bereich Hochleistungsrechnen erworben. Beispiele für solche Gebiete sind High-Performance Data Analytics.	Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltung: High-Performance Data Analytics (Vorlesung, Übung) Inhalte: Data-driven science requires the handling of large volumes of data in a quick period of time. Executing efficient workflows is challenging for users but also for systems. This module introduces concepts, principles, tools, system architectures, techniques, and algorithms toward large-scale data analytics using distributed and parallel computing. We will investigate the state-of-the-art of processing data of workloads using solutions in High-Performance Computing and Big Data Analytics.	4 SWS
 Challenges in high-performance data analytics Use-cases for large-scale data analytics Performance models for parallel systems and workload execution Data models to organize data and (No)SQL solutions for data management Industry relevant processing models with tools like Hadoop, Spark, and Paraview System architectures for processing large data volumes Relevant algorithms and data structures Visual Analytics Parallel and distributed file systems 	
Guest talks from academia and industry will be incorporated in teaching that demonstrates the applicability of this topic. Weekly laboratory practicals and tutorials will guide students to learn the concepts and tools. In the process of learning, students will form a learning community and integrate peer learning into the practicals. Students will have opportunities to present their solutions to the challenging tasks in the class. Students will develop presentation skills and gain confidence in the topics.	
Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 30 Min.) Prüfungsanforderungen: High-Performance Data Analytics • Challenges in high-performance data analytics • Use-cases for large-scale data analytics • Performance models for parallel systems and workload execution	6 C

Data models to organize data and (No)SQL solutions for data management
Industry relevant processing models with tools like Hadoop, Spark, and Paraview

- System architectures for processing large data volumes
- Relevant algorithms and data structures
- Visual Analytics
- Parallel and distributed file systems

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Basic programming skills, Basic knowledge of Linux operating systems, Python
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Julian Kunkel
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1 - 4
Maximale Studierendenzahl: 50	

5 C Georg-August-Universität Göttingen 3 SWS Modul B.Inf.1713: Vertiefung Data Science English title: Advanced Data Science Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden haben vertiefte Kenntnisse und Kompetenzen auf einem Gebiet der Präsenzzeit: 42 Stunden Data Science erworben, z.B. auf dem Gebiet Mensch-Maschine-Interaktion. Selbststudium: 108 Stunden Lehrveranstaltung: Mensch-Maschine-Interaktion (Vorlesung, Übung) Inhalte: In diesem Kurs werden unterschiedliche Bereiche der Mensch-Maschine-Interaktion (Human-Computer-Interaction) beleuchtet. Ein Schwerpunkt wird auf Usability Engineering und den darin verwendeten Methoden liegen. Dazu zählt die Unterscheidung von expertenorientierten und nutzerorientierten Methoden für die Evaluation von Nutzerschnittstellen und entsprechenden Methodenbeispielen. Es werden zudem Themen wie Design Pattern für Nutzerschnittstellen und Besonderheiten der Wahrnehmung von Nutzer_Innen angesprochen. Zudem werden unterschiedlichen Arten von aktuellen Nutzerschnittstellen, wie Voice User Interfaces, Augmented Reality und Virtual Reality beleuchtet und voneinander abgegrenzt. Ziel des Kurses ist es den Studierenden einen breiten Überblick über die richtige Herangehensweise beim Design und der Entwicklung von Nutzerschnittstellen zu vermitteln. Das Wissen kann später für alle Arten von Nutzerschnittstellen eingesetzt werden. Angebotshäufigkeit: unregelmäßig 5 C

Prüfung: Klausur (9	90 Minuten)
---------------------	-------------

Prüfungsvorleistungen:

Teilnahme am Übungsbetrieb und die Präsentation mindestens einer Übungslösung

Prüfungsanforderungen:

Usability Engineering und die darin verwendeten Methoden, expertenorientierten und nutzerorientierten Methoden für die Evaluation von Nutzerschnittstellen, Design Pattern für Nutzerschnittstellen, aktuelle Nutzerschnittstellen (z.B. Voice User Interfaces, Augmented Reality und Virtual Reality), Design und der Entwicklung von Nutzerschnittstellen

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Marcus Baum
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

20	

20

Georg-August-Universität Göttingen Modul B.Inf.1714: Vertiefung Praktische Informatik English title: Advanced Practical Computer Science

English title. Advanced Practical Computer Science	
Lernziele/Kompetenzen:	Arbeitsaufwand:
Die Studierenden haben vertiefte Kenntnisse und Kompetenzen auf einem Gebiet der	Präsenzzeit:
Praktischen Informarik erworben, z.B. auf folgenden Gebieten.	42 Stunden
Softwaretechnik Betriebssysteme	Selbststudium: 108 Stunden
Compilerbau und Programmiersprachen	
Embedded Systems Mobile Edge Computing	
Pervasive Computing	
Lehrveranstaltung: Praktische Informatik (Vorlesung, Übung)	
Angebotshäufigkeit: unregelmäßig	

Angebotshäufigkeit: unregelmäßig	
Prüfung: Klausur (90 Minuten)	5 C
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:	
keine	keine
Sprache:	Modulverantwortliche[r]:
Deutsch, Englisch	Studiendekan Informatik

Sprache.	wodulverantworthchetrj.
Deutsch, Englisch	Studiendekan Informatik
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

5 C Georg-August-Universität Göttingen 3 SWS Modul B.Inf.1801: Programmierkurs English title: Programming

Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden erlernen eine aktuelle Programmiersprache, sie Präsenzzeit: 42 Stunden • beherrschen den Einsatz von Editor, Compiler und weiteren Selbststudium: Programmierwerkzeugen (z.B. Build-Management-Tools). 108 Stunden • kennen grundlegende Techniken des Programmentwurfs und können diese anwenden. • kennen Standarddatentypen (z.B. für ganze Zahlen und Zeichen) und spezielle Datentypen (z.B. Felder und Strukturen). • kennen die Operatoren der Sprache und können damit gültige Ausdrücke bilden und verwenden. • kennen die Anweisungen zur Steuerung des Programmablaufs (z.B. Verzweigungen und Schleifen) und können diese anwenden. • kennen die Möglichkeiten zur Strukturierung von Programmen (z.B. Funktionen und Module) und können diese einsetzen. kennen die Techniken zur Speicherverwaltung und können diese verwenden. • kennen die Möglichkeiten und Grenzen der Rechnerarithmetik (z.B. Ganzzahl- und Gleitkommarithmetik) und können diese beim Programmentwurf berücksichtigen.

Lehrveranstaltung: Grundlagen der C-Programmierung (Blockveranstaltung)	3 SWS
Prüfung: Klausur (90 Minuten), unbenotet	5 C
Prüfungsanforderungen:	
Standarddatentypen, Konstanten, Variablen, Operatoren, Ausdrücke, Anweisungen,	
Kontrollstrukturen zur Steuerung des Programmablaufs, Strings, Felder, Strukturen,	
Zeiger, Funktionen, Speicherverwaltung, Rechnerarithmetik, Ein-/Ausgabe, Module,	
Standardbibliothek, Präprozessor, Compiler, Linker	
Die Klausur wird als E-Prüfung durchgeführt.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Dr. Henrik Brosenne
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 200	

• kennen die Programmbibliotheken und können diese einsetzen.

