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Abstract

Modeling complex relationships and interactions between variables is an

ongoing statistical challenge. In particular, the joint modeling of multiple

response variables has recently gained interest among methodological and

applied researchers. In this article, we contribute to this development by

incorporating semiparametric predictors into recursive simultaneous equation

models. In particular, we extend the existing framework by imposing e�ect

priors that account for correlation of the e�ects across equations. This idea

can be seen as a generalization of multivariate conditional autoregressive

priors used for the analysis of multivariate spatial data.

We implement a Gibbs sampler for the estimation and evaluate the model in

an elaborate simulation study. Finally, we illustrate the applicability of our

approach with real data examples on malnutrition in Asia and Africa as well

as the analysis of plant and species richness with respect to environmental

diversity.

Keywords: simultaneous equation models, correlated e�ects, semiparametric pre-
dictors

1 Introduction

Joint modeling of multiple response variables has recently gained rising popularity

in statistical research. Examples include the development of models for multivari-

ate responses in the context of distributional regression (Klein and Kneib, 2016),

joint modeling of e.g. survival and longitudinal data (Waldmann et al., 2017) or

extensions of simultaneous equation models (for example Thaden and Kneib, 2017,

and Thaden et al., 2017). Furthermore, not only di�erent compositions of response
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variables, but also �exibility concerning the type of covariate e�ects constitutes an

important �eld of current research. In particular, the interest in regression models

with structured additive predictors including linear, nonlinear, random or spatial

e�ects increased, both from a methodological and applied perspective (e.g. Klein

et al., 2015 or Pata et al., 2012).

In this article, we contribute to this development by joining the framework of si-

multaneous equation models (SEM) with the �exibility of semiparametric e�ect

types. More precisely, we summarize how di�erent e�ects can be conceived using

a unifying basis function approach (as shown in e.g. Wood, 2006) and integrate

those into recursive SEM with bivariate response. In contrast to Song et al. (2013),

who focus on modeling nonlinear e�ects using Bayesian P-splines in SEM with la-

tent variables, we further generalize their approach by introducing additional e�ect

types (i.e. spatial and random e�ects). Furthermore, in order to capture potential

complex correlation structures among the occurring variables, we allow the semi-

parametric e�ects to be correlated across equations. This is achieved by choosing

appropriate priors for these e�ects. These priors serve as a fundament for our

Markov Chain Monte Carlo (MCMC) estimation procedure. Overall, our approach

extends the idea of multivariate conditionally autoregressive (MCAR, see Gelfand

and Vounatsou, 2003, for example) spatial e�ect priors, which has - to the best of

our knowledge - neither been generalized to alternative e�ect types nor integrated

into bivariate SEM before.

We will not only evaluate our proposed approach in several simulation scenarios

but also apply the method to real data examples representing di�erent semipara-

metric e�ects in a typical structured additive predictor. They illustrate the complex

underlying relationships arising in various applied areas in which typically di�erent

sources of correlation occur. Speci�cally, we start with the problem of correlated

spatial e�ects in childhood undernutrition in developing countries. Childhood un-

dernutrition is one of the major public health problems in these countries. It is

expected that acute undernutrition, wasting, has an e�ect on chronic undernutri-

tion, stunting. We analyze this question in more detail across countries in Africa

and Asia. We will use data from the global health observatory data repository

published by the World Health Organization (WHO, 2016).
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The second example illustrates the applicability of our approach in an ecological

context. We analyze how species richness of plants and animals are interrelated

with respect to their environment. The research question is based on the origi-

nal paper of Jetz et al. (2009) along the sub-dataset applied in Klein and Kneib

(2016).

The rest of the paper is structured as follows: In Section 2, we explain our pro-

posed approach in detail. We build up the model starting from simple linear SEM

and include more complex predictor structures step by step in several subsections.

Our implementation of the Bayesian estimation strategy via Gibbs sampling can

be found in Section 3. The simulations in Section 4 evaluate the performance of

the proposed method while Section 5 illustrates the applicability in two complex

real datasets coming from di�erent applied areas (health and ecology) and dealing

with relevant research questions. Finally, Section 6 summarizes our �ndings and

gives possible extensions for future research.

2 Methodology

2.1 Recursive Bivariate Simultaneous Equation Models

Simultaneous equation models (SEM) allow for representing potentially complex

relationships between variables in a multivariate setting. More speci�cally, they

consist of multiple regression equations with the additional feature that response

variables of one equation (endogenous variables) are allowed to appear as covariates

in another equation (hence the term recursive SEM). Exogenous variables only

appear as covariates in one or more of the equations. We refer to Bollen (1989)

for a detailed general overview on SEM.

Figure 1 shows a typical representation of a SEM with one exogenous variable x

and two related endogenous variables y1 and y2 as a path diagram. E�ects between

variables are illustrated as arrows.
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Figure 1: Path diagram of a simple linear recursive SEM. The exogenous
variable x simultaneously in�uences the endogenous variables y1 and y2 via
γ1 and γ2, respectively. Additionally y1 has a direct e�ect β21 on y2.

In this simple linear setting, Figure 1 translates to the simultaneous equations

y1 = γ1x+ ε1 (1)

y2 = γ2x+ β21y1 + ε2, (2)

where γ1, γ2 and β21 are the linear regression coe�cients and ε1 and ε2 are the

error terms within the equations, respectively. In this article, we investigate the

performance of more �exible predictor structures in order to overcome the - in

many practical applications unrealistic - assumption of linearity. More precisely, we

allow the exogenous variable to have some functional in�uence on the endogenous

variables. We generalize (1) and (2) and obtain

y1 = f (1)(x) + ε1 (1')

y2 = f (2)(x) + β21y1 + ε2. (2')

The unknown functions f (1) and f (2) are not necessarily continuous. They can

represent di�erent types of e�ects such as nonlinear, spatial or random e�ects.

Figure 2 illustrates this extension. In the subsequent section, we explain how

the unknown functions f (1) and f (2) can be approximated via basis functions.

Additionally, we further generalize the approach by allowing these functions to be

correlated. By this, we extend the framework of classical linear recursive bivariate

SEM by allowing for semiparametric predictors with general correlation structure.
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Figure 2: Illustration of a nonlinear simultaneous equation model with two
endogenous variables y1 and y2. The exogenous variable x is allowed to
simultaneously a�ect both endogenous variables via the unknown functions
f (1)(x) and f (2)(x), respectively.

2.2 E�ect Speci�c Basis Function Representations

In this section, we explain how multiple e�ect types can be expressed in the unifying

semiparametric framework of a linear basis function approach (see Wood, 2006 for

a detailed overview). For a simple start, assume that as in (2') y2 is a�ected by x

via an unknown function f , i.e. for each observation i = 1, . . . , n,

y2i = f (2)(xi) + ε2i

holds. The unknown function f is approximated as a linear combination of e�ect-

speci�c basis functions, namely

f (2)(xi) =
L∑
l=1

α2lBl(xi), (3)

such that (3) can be written as

f (2)(x) = Bα2, (4)

with x = (x1, . . . , xn)′ and coe�cient vector α2 = (α21, . . . , α2L)′. Above, B is

the design matrix with entries B[i, l] = Bl(xi) for i = 1, . . . , n and l = 1, . . . , L.

The choice of basis functions depends on the e�ect type. Widely used examples

include:

• Linear e�ects: The basis functions simply correspond to the observations

x1, . . . , xn. Consequently, B = x reduces to an n× 1 design vector.
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• Continuous e�ects: A common way to include smooth functions for univari-

ate covariates are B-spline basis functions (see Eilers and Marx, 1996), such

that B contains the basis functions evaluated at the observed data points.

• Discrete spatial e�ects: For discrete spatial information (e.g. administrative

regional units) the design matrix corresponds to an indicator matrix capturing

which region each observation is located in.

• Random e�ects: Random e�ects are used to model group or individual spe-

ci�c e�ects. Similar to discrete spatial e�ects, the design matrix B indicates

which group or individual the observations belong to.

Along with the choice of suitable basis functions, the resulting regression coe�-

cients are usually regularized in order to ensure a certain smoothness (e.g. across

space or of nonlinear functions) or to avoid over�tting. From a frequentist per-

spective, this regularization is obtained by penalizing the coe�cients during the

estimation (as explained in Wood, 2006).

Basic Prior Structures

In the Bayesian formulation - as in our case - the desired smoothness is obtained

by choosing appropriate Gaussian priors of the form

p(α2 | τ 22 ) ∝ exp

(
− 1

2τ 22
α′2Kα2

)
, (5)

where τ 22 is the smoothing variance replacing the function of a penalty parameter in

a penalized likelihood approach. Similar to the basis functions, the precision matrix

K is e�ect speci�c and in some cases rank de�cient. For the above mentioned

examples of e�ect types, the corresponding precision matrices are:

• Linear e�ects: Either K = 0 for no smoothing or K = 1 which corresponds

to a ridge penalization from a frequentist perspective.

• Nonlinear e�ects: The Bayesian analogue of penalized B-splines or P-splines

is obtained by choosing K = D′D, where D is the di�erence matrix of
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desired order (frequent choices are �rst or second order di�erences). Con-

sequently, the prior is partially improper as the rank of K is reduced by the

order of the di�erence approach (again, see Eilers and Marx, 1996 or Lang

and Brezger, 2004 for details).

• Discrete spatial e�ects: When analyzing spatially structured data, a com-

monly made assumption is that nearby observations are more similar than

observations far apart. This idea is re�ected by choosing K to be the adja-

cency matrix incorporating the neighborhood structure of the regions under

consideration which results in partially improper Markov random �eld priors

for the regional e�ects. Rue and Held (2005) give a detailed overview on

construction and properties of K.

• Random e�ects: The idea that observations within a group may behave

di�erent than across groups is represented by setting K = IL, where L is

the number of groups (i.i.d. random e�ects).

A detailed summary of available basis functions and smoothing matrices is given

in (Fahrmeir et al., 2013, Chapter 9).