Georg-August-Universität Göttingen Modul B.Inf.1802: Programmierpraktikum English title: Training in Programming

Lernziele/Kompetenzen:

Die Studierenden erlernen eine objektorientierte Programmiersprache, sie

- kennen die gängigen Programmierwerkzeuge (Compiler, Build-Management-Tools) und können diese benutzen.
- kennen die Grundsätze und Techniken des objektorientierten Programmentwurfs (z.B. Klassen, Objekte, Kapselung, Vererbung, Polymorphismus) und können diese anwenden.
- kennen eine Auswahl der zur Verfügung stehenden Application Programming Interfaces (APIs) (z.B. Collections-, Grafik-, Thread-API).
- können Dokumentationskommentare benutzen und kennen die Werkzeuge zur Generierung von API-Dokumentation.
- kennen Techniken und Werkzeuge zur Versionskontrolle und können diese anwenden.
- können Programme erstellen, die konkrete Anforderungen erfüllen, und deren Korrektheit durch geeignete Testläufe überprüfen.
- kennen die Prinzipien und Methoden der projektbasierten Teamarbeit und können diese umsetzen.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium:

124 Stunden

Lehrveranstaltung: Programmierpraktikum (Praktikum, Vorlesung)	
Prüfung: Mündlich (ca. 20 Minuten)	6 C
Prüfungsvorleistungen:	
Alle Übungsblätter müssen jeweils mit mindestens 40% der erreichbaren Punkte	
bestanden werden. Bei fünf oder weniger Übungsblättern mit Ausnahme von maximal	
einem Übungsblatt, sonst mit Ausnahme von maximal zwei Übungsblättern.	
Prüfungsanforderungen:	
Klassen, Objekte, Schnittstellen, Vererbung, Packete, Exceptions, Collections,	
Typisierung, Grafik, Threads, Thread-Synchronisation, Prozess-Kommunikation,	
Dokumentation, Archive, Versionskontrolle	
Die Prüfung umfasst eine Projektarbeit (4-6 Wochen) und einen mündliche online	
Prüfung (ca. 20 Minuten je zu prüfender Person) als Gruppenprüfung.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Inf.1801
Sprache: Deutsch	Modulverantwortliche[r]: Dr. Henrik Brosenne
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

80	

Georg-August-Universität Göttingen Modul B.Inf.1803: Fachpraktikum I English title: Training Computer Science I		5 C 3 SWS
Lernziele/Kompetenzen: Das Praktikum ist in einem speziellen Fachgebiet der theoretischen oder praktischen Informatik (siehe Studiengebiet Kerninformatik) angesiedelt. Die Lernziele und Kompetenzen ergeben sich aus den dort dargestellten.		Arbeitsaufwand: Präsenzzeit: 42 Stunden Selbststudium: 108 Stunden
Lehrveranstaltung: Fachpraktikum I (Praktikum)		3 SWS
Prüfung: Mündlich (ca. 15 Minuten), unbenotet Prüfungsvorleistungen: Erfolgreiche Bearbeitung von praktischen Aufgaben. Prüfungsanforderungen: Die Prüfung kann auch als Gruppenprüfung stattfinden, die Prüfungsform wird in der Veranstaltung angekündigt.		5 C
Prüfungsanforderungen: Nachweis über den Erwerb der folgenden Kenntnisse und Fähigkeiten: Die in einem Module aus dem Studiengebiet Kerninformatik erworbenen Kompetenzen und Fähigkeiten werden, mit den als Schlüsselkompetenzen erworbenen Programmierkenntnissen, fachspezifisch vertieft.		
Zugangsvoraussetzungen: Die zugehörige Fachvorlesung; imperative und objektorientierte Programmierung; Programmierwerkzeuge; Verwendung von Application Programming Interfaces; Dokumentation von Softwaresystemen; Softwaretests; Prinzipien und Methoden der projektbasierten Teamarbeit.	Empfohlene Vorkenntnisse: keine	
Sprache: Modulverantwortliche[r]:		
Deutsch, Englisch Prof. Dr. Florin-Silviu Manea		
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: Empfohlenes Fachsemester: zweimalig		
Maximale Studierendenzahl:		

Coord August Universität Cättingen		5 C
Georg-August-Universität Göttingen Modul B.Inf.1804: Fachpraktikum II English title: Training Computer Science II	3 SWS	
Lernziele/Kompetenzen: Das Praktikum ist in einem speziellen Fachgebiet der theoretischen oder praktischen Informatik (siehe Studiengebiet Kerninformatik) angesiedelt. Die Lernziele und Kompetenzen ergeben sich aus den dort dargestellten.		Arbeitsaufwand: Präsenzzeit: 42 Stunden Selbststudium: 108 Stunden
Lehrveranstaltung: Praktika z. B. für Software-Engineering; Datenbankprogrammierung in SQL; Telematik/Computernetworks; Technische Informatik; Computergrafik. (Praktikum)		3 SWS
Prüfung: Mündlich (ca. 15 Minuten), unbenotet Prüfungsvorleistungen: Erfolgreiche Bearbeitung von praktischen Aufgaben. Prüfungsanforderungen: Die Prüfung kann auch als Gruppenprüfung stattfinden, die Prüfungsform wird in der Veranstaltung angekündigt.		5 C
Prüfungsanforderungen: Nachweis über den Erwerb der folgenden Kenntnisse einem Module aus dem Studiengebiet Kerninformatik und Fähigkeiten werden, mit den als Schlüsselkompe Programmierkenntnissen, fachspezifisch vertieft.	erworbenen Kompetenzen	
Zugangsvoraussetzungen: Die zugehörige Fachvorlesung; imperative und objektorientierte Programmierung; Programmierwerkzeuge; Verwendung von Application Programming Interfaces; Dokumentation von Softwaresystemen; Softwaretests; Prinzipien und Methoden der projektbasierten Teamarbeit.	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Florin-Silviu Manea	
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 30		

0		[F.O.
Georg-August-Universität Göttingen Modul B.Inf.1805: Fachpraktikum III English title: Training Computer Science III	5 C 3 SWS	
Lernziele/Kompetenzen: Das Praktikum ist in einem speziellen Fachgebiet der theoretischen oder praktischen Informatik (siehe Studiengebiet Kerninformatik) angesiedelt. Die Lernziele und Kompetenzen ergeben sich aus den dort dargestellten.		Arbeitsaufwand: Präsenzzeit: 42 Stunden Selbststudium: 108 Stunden
Lehrveranstaltung: Praktika z. B. für Software-Eng Datenbankprogrammierung in SQL; Telematik/Con Informatik; Computergrafik. (Praktikum)		
Prüfung: Mündlich (ca. 15 Minuten), unbenotet Prüfungsvorleistungen: Erfolgreiche Bearbeitung von praktischen Aufgaben. Prüfungsanforderungen: Die Prüfung kann auch als Gruppenprüfung stattfinden, die Prüfungsform wird in der Veranstaltung angekündigt.		5 C
Prüfungsanforderungen: Nachweis über den Erwerb der folgenden Kenntnisse und Fähigkeiten: Die in einem Module aus dem Studiengebiet Kerninformatik erworbenen Kompetenzen und Fähigkeiten werden, mit den als Schlüsselkompetenzen erworbenen Programmierkenntnissen, fachspezifisch vertieft.		
Zugangsvoraussetzungen: Die zugehörige Fachvorlesung; imperative und objektorientierte Programmierung; Programmierwerkzeuge; Verwendung von Application Programming Interfaces; Dokumentation von Softwaresystemen; Softwaretests; Prinzipien und Methoden der projektbasierten Teamarbeit.	Empfohlene Vorkenntnisse: keine	
Sprache: Modulverantwortliche[r]: Deutsch, Englisch Prof. Dr. Florin-Silviu Manea		
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: Empfohlenes Fachsemester: zweimalig		
Maximale Studierendenzahl: 30		

Georg-August-Universität Göttingen Modul B.Inf.1806: Externes Praktikum I English title: Industrial Placement I

Lernziele/Kompetenzen:

Die Studierenden haben Kompetenzen im Bereich der projektbezogenen Teamarbeit und des Projektmanagements in einer externen Einrichtung erworben. Das externe Praktikum hat somit das Ziel, die Studierenden mit Verfahren, Werkzeugen und Prozessen der Informatik sowie dem organisatorischen und sozialen Umfeld der Praxis bekannt zu machen. Das externe Praktikum fördert die Fähigkeit zur Teamarbeit. Die Studierenden haben während des externen Praktikums an der Lösung informationstechnischer Aufgaben mitgearbeitet.

Arbeitsaufwand:

Präsenzzeit: 0 Stunden Selbststudium: 150 Stunden

Lehrveranstaltung: Praktikum außerhalb der Universität; z. B. an einer externen Forschungseinrichtung oder einem einschlägigen Unternehmen. (Praktikum) Inhalte:

Das externe Praktikum beinhaltet ein breites Tätigkeitsspektrum und vermittelt einen möglichst umfassenden Einblick in Betriebsabläufe, in denen Informatiker eingesetzt werden. Es umfasst Tätigkeiten auf dem Gebiet der Informatik und ihrer Anwendungen aus den Bereichen

- · Forschung und Entwicklung
- · Anwendung und Betrieb

von IT-Systemen, insbesondere Software- und Hardware-Entwurf, Planung, Projektierung, Wartung und Anpassung. Hierunter fallen zum Beispiel Aufgaben bei der Systemadministration, der Entwicklung, Pflege und Weiterentwicklung von Buchungssystemen, Planungssystemen, Datenbanken oder spezialisierter Software.

Prüfung: Praktikumsbericht (max. 20 Seiten), unbenotet 5 C Prüfungsvorleistungen:

Details zum organisatorischen Ablauf von externen Praktika wie in Anlage IV der PStO B.Sc. Angewandte Informatik geregelt.

Prüfungsanforderungen:

Nachweis über den Erwerb der folgenden Kenntnisse und Fähigkeiten: Vermittlung von Kompetenzen im Bereich der projektbezogenen Teamarbeit und des Projektmanagements in einer externen Einrichtung.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse: B.Inf.1101, B.Inf.1102, B.Inf.1802
Sprache:	Modulverantwortliche[r]:
Deutsch, Englisch	Prof. Dr. Jens Grabowski
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

Modul B.Inf.1806 - Version 2		
nicht begrenzt	1	

Georg-August-Universität Göttingen Modul B.Inf.1807: Externes Praktikum II English title: Industrial Placement II

Lernziele/Kompetenzen:

Die Studierenden haben Kompetenzen im Bereich der projektbezogenen Teamarbeit und des Projektmanagements in einer externen Einrichtung erworben. Das externe Praktikum hat somit das Ziel, die Studierenden mit Verfahren, Werkzeugen und Prozessen der Informatik sowie dem organisatorischen und sozialen Umfeld der Praxis bekannt zu machen. Das externe Praktikum fördert die Fähigkeit zur Teamarbeit. Die Studierenden haben während des externen Praktikums an der Lösung informationstechnischer Aufgaben mitgearbeitet.

Arbeitsaufwand:

Präsenzzeit: 0 Stunden Selbststudium: 150 Stunden

5 C

Lehrveranstaltung: Praktikum außerhalb der Universität; z. B. an einer externen Forschungseinrichtung oder einem einschlägigen Unternehmen. (Praktikum) Inhalte:

Das externe Praktikum beinhaltet ein breites Tätigkeitsspektrum und vermittelt einen möglichst umfassenden Einblick in Betriebsabläufe, in denen Informatiker eingesetzt werden. Es umfasst Tätigkeiten auf dem Gebiet der Informatik und ihrer Anwendungen aus den Bereichen

- · Forschung und Entwicklung,
- · Anwendung und Betrieb

von IT-Systemen, insbesondere Software- und Hardware-Entwurf, Planung, Projektierung, Wartung und Anpassung. Hierunter fallen zum Beispiel Aufgaben bei der Systemadministration, der Entwicklung, Pflege und Weiterentwicklung von Buchungssystemen, Planungssystemen, Datenbanken oder spezialisierter Software.

Prüfung: Praktikumsbericht (max. 20 Seiten), unbenotet Prüfungsvorleistungen:

Details zum organisatorischen Ablauf von externen Praktika wer in Anlage IV der PStO B.Sc. Angewandte Informatik geregelt.

Prüfungsanforderungen:

Nachweis über den Erwerb der folgenden Kenntnisse und Fähigkeiten: Vermittlung von Kompetenzen im Bereich der projektbezogenen Teamarbeit und des Projektmanagements in einer externen Einrichtung.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Inf.1101, B.Inf.1102, B.Inf.1801, B.Inf.1802
Sprache:	Modulverantwortliche[r]:
Deutsch, Englisch	Prof. Dr. Jens Grabowski
Angebotshäufigkeit:	Dauer:
jedes Semester	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	
Maximale Studierendenzahl:	

Modul B.Inf.1807 - Version 2		
nicht begrenzt		

Georg-August-Universität Göttingen		8 C
Modul B.Inf.1813: Forschungsbezogenes Praktikum Informatik (2FBA)		
English title: Forschungsbezogenes Praktikum Infor	matik (2FBA)	
Lernziele/Kompetenzen: Erwerb von Kompetenzen bei der Anwendung von Methoden der Informatik im Rahmen eines Forschungsvorhabens der Informatik.		Arbeitsaufwand: Präsenzzeit: 0 Stunden Selbststudium: 240 Stunden
Lehrveranstaltung: Mitarbeit in einem Forschungsprojekt am Institut für Informatik		
Prüfung: Praktikumsbericht (max. 10 Seiten)		8 C
Prüfungsanforderungen: Erfolgreiche Bearbeitung der gestellten Aufgaben gemäß den Studienzielen im Rahmen eines Forschungsvorhabens in der Informatik. Vermittlung von Kompetenzen im Bereich der projektbezogenen und forschungsorientierten Teamarbeit und des Projektmanagements		
Zugangsvoraussetzungen: B.Inf.1101, B.Inf.1102, B.Inf.1801	Empfohlene Vorkenntnisse:	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Florin-Silviu Manea	
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen Modul B.Inf.1831: Ethische, gesellschaftliche und rechtliche Grundlagen für Data Science English title: Ethical, Social, and Legal Foundations of Data Science

Lernziele/Kompetenzen:	Arbeitsaufwand:
Nach erfolgreichen Abschluss des Modules können Studenten:	Präsenzzeit:
 die grundlegenden Konzepte der Ethik in Data Science sowie die rechtliche Grundlage in Deutschland und Europa definieren, Prozesse und Werkzeuge für die Analyse von ethischen und rechtliche Fragestellungen benennen und anwenden, mögliche Konsequenzen der Sammlung, Verarbeitung, Speicherung, Verwaltung und Freigabe von Daten erkennen und die resultierenden Risiken ableiten, geeignete technische Methoden und Lösungen benennen und auswählen, um die Risiken zu minimieren. 	28 Stunden Selbststudium: 62 Stunden

Lehrveranstaltung: Ethische, gesellschaftliche und rechtliche Grundlagen für Data Science (Vorlesung)	2 SWS
Prüfung: Hausarbeit (max. 4 Seiten), unbenotet	3 C
Prüfungsanforderungen:	
Angewandte Ethik, ethische und rechtliche Rahmenwerke, Datenschutz und Privatheit,	
Anonymität, Dateneigentümerschaft, Nutzereinverständnis, Datensammlung,	
Datenverarbeitung, Datenspeicherung, Datenverwaltung, Datenfreigabe, Überwachung.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Delphine Reinhardt
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 40	

Georg-August-Universität Göttingen Modul B.Inf.1842: Programmieren für Data Scientists: Python English title: Programming for Data Scientists: Python

Lernziele/Kompetenzen: Die Studierenden erlernen Python. Sie • beherrschen den Zugriff auf Daten aus verschiedenen Quellen, unter anderem aus lokalen Dateien und aus Datenbanken. • sind in der Lage, Algorithmen zur Auswertung von Daten zu implementieren. • kennen Programmbibliotheken, z.B. zum Maschinellen Lernen, und können diese anwenden. • kennen Programmbibliotheken zur Visualisierung und können Ergebnisgrafiken erstellen.