Bivariate Semiparametric SEM Formulation

A natural extension of the basis function approach in a bivariate setting is to

de�ne the predictor structure of each equation in the SEM individually. Based on

the structure of a simple SEM in (1') and (2'), we get

y1 = Bα1 + ε1

y2 = Bα2 + β21y1 + ε2, (6)

where the individual contributions of the observed responses and error terms are

stored in the vectors yj = (yj1, . . . , yjn)′ and εj = (εj1, . . . , εjn)′, j = 1, 2,

respectively. As explained above, B captures the evaluations of the e�ect speci�c

basis functions at the observations of the exogenous variables. The SEM in (6)
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can be rewritten as a large multivariate model viay′1

y′2

 = M−1

α′1
α′2

B′ + M−1

ε′1
ε′2

 , M =

 1 0

−β21 1.

 (7)

For the rest of this article, we will assume that the error terms ε1 and ε2 are

normally distributed and independent across equations, i.e.

ε1i
ε2i

 iid∼ N2


0

0

 ,

σ2
1 0

0 σ2
2


︸ ︷︷ ︸

=:Σε

 , i = 1, . . . , n. (8)

This assumption is based on the following reasoning:

• At least linear recursive SEM as investigated in this article (i.e. the same set

of exogenous variables builds up the predictor of both endogenous variables)

are technically identi�ed, if and only if the error terms are independent (see

Bollen, 1989). Although the regularization priors as introduced above in

general reduce the e�ective degrees of freedom compared to unpenalized es-

timation, it is not within the scope of this article to thoroughly investigate the

identi�ability of regularized SEM with correlated error terms. Consequently,

we stick to this - potentially too conservative - assumption.

• Due to the recursive structure of the model, the independence between ε1 and

ε2 does not imply independence between y1 and y2. Instead, the relationship

between the response variables is captured (a) by the direct e�ect β21, (b)

by the simultaneous in�uence of x on both responses and (c) by allowing the

latter to be correlated itself. The underlying assumption thus corresponds

to the idea that the correlation between y1 and y2 is completely captured by

(a)-(c).
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2.3 A Priori Correlated Semiparametric Predictors

Instead of using independent priors for α1 and α2 as in (5), i.e.

p(α1,α2 | τ 21 , τ 22 ) ∝ exp

(
− 1

2τ 21
α′1Kα1

)
· exp

(
− 1

2τ 22
α′2Kα2

)
, (9)

we aim at allowing these coe�cients to be correlated. As a typical example, in

which the implicit assumption of uncorrelated e�ects might be too restrictive, con-

sider the analysis of ecological data. Often, regional e�ects (modeled with Markov

random �eld prior, see above) can be included to represent environmental factors.

On the other hand, di�erent species might react similarly or in a con�ictive manner

to their environment. This feature is potentially not accounted for, if the e�ects

are forced to be independent by the choice of according priors. An example is given

in Thaden et al. (2017) who simultaneously study the environmental sensitivity of

young and adult mussels at the Galician coast.

Hence, inspired by the idea of multivariate conditionally autoregressive (MCAR)

regional e�ects (e.g. Gelfand and Vounatsou, 2003) which are used for multivariate

spatial data, we combine the individual priors in Equation (9) to a joint prior for

α1 and α2, namely

p

(α′1,α
′
2)
′︸ ︷︷ ︸

=α

| A

 ∝ exp

(
−1

2
α′(A−1 ⊗K)α

)
, A =

 τ 21 ρτ1τ2

ρτ1τ2 τ 22

 .

(10)

Again, τ 21 and τ 22 are the smoothing variances of the e�ects of x on y1 and y2,

respectively while with the structure of A the correlation between the individual

e�ects can be captured by ρ. Note that (9) is a special case of (10) via setting

ρ = 0.

2.4 Interpretation

Joining SEM techniques with correlated semiparametric predictors yields some

noteworthy features concerning the interpretation of the e�ects. First, as is typical

for SEM, the overall in�uence of the exogenous variable x can be decomposed into

a direct and an indirect e�ect on y2. Following the arrows in Figure 1, the direct
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e�ect corresponds to γ2. The indirect e�ect results from multiplying along the

dashed arrows, such that it is given by γ1 · β21. Consequently, the total e�ect of

x on y can be written as

effectx,total = x · (γ2 + γ1 · β21).

The same decomposition is obtained when semiparametric e�ects are involved.

Replacing xγ1 and xγ2 by f
(1)(x) and f (2)(x), respectively, yields

effectx,total = f (2)(x) + β21f
(1)(x)

= B (α2 +α1β21) . (11)

Figure 3 illustrates the extension of Figure 1 and shows the in�uence of the model

parameters within the recursive bivariate SEM. The overall variability of the basis

functions (e.g. variability across space or between groups) is captured by τ 21 and

τ 22 (dotted arrows). The correlation between the corresponding e�ects is captured

by ρ (dashed arrow). The interpretation of this parameter is straightforward:

it captures whether the in�uences of the exogenous variable on the endogenous

variables are similar (ρ > 0), con�ictive (ρ < 0) or not related at all (ρ = 0).