Lehrveranstaltung: Programmierpraktikum für Data Scientists (Praktikum,Vorlesung)	3 SWS
Prüfung: Projektarbeit und mündliche Prüfung, unbenotet Prüfungsvorleistungen: Lösung von 65% der Programmieraufgaben	5 C
Prüfungsanforderungen: Kenntnis der Syntax und Semantik der Programmiersprache, Kenntnis von Bibliotheken und Befehlen zur Lösung von Data Science Problemen, statistischen Tests und zur Visualisierung, grundlegende Kenntnisse von Pytorch und Tensorflow.	
Die Prüfung umfasst eine Gruppenprojektarbeit (3–5 Personen, 10 Wochen, ca. 90 Arbeitsstunden pro Person) und eine mündliche Präsentation der Projektergebnisse (ca. 15 Minuten pro Gruppe) als Gruppenprüfung .	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: HonProf. Dr. Philipp Wieder Prof. Dr. Bela Gipp
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 50	

Modul B.Mat.0841: Mathematik für Informationswissenschaften I

English title: Mathematics for information sciences I

9 C 6 SWS

Lernziele/Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit grundlegenden Begriffen und Ergebnissen aus der diskreten Mathematik vertraut. Sie

- nutzen Aussagen- und Prädikatenlogik, um mathematische und logische Sachverhalte zu beschreiben und einfache Beweise zu führen;
- rechnen mit explizit und implizit definierten endlichen und unendlichen Mengen und treffen Aussagen über Mengen, deren Elemente und die Beziehung zwischen Mengen;
- kennen, erklären und vergleichen den Aufbau natürlicher, ganzer, rationaler und reeller Zahlen und approximieren reelle Zahlen mit konvergenten Folgen;
- beherrschen grundlegende arithmetische Operationen in den Zahlbereichen und die Grenzwertsätze für Folgen; nutzen Struktur und Aufbau um Aussagen über die verschiedenen Zahlen zu treffen;
- untersuchen und konstruieren im Bereich der Gruppentheorie einfache algebraische Konstrukte wie Untergruppen, Homomorphismen, Permutationen und Symmetriegruppen;
- erklären die Eigenschaften von Primzahlen und Teilbarkeitslehre sowie modularer Arithmetik und können diese auf konkrete Probleme anwenden; erläutern den euklidischen Algorithmus und RSA;
- nutzen grundlegende kombinatorische Techniken zum Abzählen;
- stellen rekursive Folgen auf und bestimmen deren asymptotisches Verhalten;
- charakterisieren planare Graphen; und wenden algorithmische Methoden wie Breiten- und Tiefensuche auf einfache graphentheoretische Problem wie das Finden von Euler- und Hamiltonpfaden an;
- gehen sicher mit arithmetischen und algebraischen Grundlagen in unterschiedlichen Zahlbereichen um;
- · wenden Ergebnisse aus Kombinatorik und elementarer Zahlentheorie an;
- erkennen Voraussetzungen für bekannte algorithmische Verfahren;
- strukturieren Daten in Graphen und charakterisieren deren grundlegende Eigenschaften;
- verwenden Aussagenlogik zur Beschreibung von Phänomenen und für Beweise in der diskreten Mathematik;
- nennen zu behandelten Themengebieten Anwendungsbeispiele und erläutern die Relevanz für den Bereich der Informatik oder Data Science.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium: 186 Stunden

Lehrveranstaltung: Mathematik für Informationswissenschaften I (Vorlesung)	4 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	
B.Mat.0841.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges	
Vorstellen von Lösungen in den Übungen	

Lehrveranstaltung: Mathematik für Informationswissenschaften I - Übung (Übung)	2 SWS
Prüfungsanforderungen:	
Nachweis über Grundwissen, arithmetisches und logisches Operieren und	
Argumentieren/Beweisen sowie Problemlösen in grundlegenden Zahlenbereichen und	
der Diskreten Mathematik, insbesondere in algorithmischen Methoden, Graphentheorie,	
Kombinatorik und elementarer Zahlentheorie	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan*in Mathematik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 1 - 3
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

- Dozent/in: Lehrpersonen der Lehreinheit Mathematik
- Exportmodul für die Bachelor-Studiengänge der Lehreinheit Informatik
- Die Module B.Mat.0841 und B.Mat.0842 zusammen können durch B.Mat.0011 und B.Mat.0012 ersetzt werden.
- Es wird empfohlen, dieses Modul vor dem Modul B.Mat.0842 "Mathematik für Informationswissenschaften II" zu absolvieren.
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende der Lehreinheit Mathematik.

Modul B.Mat.0842: Mathematik für Informationswissenschaften II

English title: Mathematics for information sciences II

9 C 6 SWS

Lernziele/Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit der mathematischen Denk- und Argumentationsweise vertraut und können mit den Grundbegriffen der linearen Algebra und Analysis umgehen. Sie

- kennen, erklären und wenden die grundlegenden Eigenschaften von Vektorräumen, linearen Abbildungen und Matrizen bei der Analyse und mathematischen Modellierung einfacher Probleme an;
- bestimmen Abstände, Normen und Skalarprodukte in Vektorräumen;
- lösen lineare Gleichungssysteme mithilfe von invertierbaren Matrizen und treffen Aussagen zu den Dimensionen von Lösungsmengen mit Hilfe des Rangs;
- erfassen grundlegende Eigenschaften von Eigenwerten und -vektoren von Matrizen und über die Diagonalisierbarkeit selbstadjungierter Matrizen sowie die Singulärwertzerlegung;
- erklären die Grundlagen der diskreten Fouriertransformation und wenden sie an:
- nennen und erklären die Definition der komplexen Sinus-, Kosinus- und Exponentialfunktion, sowie deren Beziehung zueinander;
- bestimmen Grenzwerte von Funktionen und überprüfen diese auf Stetigkeit mithilfe des Epsilon-Delta-Kriteriums;
- differenzieren sicher in einer Dimension und bestimmen Extremwerte;
- erklären das Prinzip und die Anwendung der Taylorreihenentwicklung;
- übertragen das Konzept der Differenzierbarkeit auf höhere Dimensionen; erklären Gradienten, Hesse- und Jacobi-Matrizen und nennen Beispiele für die Anwendung;
- nutzen den Banachschen Fixpunktsatz, um Nullstellen und Fixpunkte von Funktionen zu finden;
- gehen mit mathematischer Sprache um und stellen einfache mathematische Sachverhalte in mündlicher und schriftlicher Form dar;
- erfassen grundlegende Eigenschaften von Zahlenfolgen und -reihen;
- erfassen das Konzept der Linearität mit Matrizen, in Gleichungssystemen und bei Skalarprodukten;
- lösen mathematische Probleme anhand von Fragestellungen der linearen Algebra und der reellen Analysis und belegen sie mit Beweisen von einfachen Aussagen;
- nennen zu behandelten Themengebieten Anwendungsbeispiele und erläutern die Relevanz für den Bereich der Informatik oder Data Science.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium: 186 Stunden

Lehrveranstaltung: Mathematik für Informationswissenschaften II (Vorlesung)	4 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	
B.mat.0842.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges	
Vorstellen von Lösungen in den Übungen	

Lehrveranstaltung: Mathematik für Informationswissenschaften II - Übung (Übung) 2 SWS

Prüfungsanforderungen: Grundkenntnisse der Analysis und der linearen Algebra, Beweistechniken, Fähigkeit des Problemlösens

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0841
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan*in Mathematik
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 1 - 3
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

- Dozent/in: Lehrpersonen der Lehreinheit Mathematik
- Exportmodul für die Bachelor-Studiengänge der Lehreinheit Informatik
- Die Module B.Mat.0841 und B.Mat.0842 zusammen können durch B.Mat.0011 und B.Mat.0012 ersetzt werden.
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende der Lehreinheit Mathematik.

Module B.Mat.0922: Mathematics information services and electronic publishing

3 C (incl. key comp.: 3 C) 2 WLH

Learning outcome, core skills:

Learning outcome:

After having successfully completed the module, students are familiar with the basics of mathematics information services and electronic publishing. They

- work with popular information services in mathematics and with conventional, nonelectronic as well as electronic media;
- know a broad spectrum of mathematical information sources including classification principles and the role of meta data;
- are familiar with current development in the area of electronic publishing in the subject mathematics.

Core skills:

After successfull completion of the module students have acquired subject-specific information competencies. They

- · have suitable research skills;
- are familiar with different information and specific publication services.

Workload:

Attendance time:

28 h

Self-study time:

62 h

Course: Lecture course (Lecture)	
Contents:	
Lecture course with project report	
Examination: Written examination (90 minutes), not graded	3 C
Examination prerequisites:	
Regular participation in the course	

Examination requirements:

Application of the acquired skills in individual projects in the area of mathematical information services and electronic publishing

Admission requirements:	Recommended previous knowledge:
Language: English	Person responsible for module: Dean of studies mathematics
Course frequency: each summer semester	Duration: 1 semester[s]
Number of repeat examinations permitted: three times	Recommended semester: Bachelor: 1 - 6; Master: 1 - 4; Promotion: 1 - 6
Maximum number of students: not limited	

Additional notes and regulations:

Instructors: Lecturers at the Mathematical Institute

Modul B.WIWI-WIN.0001: Enterprise Architecture und Prozessmodellierung

English title: Enterprise Architecture and Process Modeling

6 C 4 SWS

Lernziele/Kompetenzen:

Nach erfolgreichem Abschluss des Moduls sind die Studierenden in der Lage, Unternehmensarchitekturen zu entwerfen, zu implementieren und zu managen. Sie verfügen über fundierte Kenntnisse und methodische Fähigkeiten, um komplexe Unternehmensstrukturen systematisch zu gestalten und weiterzuentwickeln. Insbesondere können sie:

- die Phasen der Entwicklung und des Managements von Unternehmensarchitekturen beschreiben und erläutern,
- Vorgehensweisen des Enterprise Architecture Managements erklären und auf unterschiedliche Anwendungsfälle anwenden,
- Fakten- und Methodenwissen gezielt nutzen, um Unternehmensarchitekturen erfolgreich zu planen, umzusetzen, zu analysieren und kontinuierlich zu verbessern.
- Modellierungstechniken sowie Gestaltungsmöglichkeiten von Geschäftsprozessen und Anwendungssystemen beschreiben und anwenden,
- grundlegende Konzepte der Daten- und Prozessmodellierung zur Beschreibung, Analyse und Gestaltung von Unternehmensarchitekturen einsetzen,
- Modellierungsaufgaben aus dem Themenfeld der Vorlesung eigenständig bearbeiten, kritisch reflektieren und konstruktiv bewerten.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltung: Enterprise Architecture und Prozessmodellierung (Vorlesung) Inhalte:

1. Grundlagen von Unternehmensarchitekturen

- a. Definitionen und Überblick über Architekturebenen
- b. IST-Analyse und strategische Bewertung von Unternehmensarchitekturen
- c. Grundlagen der Informationssystementwicklung

2. Datenarchitektur

- a. Entity-Relationship-Modelle
- b. Normalisierung

3. Prozessarchitektur

- a. Ordnungsrahmenentwicklung
- b. Prozessmodellierung mit der (e)EPK

4. Enterprise Architecture Management

- a. Integrationskonzepte
- b. Betrieb, Monitoring und kontinuierliche Weiterentwicklung

5. Trend: Architekturen in Ökosystemen

2 SWS

a. digitale Plattformen		
b. Datenräume		
Lehrveranstaltung: Enterprise Architecture und Pro Inhalte: Im Rahmen der begleitenden Übung vertiefen und erwit Vorlesung erworbenen Kenntnisse und Fähigkeiten. Da ihr Methodenwissen praktisch an, indem sie mit Softwat Planung, Modellierung, Implementierung, Analyse und Unternehmensarchitekturen handelnd einzuüben. In Gruppen von drei bis fünf Personen bearbeiten die S	eitern die Studierenden die in der abei wenden sie insbesondere are-Artefakten arbeiten, um die Verbesserung realweltlicher	2 SWS
vorlesungsbegleitende Übungsaufgaben, die sie schritt Phasen des Enterprise Architecture Managements führ	weise durch die verschiedenen	
Prüfung: Klausur (60 Minuten) Prüfungsvorleistungen: Erfolgreiche Bearbeitung von Übungsaufgaben. Im Verlauf des Semesters müssen verschiedene Aufgabenstellungen nacheinander bearbeitet und eingereicht werden.		6 C
 Prüfungsanforderungen: Darlegung eines grundlegenden Verständnisses of Managements von Unternehmensarchitekturen, Anwendung von Methodenwissen zur Analyse un Unternehmensarchitekturen, inhaltlich-funktionales Wissen über die Umsetzun Unternehmensarchitekturen in diversen Wirtschaf Vorgehensweisen, Ansätze und Werkzeuge zur EUnternehmensarchitekturen auf praktische Problekönnen. 	d Bewertung komplexer g von tssektoren, entwicklung von	
	Empfohlene Vorkenntnisse:	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.WIWI-OPH.0003 Grundlagen der Digitalisierung und Digitalen Transformation
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Christian Bartelheimer
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5
Maximale Studierendenzahl: nicht begrenzt	

6 C Georg-August-Universität Göttingen 6 SWS Modul B.WIWI-WIN.0002: Management der Informationswirtschaft English title: Fundamentals of Information Management Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden: Präsenzzeit: 84 Stunden • kennen und verstehen strategische, operative und technische Aspekte des Selbststudium: Informationsmanagements im Unternehmen, 96 Stunden · kennen und verstehen verschiedene theoretische Modelle und Forschungsfelder des Informationsmanagements, • kennen und verstehen die Aufgaben des strategischen IT-Managements, der IT-Governance, des IT Controllings und des Sicherheits- sowie IT-Risk-Managements, · kennen und verstehen die Konzepte und Best-Practices im Informationsmanagement von Gastreferenten in deren Unternehmen, analysieren und evaluieren Journal- und Konferenzbeiträge hinsichtlich wissenschaftlicher Fragestellungen, • analysieren und evaluieren praxisorientierte Fallstudien hinsichtlich des Beitrags des Informationsmanagements für den wirtschaftlichen Erfolg eines Unternehmens. 2 SWS Lehrveranstaltung: Management der Informationswirtschaft (Vorlesung) Inhalte: · Modelle des Informationsmanagements • Grundlagen der Informationswirtschaft • Strategisches IT-Management & IT-Governance IT-Organisation Sicherheitsmanagement & IT- Risk Management • Außenwirksame IS & e-Commerce • IT-Performance Management · Umsetzung & Betrieb, Green IT Projektmanagement · Highlights / Q&A Lehrveranstaltung: Methodische Übung Management der Informationswirtschaft 2 SWS (Übung) 2 SWS Lehrveranstaltung: Inhaltliche Übung Management der Informationswirtschaft (Übung) 6 C Prüfung: Klausur (90 Minuten) Prüfungsanforderungen: Nachweis von Kenntnissen über Grundlagen der Informationswirtschaft. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine Orientierungsphase

Sprache:

Modulverantwortliche[r]:

Deutsch	Prof. Dr. Lutz Maria Kolbe
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Angebotshäufigkeit

Das Modul wird in jedem Semester angeboten. Im Wintersemester wird die Vorlesung und Übung regulär gehalten. Im Sommersemester findet nur die Übung statt. Die Vorlesung ist im Selbststudium zu erarbeiten. Grundlage dafür ist die aufgezeichnete Vorlesung des jeweils vorhergehenden Wintersemesters.