The interpretation of α1 and α2 depends on the type of e�ect (nonlinear, spatial,

random, . . . ), whereas β21 is the classical linear e�ect.

2.5 Mixed Model Representation of the Predictors

Unfortunately, implementing the basis function approach along with its correlated

e�ects as explained in Section 2.2, yields computational problems. We explain

these for the special case of nonlinear e�ects via Bayesian P-splines with coe�cient

vectors αj = (αj1, . . . , αjL)′, j = 1, 2. As stated in Fahrmeir et al. (2013, Chapter

8.1), the �rst order di�erence penalty of an individual P-spline corresponds to a

stochastic formulation, a �rst order random walk de�ned by

αjl = αj,l−1 + ujl, ujl ∼ N (0, τ 2j ), j = 1, 2. (12)
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Figure 3: Decomposition of the overall interrelationships within the bivariate
recursive model. Basis functions B1(x), . . . , BL(x) are evaluated at the ex-
ogenous variable x (left large ellipse). The variability across basis functions
is controlled for via τ21 and τ22 (variances of the semiparametric e�ect, dotted
arrows) and the penalty matrix K (see Section 2.2 for details and examples).
Additionally, the correlation between the e�ects on the endogenous variables
y1 and y2 is captured by ρ (dashed arrow). The e�ects of the basis functions
on y1 and y2 are collected in α1 and α2, respectively. Finally, y1 has a linear
e�ect β21 on y2.

On the one hand, this representation is fundamental for deriving the prior distri-

bution for αj in (5). On the other hand, two random walks as in (12) are usually

highly correlated even if the stochastic parts u1 and u2 of the two random walks

are independent - a phenomenon often called spurious correlation by econometri-

cians (Simon, 1954). Consequently, the two vectors of coe�cients α1 and α2 of

the splines in our bivariate recursive SEM will be correlated as well, no matter

what the true value of ρ is. As a result, the Markov chains (see Section 3) for ρ

generally converge to ±1 during the estimation via sampling. In particular, this

parameter is not or only weakly identi�ed in our model.

To overcome this problem, we use the mixed model representation of the basis

function approach as outlined byFahrmeir et al. (2004):

Bαj = Xβj + Zγj,
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where X and Z result from the eigendecomposition of the precision matrix K.

Depending on the type of e�ect, K is rank de�cient (e.g. has rank L− 1 for MRF

and rank L−k for P-splines based on k-th order di�erences). The dimension of βj

corresponds to the rank de�cit k and Xβj can be interpreted as the unregularized

baseline e�ect. The component Zγj then captures the deviations from this baseline

e�ect and is the regularized (or smoothed) part. For example,

• Xβj is a horizontal line for P-splines based on �rst order di�erences and a

linear trend for second order di�erences.

• Xβj is the average regional e�ect in a MRF. The di�erences between regions

are included in Zγj.

• X = 0 for i.i.d. random e�ect, since in this case K = IL has full rank.

It can be shown that, with X and Z chosen as above, p(αj) ∝ exp
(
− 1

2τ2j
α′jKαj

)
implies

γj ∼ N
(
0, τ 2j IL−k

)
.

Consequently, we convert the joint prior structure in Equation (10) to

p

(γ ′1,γ
′
2)
′︸ ︷︷ ︸

=γ

 ∝ exp

(
−1

2
γ ′(A−1 ⊗ IL−k)γ

)
, A =

 τ 21 ρτ1τ2

ρτ1τ2 τ 22

 .

3 Bayesian Inference and Estimation

The full conditional distributions based on the joint posterior p(γ,β, σ2
1, σ

2
2, τ

2
1 , τ

2
2 , ρ|y)

are estimated via the Gibbs sampler described in this section.

3.1 Likelihood

The likelihood of y is based on the normality assumption in (8) and the model

formulation in Equation (7). Consequently, we �nd

p

y1i
y2i

 | θ
 ∝ exp

−1

2

y1i
y2i

− µyi
′Σ−1y

y1i
y2i

− µyi

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with

µyi
= M−1

β′1 γ ′1

β′2 γ ′2

X[i, ]′

Z[i, ]′

 and Σy = M−1Σε

(
M−1)′

and θ collects all unknown model parameters.

3.2 Prior Choices

Coe�cient for the Direct Covariate E�ect

The coe�cient β21 is assigned a �at prior, i.e. p(β21) ∝ const.

Unpenalized Part of the Coe�cient Vector

We employ weakly informative conjugate priors for (β′1,β
′
2)
′

(β′1,β
′
2)
′ ∼ N

0,

ν2 0

0 ν2

⊗ Ik

 , with large ν.

Correlated Part of the Coe�cient Vector

For the regularized part of the e�ect speci�c coe�cients, we use the prior distri-

bution introduced in Section 2.2 and 2.5, namely

γ ∼ N (0,A⊗ IL−k)

Error Variances

Similar to (β′1,β
′
2)
′, we use the conjugate inverse gamma distribution for the error

variances σ2
1 and σ2

2 with small scale and shape parameters:

σ2
j ∼ IG(0.001, 0.001), j = 1, 2.