Modul B.WIWI-WIN.0005: Projektseminar zur Systementwicklung - Entwicklung von Web-Applikationen

English title: Project Seminar on System Development - Development of Web Applications

12 C 3 SWS

Lernziele/Kompetenzen:

I. Projektkonzeption und Implementierung:

Nach erfolgreicher Teilnahme sind die Studierenden in der Lage,

- Grundlagen der Entwicklung von Web-Applikationen zu beschreiben und unterschiedliche Klassifikationen von Web-Anwendungen zu definieren,
- Sicherheitsrelevante Aspekte von Web-Applikationen zu identifizieren und zu beurteilen.
- Einsatzbereiche von Frameworks beim Entwickeln von Web-Applikationen zu identifizieren und zu beurteilen,
- die Implementierung von Web-Applikationen zu analysieren und kritisch zu hinterfragen,
- Web-Applikationen konzeptionell zu modellieren und zu entwickeln,
- komplexe Entwicklungsprojekte in Teams zu organisieren und durchzuführen.

II. Projektdokumentation:

Nach erfolgreicher Teilnahme sind die Studierenden in der Lage,

- den Konzeptions- und Entwicklungsprozess einer Web-Applikation im Kontext eines komplexen Entwicklungsprojekts zu dokumentieren,
- · ein webbasiertes Anwendungssystem zu dokumentieren,
- die Ergebnisse eines Entwicklungsprojekts zu präsentieren.

Arbeitsaufwand:

Präsenzzeit: 42 Stunden Selbststudium: 318 Stunden

Lehrveranstaltung: Projektkonzeption und Implementierung	2 SWS
Inhalte:	
Projektmanagement	
Modellierungstechniken (UML)	
Entwurfsmuster und Frameworks	
Auszeichnungssprachen im mobilen Web (HTML, CSS)	
Grundlagen der Web-Anwendungsentwicklung (PHP oder Java)	
Datenbanken und SQL	
Sicherheitsaspekte webbasierter Anwendungen	
Usability von Web-Applikationen	
Prüfung: Hausarbeit (max. 80 Seiten) mit Präsentation (ca. 20 Minuten)	6 C
[Gruppenarbeit]	
Prüfungsvorleistungen:	
Regelmäßige Teilnahme	
Prüfungsanforderungen:	
Die Studierenden weisen in der Modulprüfung nach, dass sie in der Lage sind, in	

wissenschaftlicher Form die Entwicklung einer Web-Applikation im Rahmen eines

komplexen Projekts schriftlich zu dokumentieren und im Rahmen eines Vortrags zu präsentieren.	
Lehrveranstaltung: Projektdokumentation (Seminar)	1 SWS
Inhalte:	
Selbstständiges Anfertigen einer wissenschaftlichen Dokumentation eines	
Entwicklungsprojekts	
Präsentation eines Entwicklungsprojekts vor einem Auditorium	
Prüfung: Praktische Modulprüfung (Entwicklung einer prototypischen Web-	6 C
Applikation)	
Prüfungsvorleistungen:	
Drei von drei erfolgreich bearbeitete Übungsaufgaben und bestandene Klausur (90	
Min.), regelmäßige Teilnahme	
Prüfungsanforderungen:	
Die Studierenden weisen in der Modulprüfung nach, dass sie Techniken zur Konzeption	
und Modellierung sowie Technologien zum Entwickeln Web-Applikationen verstehen	
und anwenden können.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.WIWI-WIN.0001 Enterprise Architecture und Prozessmodellierung, B.WIWI-WIN.0003 Programmiersprache Java
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Matthias Schumann
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 6
Maximale Studierendenzahl: 30	

Bemerkungen:

Das Modul "Projektseminar zur Systementwicklung – Entwicklung von Web-Applikationen" besteht aus den zwei Teilmodulen "Projektkonzeption und Implementierung" und "Projektdokumentation".

Modul B.WIWI-WIN.0023: Projektseminar zur Systementwicklung - Entwicklung von mobilen Anwendungen

English title: Project Seminar on System Development - Development of Mobile Applications

12 C 3 SWS

Lernziele/Kompetenzen:

I. Projektkonzeption und Implementierung:

Nach erfolgreicher Teilnahme sind die Studierenden in der Lage,

- Grundlagen der Entwicklung von mobilen Anwendungen zu beschreiben und unterschiedliche Entwicklungsansätze zu benennen und zu definieren,
- Einsatzbereiche von Frameworks bei der Entwicklung von mobilen Anwendungen zu identifizieren und zu beurteilen,
- die Implementierung von mobilen Anwendungen zu analysieren und kritisch zu hinterfragen,
- mobile Anwendungen konzeptionell zu modellieren und zu entwickeln,
- komplexe Entwicklungsprojekte in Teams zu organisieren und durchzuführen.

II. Projektdokumentation:

Nach erfolgreicher Teilnahme sind die Studierenden in der Lage,

- den Konzeptions- und Entwicklungsprozess einer mobilen Anwendung im Kontext eines komplexen Entwicklungsprojekts zu dokumentieren,
- ein mobiles Anwendungssystem zu dokumentieren,
- die Ergebnisse eines Entwicklungsprojekts zu präsentieren.

Arbeitsaufwand:

Präsenzzeit: 42 Stunden Selbststudium:

318 Stunden

Lehrveranstaltung: Projektkonzeption und Implementierung

Inhalte:

- · Projektmanagement
- Modellierungstechniken (UML)
- Architektur mobiler Anwendungen
- · Entwurfsmuster und Frameworks
- Auszeichnungssprachen im mobilen Web (HTML, CSS)
- · Mobile Anwendungsentwicklung mit PHP und Java
- · Kommunikationsstrategien verteilter Anwendungen
- · Datenbanken und SQL

2 SWS

Prüfung: Praktische Modulprüfung (Entwicklung einer prototypischen mobilen Anwendung)

Prüfungsvorleistungen:

Drei von drei erfolgreich bearbeitete Übungsaufgaben und bestandene Klausur (90 Minuten), regelmäßige Teilnahme

Prüfungsanforderungen:

Die Studierenden weisen in der Modulprüfung nach, dass sie Techniken zur Konzeption und Modellierung sowie Technologien zum Entwickeln mobiler Anwendungen verstehen und anwenden können.

6 C

Lehrveranstaltung: Projektdokumentation (Seminar)	1 SWS
Inhalte:	
Selbstständiges Anfertigen einer wissenschaftlichen Dokumentation eines	
Entwicklungsprojekts	
Präsentation eines Entwicklungsprojekts vor einem Auditorium	
Prüfung: Hausarbeit (max. 80 Seiten) mit Präsentation (ca. 20 Minuten)	6 C
[Gruppenarbeit]	
Prüfungsvorleistungen:	
Regelmäßige Teilnahme	
Prüfungsanforderungen:	
Die Studierenden weisen in der Modulprüfung nach, dass sie in der Lage sind, in	
wissenschaftlicher Form die Entwicklung einer mobilen Anwendung im Rahmen eines	
komplexen Projekts schriftlich zu dokumentieren und im Rahmen eines Vortrags zu	
präsentieren.	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Modul B.WIWI-WIN.0001 Enterprise Architecture und Prozessmodellierung, Modul B.WIWI-WIN.0003 Programmiersprache Java
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Matthias Schumann
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 6
Maximale Studierendenzahl: 30	

Bemerkungen:

Das Modul "Projektseminar zur Systementwicklung – Entwicklung von mobilen Anwendungen" besteht aus den zwei Teilmodulen "Projektkonzeption und Implementierung" und "Projektdokumentation".