Prior Covariance Structure of γ

As hyperprior for A we chose an inverse Wishart distribution with κ = 4 degrees of

freedom and scale matrix Ψ = I2. This choice corresponds to the least informative
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hyperprior for which the mean still exists.

The resulting full conditional distributions for the model parameters then establish

a Gibbs sampler for the estimation of all model parameters (see Appendix A).

3.3 Model Selection

The MCMC draws resulting from the Gibbs sampler allow for the application of

well known model selection criteria in order to compare the overall predictive per-

formance of the model. We focus on the Watanabe-Akaike information criterion

(WAIC, see Watanabe, 2010). Similar to the deviance information criterion (DIC,

see Spiegelhalter et al., 2002) it is easily computable from the MCMC samples,

but has the advantage that it does not rely on posterior point estimates. Instead,

it incorporates the complete simulated posterior distribution of the parameters and

can hence be seen as fully Bayesian. As DIC, it is usually interpreted as a compro-

mise between predictive capability of the model and its complexity in terms of the

e�ective number of parameters. It is de�ned as

WAIC = −2 ·
n∑
i=1

log

(
1

S

S∑
s=1

p(yi | θ(s))

)
+ 2 · p̂WAIC,

where S is the number of MCMC samples. For details on the implementation and

the e�ective number of parameters p̂WAIC, see Gelman et al. (2014).

4 Simulation study

4.1 Setup

We investigate the capability of our approach to identify the model parameters in

a broad set of simulated scenarios (36 in total). The performance of the model

is examined for di�erent sample sizes and various correlation structures within

the data. Also, the in�uence of presence or absence of a recursive structure,

incorporated via β21 6= 0 or β21 = 0, respectively, is analyzed. Data are generated

according to Equation (7). We refer to Table 1 for details on the simulation

process.
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E�ect type β21 ρ n

P-Splines {0, 1} {0, 0.5,−0.8} {150, 500}
Discrete spatial {0, 1} {0, 0.5,−0.8} {150, 500}
Random intercept {0, 1} {0, 0.5,−0.8} {150, 500}

Table 1: Simulated model parameters for the di�erent e�ect types. The
remaining parameters where �xed to σ2

1 = σ2
2 = τ21 = τ22 = 1. The total

number of scenarios is 36, each scenario has been replicated 100 times.

4.2 Results

In the following, our results are evaluated via estimation bias and mean squared

error (MSE) for the 100 repetitions of each scenario. Bayesian inference is based

on 1000 post burnin and post thinning MCMC samples (we discard 500 burnin

samples and use a thinning of 5).

P-Splines

In this section, we illustrate the estimation results for the scenarios mentioned in

Table 1 applied to P-splines with 10 inner knots and second order di�erences. The

exogenous variable x ranges from 0 to 5. Figure 4 exemplarily shows the simulated

nonlinear functions f (1)(x) on y1 (left) and f (2)(x) on y2 (right). The functions

look similar across repetitions within a simulation scenario. The solid, dashed

and dotted lines correspond to true correlations between the spline coe�cients of

ρ = 0, ρ = 0.5 and ρ = −0.8, respectively. Furthermore, Figure 4 nicely illustrates

how a nontrivial correlation ρ 6= 0 induces additional smoothing of the nonlinear

functions.

Estimation results for the direct e�ect β̂21 of y1 on y2 as well as the correlation ρ̂

between the splines coe�cients are summarized in Figure 5. The structure of the

four individual plots is as follows:

• The solid lines together with '◦' correspond to the case β21 = 1, n = 150.

• The dashed lines together with '4' correspond to the case β21 = 0, n = 150.

• The dotted lines together with '+' correspond to the case β21 = 1, n = 500.

• The dashed and dotted lines together with '×' correspond to the case β21 =

0, n = 500.
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Figure 4: Simulated nonlinear functions of x on y1 (left) and y2 (right).
Displayed are examples for the cases ρ = 0 (solid lines), ρ = 0.5 (dashed
lines) and ρ = −0.8 (dotted lines).

In all four individual plots, MSE and bias are plotted against the absolute value

of the correlation |ρ|. The upper left plot shows the MSE of β̂21 compared across

simulation scenarios. Estimation of this coe�cient seems to be independent of the

e�ect size (i.e. the cases β21 = 0 and β21 6= 0 are estimated similarly well). On

the other hand, an increasing sample size heavily reduces both, the bias and MSE.

For a given sample size, the bias is the same for β21 = 0 and β21 = 1, whereas it

can be reduced with larger sample sizes.

The estimates for ρ shows a similar behavior though not as pronounced as for

the linear e�ect. Especially for highly correlated splines, the MSE is substantially

smaller in larger samples (upper right plot). The bias is reduced in all scenarios

when n is large (lower right plot). Again, the size of β21 has no e�ect on the

performance of ρ̂ with respect to MSE or bias. It should be noted that MSE and

bias are in general larger for ρ̂ than for β̂21, i.e. it seems (as expected) to be more

di�cult to identify the correlation structure of the semiparametric e�ects than the

recursive linear e�ect.

Comparison to Models with Uncorrelated E�ects

When comparing the performance of our model which incorporates e�ects with a

general correlation structure to the alternative approach using independent priors

as in Equation (9), we �nd that � though on a small scale � the estimation of the
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Figure 5: Top row: Mean squared error of β̂ (left) and ρ̂ (right) across

simulation scenarios. Bottom row: Estimation bias of β̂ (left) and ρ̂ (right)
across simulation scenarios.

linear covariate e�ect β21 tends to be more stable in the general case. Exemplarily,

we show the values of MSE and bias of the corresponding estimator for three

simulation scenarios in Table 2. The results for the other scenarios are comparable.

In addition, we found that the additional smoothing which results from allowing

the e�ects to be correlated results in a generally smaller WAIC compared to a

model with uncorrelated e�ects (not shown for the simulations, see Section 5.3 for

a comparison of WAIC in the applications).

Discrete Spatial E�ects and i.i.d. Random E�ects

Additionally, we simulated spatially structured data on an arti�cial map with 49

regions (as in Thaden and Kneib, 2017) as well as clustered data (10 clusters)
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Scenario / Model mse(β̂21) bias(β̂21)

β21 = 1, ρ = 0 / ρ = 0 0.007 0.011
β21 = 1, ρ = 0 / ρ 6= 0 0.005 0.006
β21 = 1, ρ = 0.5 / ρ = 0 0.023 0.105
β21 = 1, ρ = 0.5 / ρ 6= 0 0.011 0.064
β21 = 1, ρ = −0.8 / ρ = 0 0.030 -0.140
β21 = 1, ρ = −0.8 / ρ 6= 0 0.016 -0.093

Table 2: Comparison of mean squared error and bias of β̂21 between the
general approach and a model with uncorrelated semiparametric e�ects.

for the evaluation of our model with the e�ect types explained in Section 2.2. In

summary and as expected (due to the similarities in the basis function approach),

the results for simulations with discrete spatial data and i.i.d. random e�ects

correspond to those obtained for P-splines. Consequently, we abstain from showing

these results in this section.

5 Applications

5.1 Correlated Spatial E�ects: Malnutrition in Africa and

Asia

Childhood undernutrition is one of the major health problems in developing coun-

tries. Speci�c forms of malnutrition have been linked to individual characteristics

of children and their parents in various studies (e.g. Klein and Kneib, 2016). The

term wasting characterizes low weight for height and is generally associated with

acute starvation. On the other hand, stunting is a sign for long-term suboptimal

nutritional conditions and is de�ned as low height for age. Both measures are

usually reported as Z-scores that compare the individual nutrition status with a

prede�ned reference population:

z =
observed value−median value in reference population

standard deviation in reference population
. (13)

Based on the WHO de�nition, an individual is considered to su�er from wasting

or stunting, if its weight or height is two standard deviations below the median

weight or height of the reference population, respectively.
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Our analysis is based on country speci�c proportions of children under �ve years of

age who are a�ected by wasting and stunting while controlling for environmental

and political circumstances. The latter factors are included as correlated discrete

spatial e�ects, see Figure 6 for an illustration.

country

wasting

stunting

β

f
(1)
spat

f
(2)
spat

ρ

Figure 6: Flexible SEM approach with correlated regional e�ects to explain
the relationships between the location and wasting and stunting proportions.
The endogenous variables are on the log scale.

Concretely, we estimate the interrelations using the model formulation

log(wastingi) = f
(1)
spat(countryi) + ε1i

log(stuntingi) = f
(2)
spat(countryi) + β log(wastingi) + ε2i,

where the spatial functions f
(1)
spat and f

(2)
spat are included as correlated Markov ran-

dom �elds. Our �ndings are based on WHO data for African and western Asian de-

veloping countries (WHO, 2016). For each country, multiple observations (between

1990 and 2014) are available. The number of data points di�ers from country to

country and ranges between 1 (e.g. in Turkmenistan) and 21 (in Bangladesh). We

estimate two separate models for 47 African (n = 237 observations) and 23 Asian

(n = 127) countries.

We �nd a signi�cant e�ect of the log proportion of wasted children on that of

stunted children (and hence of acute on chronic undernutrition) of β̂Asia = 0.57

(in a 90% credibility interval [0.28, 0.83]) along with a correlation of ρ̂Asia = 0.53

([0.02, 0.85]) in Asia. At the same time, the estimates for African developing

countries point in the same direction (β̂Africa = 0.10 and ρ̂Africa = 0.11). How-

ever, they are not signi�cant as the 90% credibility intervals are [−0.05, 0.23] and

[−0.30, 0.50], respectively.