6 C Georg-August-Universität Göttingen 2 SWS Modul B.WIWI-WIN.0027: Seminar zu Themen der Wirtschaftsinformatik und BWL English title: Seminar on Topics in Business Information Systems and Business Administration Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreicher Teilnahme sind die Studierenden in der Lage: Präsenzzeit: 28 Stunden die Grundlagen eines ausgewählten Themas der BWL und Wirtschaftsinformatik Selbststudium: (u. a. aus den Bereichen Informationsmanagement, Management-152 Stunden Informationssysteme sowie Informations- und Kommunikationssystemen) zu beschreiben und zu erklären, • in der Literatur existierende Erkenntnisse zu den oben genannten Themengebieten auf eine gegebene Problemstellung anzuwenden, • auf Basis existierender Literatur eigene Erkenntnisse zu einer Problemstellung zu entwerfen und zu analysieren. 2 SWS Lehrveranstaltung: Seminar zu Themen der Wirtschaftsinformatik und BWL (Seminar) Inhalte: • Selbständiges Anfertigen einer wissenschaftlichen Hausarbeit. Erfordert das bearbeitete Thema die Entwicklung eines Programms, dann wird dieses im Rahmen der Hausarbeit dokumentiert, · Präsentation der Hausarbeit vor einem Auditorium, • die Themen des Seminars orientieren sich an den aktuellen Forschungsschwerpunkten des Lehrstuhls. 6 C Prüfung: Hausarbeit (max. 20 Seiten) mit Präsentation (ca. 20 Minuten) Prüfungsvorleistungen: Regelmäßige Teilnahme am Seminar sowie am Blockkurs "Einführung in das wissenschaftliche Arbeiten" Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, dass sie... • selbstständig in der Lage sind, eine gegebene Problemstellung der BWL, Wirtschaftsinformatik und Informatik zu analysieren und mit Hilfe wissenschaftlicher Literatur sowie wissenschaftlicher Vorgehensweisen zu lösen, • eigene Lösungen kritisch reflektieren und Alternativen aufzeigen können, • die erarbeiteten Ergebnisse in Form einer Seminararbeit verfassen sowie in Form eines Vortrags präsentieren können, kritische Fragen zum gehaltenen Vortrag beantworten können und somit zu einem intensiven und konstruktiven akademischen Diskurs beitragen können. **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine B.WIWI-OPH.0003 Grundlagen der Digitalisierung und Digitalen Transformation

Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Martin Adam
	Prof. Dr. Christian Bartelheimer, Prof. Dr. Lutz Kolbe,
	Prof. Dr. Manuel Trenz, Prof. Dr. Matthias Schumann
Angebotshäufigkeit:	Dauer:
jedes Semester	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	3 - 5
Maximale Studierendenzahl:	
30	

Bemerkungen:

Die Prüfungsleistung kann neben Deutsch auch auf Englisch erbracht werden.

Georg-August-Universität Göttingen Modul SK.Inf.1801: Funktionale Programmierung English title: Functional Programming 5 C (Anteil SK: 5 C) 3 SWS

Lernziele/Kompetenzen:

Studierende erlernen und üben die Grundlagen der Funktionalen Programmierung. Sie lernen Listengeneratoren, Funktionen höherer Ordnung und algebraische Datentypen kennen und üben deren praktische Anwendung. Darüber hinaus erarbeiten sie sich Funktionen höherer Ordnung und fortgeschrittene Funktionale Konzepte (z. B. Monaden, Funktoren) und wenden diese an. Zudem erarbeiten sie sich die Analyse von Funktionalen Programmen und fehlerresistenter Programmierung. Sie diskutieren die Möglichkeiten von Effekten in Funktionaler Programmierung und erlernen Funktionale Datentypen und üben dessen praktische Anwendung.

Arbeitsaufwand:

Präsenzzeit: 42 Stunden Selbststudium: 108 Stunden

Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min. plus 15 Min.

Vorbereitungszeit) oder (Gruppen-)Projektarbeit mit Vorstellung (max. 25 Seiten, ca. 20 Min.), unbenotet

Prüfungsanforderungen:

Die Studierenden demonstrieren den sicheren praktischen Umgang mit

Listengeneratoren, Funktionen höherer Ordnung und algebraische Datentypen.Sie können Funktionen höherer Ordnung und fortgeschrittene Funktionale Konzepte (z. B. Monaden, Funktoren) anwenden. Sie analysieren Funktionale Programme und können fehlerresitent programmieren. Sie demonstrieren grundlegendes Verständnis

für die Möglichkeiten von Effekten in Funktionaler Programmierung und Funktionale

Datentypen und dessen praktische Anwendung.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Inf.1101
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Florin-Silviu Manea
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: ab 5
Maximale Studierendenzahl: 30	

Module SK.Inf.1803: Computer Science for Environmental Sustainability

5 C (incl. key comp.: 5 C)
2 WLH

Learning outcome, core skills:

Participants will gain an understanding of computer science applications in environmental sustainability. By the end of the course, students will be able to:

- Explain fundamental computer science concepts and methodologies.
- Apply computer science technologies to address environmental challenges.
- Evaluate computer science solutions for climate change mitigation, biodiversity conservation, and pollution control.
- Develop and propose computer science-based solutions for specific environmental problems.
- Assess the ethical considerations in deploying computer science for environmental sustainability.

Workload:

Attendance time: 28 h

Self-study time:

122 h

Course: Seminar: Sustainability in Computer Science (Seminar)

Contents:

The course content covers:

- Introduction to computer science and its role in addressing environmental challenges
- · Basics of data science and its applications in environmental studies
- Computer science for climate change mitigation, biodiversity conservation, and pollution monitoring
- Data collection and analysis methods for environmental computer science
- · Remote sensing integration with computer science
- Computer science applications in sustainable agriculture, renewable energy optimization, and waste management
- Ethical considerations in using computer science for environmental sustainability
- Future trends and advanced applications of computer science in environmental science

Reading materials and additional resources will be provided throughout the course. For early preparation, students can contact the instructor for recommended readings before the term starts.

2 WLH

Examination: Presentation (approx. 35 min) and report (max 15 pages) Examination requirements:

Students must demonstrate:

- Comprehensive understanding of computer science concepts and their application to environmental sustainability.
- Ability to develop and present a computer science-based solution to a specific environmental problem.
- Proficiency in analyzing and interpreting environmental data using computer science techniques.

5 C

- Knowledge of ethical considerations in the use of computer science for environmental purposes.
- Insight into future trends and innovations in computer science for environmental sustainability.

Bewertung The total score will be calculated from presentation (50%) and report (50%).

Admission requirements: none	Recommended previous knowledge: Basic understanding of environmental issues and basic computer literacy.
Language: English, German	Person responsible for module: Prof. Dr. Julian Kunkel
Course frequency: each semester	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester: from until
Maximum number of students: 40	

Georg-August-Universität Göttingen Modul SK.Inf.1804: KI Methoden im akademischen Alltag English title: AI Methods in Academia 5 C (Anteil SK: 5 C) 3 SWS

Lernziele/Kompetenzen:

Die Studierenden...

- analysieren die Funktionen, Potenziale und Grenzen KI-gestützter Werkzeuge für Recherche, Textproduktion und Datenanalyse,
- bewerten den Einfluss von KI auf wissenschaftliche Arbeitsweisen, Qualitätsstandards.
- entwickeln Strategien für den datenschutzkonformen und nachhaltigen Einsatz von KI im Studium,
- nutzen KI-Tools gezielt zur Unterstützung akademischer Aufgaben und reflektieren deren Anwendung kritisch,
- übernehmen Verantwortung für einen ethisch fundierten und verantwortungsvollen Umgang mit KI in ihrem Studienalltag und
- benennen rechtliche Rahmenbedingungen zum Einsatz von KI-Werkzeugen.