The country speci�c spatial e�ects are shown in Figure 7 for Africa and in Figure 8
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for Asia. Both, wasting (left plot in Figure 7) and stunting (central plot) propor-

tions are more strongly a�ected in countries in or close to the Sahel, which can

at least partly be explained by the challenging climatic conditions in that area. In

Asia, more children su�er from wasting (left plot in Figure 8) and stunting (central

plot) in the south east, whereas northern countries are not that strongly a�ected.

In this case, the positively estimated spatial correlation (ρ̂Asia = 0.53) is visible as

similar spatial patterns in wasting and stunting. The total country-speci�c e�ects

based on Equation 11 are shown in the right plots of Figures 7 for Africa and 8

for Asia, respectively. Note that the spatial e�ects are signi�cant in general. How-

ever, for both continents a large proportion of the marginal credibility intervals of

individual country-speci�c e�ects on stunting overlaps 0 (for details, see Figure 11

and 12 in Appendix B).

−1.36 0.770 −0.44 0.310 −1.35 0.770

Figure 7: Estimated country speci�c e�ect for acute (wasting, left) and
chronic (stunting, center) in Africa. The right plot shows the total regional
e�ect for stunting in Africa based on Equation (11).

5.2 Correlated P-Splines: Species Richness of Plants and

Animals

Understanding the environmental drivers of species richness is of crucial ecological

interest. Illustrating the complex interactions between di�erent species and their

environments often is an incentive for extending standard statistical models in

order to capture these interrelations. Jetz et al. (2009), for example, relate the

relationship of species richness of plants and animals to environmental factors
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−0.91 0.930 −0.85 0.38 −1.37 1.040

Figure 8: Estimated country speci�c e�ect for acute (wasting, left) and
chronic (stunting, center) in Asia. The right plot shows the total regional
e�ect for stunting in Asia based on Equation (11).

(e.g. temperature and number of di�erent ecosystems) at 639 sampling locations

worldwide using a linear structural equation model approach (see Figure 9 (a)).

topology

plant richness

animal richness

(a)

topology

plant richness

animal richness

(b)

β

γ1

γ2

β

f (1)

f (2)

ρ

Figure 9: (a) SEM approach similar to Jetz et al. (2009): The topological
diversity simultaneously a�ects plant and animal richness linearly. (b) Pro-
posed approach using correlated splines to explain the relationships between
topology and plant and animal species richness. All variables are on the log
scale.

They analyze if the resulting correlation is due to a direct e�ect of plant richness on

animal richness (i.e. from producer to consumer) or if it "emerges more strongly

from similar responses to environmental gradients". Klein and Kneib (2016) apply

a structured additive copula model to a sub-dataset from Jetz et al. (2009) in order

to explain the aforementioned dependency structure by environmental covariates
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but do not allow for a direct association between plant and animal species richness.

We use the dataset (consisting of n = 480 observations) from Klein and Kneib

(2016) and extend the approach of Jetz et al. (2009) as explained in Section 2. As

illustrated in Figure 9 (b), we allow the e�ects of the topological diversity (topo,

measured as maximal range of elevation within the sampling region) on plant and

animal species richness to be nonlinear and correlated. We estimate the e�ects

based on the model

log(plantsi) = f (1)(log(topoi)) + ε1i

log(animalsi) = f (2)(log(topoi)) + β log(plantsi) + ε2i.

From the results we �nd a signi�cant direct e�ect β̂ = 0.45 (in a 90% credibility

interval [0.37, 0.54]) of plant species richness on animal species richness. The

estimated nonlinear e�ects on plant and animal species richness along with 80%

and 90% pointwise credibility intervals are illustrated in the left and central panel of

Figure 10, respectively. The right plot shows the total e�ect of topological diversity

on animal species richness as a linear combination of the individual nonlinear e�ects

based on Equation (11).
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Figure 10: Nonlinear e�ects of topological diversity on species richness of
plants (left) and animals (center). The total topological e�ect on animal
species richness based on Equation (11) is shown in the right plot. The 80%
and 90% pointwise credibility intervals are shown as gray dashed and solid
lines, respectively.

Overall, we �nd a positive in�uence of topological diversity on both species richness

in plants and animals. The e�ect is more pronounced for plants but still signi�cant

based on the 80% and 90% credibility intervals. The slope appears to be larger

for higher topological diversity and is negative for extremely high elevation ranges.

The negative slopes for highly heterogeneous regions could possibly be explained
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by the area-heterogeneity trade o� described by Allouche et al. (2012).

The estimated splines show a similar pattern which is also re�ected by the estimated

correlation ρ̂ = 0.72 ([0.39, 0.91]). This estimate thus quanti�es the "similar

responses to environmental gradients" as mentioned by Jetz et al. (2009) and

hence supports the interpretation of the authors.

5.3 Model Selection for the Applications

Evaluating WAIC for the examples explained above illustrates another feature of

our approach: besides its ability to capture potential correlations between the

included e�ects, this additional smoothing reduces the overall model complexity.

As a result, WAIC is lower (compared to a model with uncorrelated e�ects) in all

cases as shown in Table 3.