Arbeitsaufwand:

Präsenzzeit: 42 Stunden Selbststudium:

108 Stunden

3 SWS

5 C

Lehrveranstaltung: KI Methoden im akademischen Alltag (Vorlesung) Inhalte:

Das Modul "KI-Methoden im akademischen Alltag" vermittelt den Studierenden die Grundlagen und Anwendungsmöglichkeiten von Künstlicher Intelligenz (KI) im universitären Kontext. Sie lernen, KI-gestützte Werkzeuge für Recherche, Textproduktion und Datenanalyse zu analysieren und zu bewerten, sowie Strategien für den datenschutzkonformen und nachhaltigen Einsatz von KI im Studium zu entwickeln. Durch die Anwendung von KI-Tools und die Reflexion ihrer Anwendung werden die Studierenden befähigt, KI-Methoden gezielt zur Unterstützung akademischer Aufgaben einzusetzen. Das Modul schließt mit der Erstellung eines Berichts ab, in dem die Studierenden ihre Erfahrungen und Erkenntnisse bei der Anwendung von KI-Methoden im Universitätsalltag darstellen und reflektieren.

Prüfung: Hausarbeit (max. 10 Seiten), unbenotet

Prüfungsvorleistungen:

Regelmäßige Teilnahme (80%) an den Sitzungen.

Prüfungsanforderungen:

Fähigkeit zur Analyse und Reflexion von KI-gestützten Methoden im akademischen Alltag; Bewertung von Potenzialen, Herausforderungen und Integrationsmöglichkeiten; Entwicklung und Dokumentation datenschutzkonformer KI-Strategien.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Julian Kunkel
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester

Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 50	

Georg-August-Universität Göttingen		3 C (Anteil SK: 3
Modul SK.Inf.1805: Dezentrale studentiscl Gremienarbeit English title: Student Self-Governance and Committee Level	_	(C)
Lernziele/Kompetenzen:		Arbeitsaufwand:
keine		Präsenzzeit: NaN Stunden Selbststudium: NaN Stunden
Lehrveranstaltung: Dezentrale studentische Selbs	tverwaltung/Gremienarbeit	<u> </u>
(Schlüsselkomp.)	or or manually, or or more all both	
		3 C
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Julian Kunkel	
Angebotshäufigkeit:	Dauer:	

Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	

Georg-August-Universität Göttingen	6 C (Anteil SK: 6
Modul SK.Inf.1806: Introduction into Web Development	4 SWS
English title: Introduction into Web Development	

Lernziele/Kompetenzen:

- erläutern die Funktionalität und das Zusammenspiel der Basistechnologien moderner Webanwendungen (HTTP, HTML, CSS, JavaScript).
- analysieren die Architektur moderner Webanwendungen und typischer Softwarestacks und können Vor- und Nachteile benennen.
- benennen und erläutern übliche Software-Patterns verbreiteter Frontend-Bibliotheken und -frameworks (z.B. MVC/MVVM, SPA, MPA, Router-Pattern) und können diese anwenden, um interaktive Webanwendungen zu entwickeln.
- nutzen und entwerfen APIs zur Kommunikation zwischen Frontend und Backend einer Webanwendung.
- entwickeln Webanwendungen barrierefrei und benennen und beachten typische datenschutzrechtliche Anforderungen bei der Arbeit mit personenbezogenen Daten.
- entwerfen einfache interaktive Webanwendungen aus Frontend, Backend und Datenbank und können diese technisch umsetzen.
- können Webanwendungen in einer Produktivumgebung einsetzen und administrieren.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltung: Introduction into Web Development (Vorlesung,Übung)

Details zur Veranstaltungsdurchführung sind unter https://webdev.pages.gwdg.de/info/zu

Prüfung: Projektarbeit (4-6 Wochen) und entweder eine Hausarbeit (max. 25

Seiten) oder mündliche Prüfung (ca. 20min je zu prüfender Person)

Prüfungsanforderungen:

Die Studierenden entwickeln eine moderne Webanwendung und präsentieren (mündliche Prüfung) bzw. dokumentieren (Hausarbeit) diese. Dabei reflektieren sie u.A. ihr Vorgehen, sowie technische und strategische Entscheidungen, die sie im Rahmen der Umsetzung getroffen haben.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Programmierung (gut), Projektarbeit (grundlegend), Linux (grundlegend), Netzwerke (grundlegend)
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Julian Kunkel
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5

Georg-August-Universität Göttingen Modul SK.Inf.1807: Projektarbeit - Erweiterung English title: Project Work - Extension 3 C (Anteil SK: 3 C) 0,5 SWS

Lernziele/Kompetenzen:

Vertiefung der Kompetenzen eines anderen Moduls durch zusätzliche Projektarbeit.

Dieses Modul dient als Erweiterung eines Modules, das Projektarbeit als Prüfungform anbieten. Insbesondere der folgenen Module.

• B.Inf.1803: Fachpraktikum I

• B.Inf.1804: Fachpraktikum II

• B.Inf.1805: Fachpraktikum III

• SK.Inf.1806: Introduction into Web Development

Durch erhöhten Aufwand für die Projektarbeit eines anderen Moduls können zusätzliche Credits erworben werden. Dazu ist eine Absprache mit den Lehrenden, der das Modul implementierenden Lehrveranstaltung, verpflichtend.

Für die Anmeldung zur Prüfung dieses Moduls ist die vorherige Anmeldung zur reguläre Modulprüfung, für die zusätzliche Credits erworben werden sollen, obligatorisch.

Arbeitsaufwand:

Präsenzzeit: 7 Stunden

Selbststudium:

83 Stunden

Lehrveranstaltung: Projektarbeit - Erweiterung (Praktikum)	0,5 SWS
Prüfung: siehe erweitertes Modul, unbenotet	3 C
Prüfungsvorleistungen:	
siehe erweitertes Modul	
Prüfungsanforderungen:	
siehe erweitertes Modul	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Florin-Silviu Manea
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: ab bis

Georg-August-Universität Göttingen Module SK.Inf.1821: Data Carpentry Ecology/Social Sciences

3 C (incl. key comp.: 3 C) 2 WLH

Learning outcome, core skills:

After successfully completing the course, the students will be able to:

- apply basic knowledge of data management, esp. data lifecycle, FAIR and Open
 Data, function and structure of data management plans, research data guidelines,
 infrastructures and services,
- know basic concepts, principles and approaches as well as tools for working with data,
- gain basic knowledge of how to organize tabular data, perform date formatting, perform quality control and assurance, and export data for use in downstream applications.
- apply basic data management and processing techniques: cleaning methods (OpenRefine), data analysis and visualization (R) and data management with SQL

Workload:

Attendance time: 28 h

Self-study time: 62 h

2 WLH

3 C

Course: Data Carpentry Ecology/Social Sciences

Contents:

Seminar:

Seminar sessions on data management topics will be held on a weekly basis, with the exception of the block workshop week (4-5 sessions before, 1-2 after the workshop).

Block workshop:

Week to be determined (1 full day, 4 morning sessions).

- Data Cleaning with OpenRefine: Explore, summarize, and clean tabular data reproducibly.
- Data Analysis and Visualization in R: Import data into R, calculate summary statistics, and create publication-quality graphics.
- Data Management with SQL (optional): Structure data for database import. Query data within a relational database

Examination: Assignment and short presentation of results (15 min), not graded Examination prerequisites:

Attendance to seminar meetings is highly recommended, expected are contributions to the discussions and exercises (in particular during the block workshop).

Examination requirements:

Understanding of basic concepts of data management, data cleaning, processing and visualization, ability to apply the knowledge to own projects.

Admission requirements:	Recommended previous knowledge:
none	none
Language: English	Person responsible for module: Dr. Birgit Schmidt
Course frequency: not specified	Duration: 1 semester[s]

Number of repeat examinations permitted:	Recommended semester:
twice	from 5
Maximum number of students:	
20	

Additional notes and regulations:

- Students need to provide their own mobile computer (software must be installed before the block workshop)
- Lecturers from SUB Göttingen, GWDG
- · Credited within the scope of the university-wide key competences