Malnutrition in Africa Malnutrition in Asia Species richness

ρ = 0 530.41 424.57 2385.43
ρ 6= 0 465.49 404.61 2383.40

Table 3: WAIC values for the models applied in Sections 5.1 and 5.2. Model
performance is evaluated for uncorrelated (�rst row) and correlated (second
row) semiparametric e�ects.

6 Discussion

In this contribution, we extend the framework of simultaneous equation models

with the �exibility of semiparametric e�ects. In order to capture potentially com-

plex correlation structures within the data, we illustrate how di�erent types of

e�ects (e.g. nonlinear or spatial) can be incorporated into SEM via a basis func-

tion approach using correlated prior structures for the corresponding e�ects. We

show how the resulting e�ects can be interpreted and how the overall variability

and correlation in the model can be decomposed using path diagrams. For the

estimation, we implement a Gibbs sampler based on conjugate priors for all pa-

rameters.

In an extensive simulation study, we evaluate the model's performance in a large

variety of scenarios. Independent from the e�ect type, our approach is capable of
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identifying the occurring e�ects and of recovering the correlation of these e�ects.

Compared to a model with independent e�ects across equations, introducing a

general covariance structure yields additional smoothing of the e�ects and hence

a reduction of the WAIC (which we also �nd in all applications).

We illustrate the interdisciplinary applicability of our approach in two examples.

Firstly, we analyze the e�ect of the proportion of acutely malnourished children

on that of chronically undernourished children in African and Asian developing

countries. Correlated country-speci�c e�ects are included in order to capture en-

vironmental (e.g. climatic) and political factors within these countries. Based on

WHO data between 1990 and 2014, we �nd a positive e�ect of acute on chronic

undernutrition and positively correlated spatial e�ects.

In a second example, we use correlated Bayesian P-splines in order to simulta-

neously quantify the e�ect of topological diversity on plant and animal species

richness. Along with a positive direct e�ect of plant on animal species richness

(representing the idea that producers attract consumers), the estimated nonlinear

e�ects of topological diversity are highly correlated, indicating that plants and an-

imals react in a similar way to their environment in the sampling regions.

Identi�cation is a crucial aspect in SEM. For that reason, we impose the conser-

vative (i.e. emerging from linear SEM) assumption of uncorrelated error terms

within the two recursive model equations. As mentioned above, smoothing in gen-

eral and in particular smoothing across equations will lead to a reduction of the

overall e�ective number of parameters. It appears worthwhile to investigate under

which circumstances (i.e. the degree of smoothing) the assumption of indepen-

dence can be relaxed. Additionally, it is conceptually straightforward to further

extend the predictor structure of the endogenous variables by using multiple semi-

parametric e�ects at once. With the appropriate prior choices, our Gibbs sampler

only needs slight adjustments. Finally, the �eld of applications of our approach can

be widened by allowing for distributional �exibility in the responses (i.e. relaxing

the assumption of normally distributed error terms). Depending on the choices of

other parametric distributions, full conditionals of the parameters will no longer be

obtained from simple Gibbs steps, but from a Metropolis-Hastings type step with

appropriate proposal distributions.
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A Full Conditionals and Gibbs Sampler

Based on the posterior distribution

p(β21, δ̃, σ
2
1, σ

2
2,A | y) ∝ L× p(β21)× p(δ̃)× p(σ2

1)× p(σ2
2)× p(A),

we derive the full conditionals for the model parameters as follows.

Direct Covariate E�ect

The full conditional distribution of the direct covariate e�ect β21 given all other

model parameters is

β21| · · · ∼ N

(
y′1y2 −

∑L
l=1 (

∑n
i=1 y1ivil) δ2l

y′1y1

,
σ2
2

y′1y1

)
,

where vil is the entry at position [i, l] of the matrix V = (X | Z) and δ2l captures

the components of the coe�cients vector δ2 = (β′2,γ
′
2)
′.
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Unpenalized and Penalized Part of the Coe�cient Vector

After some re-ordering of the coe�cients, we derive a joint full conditional for

β1,β2 and γ. More precisely, with

δ̃ = (β′1,β
′
2,γ

′
1,γ

′
2)
′
,

Ṽ =
(
X̃ | Z̃

)
, where X̃ = M−1 ⊗X and Z̃ = M−1 ⊗ Z,

as well as

Σ̃ = (M−1 ⊗ In)(Σε ⊗ In)(M−1 ⊗ In)′ and

Σ̃δ̃ =


ν2 0

0 ν2

⊗ Ik 0

0 A⊗ IL−k

 ,

it can be shown that the full conditional of δ̃ given the remaining model compo-

nents is again a Gaussian distribution, namely

δ̃| · · · ∼ N
((

Ṽ′Σ̃
−1

Ṽ + Σ−1
δ̃

)−1
Ṽ′Σ̃

−1
ỹ,
(
Ṽ′Σ̃

−1
Ṽ + Σ−1

δ̃

)−1)
,

where ỹ = (y′1,y
′
2)
′.

Error Variances and Covariance Structure of γ

The full conditional distributions of the error variances calculate as

σj| · · · ∼ IG
(
aσ2

j
, bσ2

j

)
, j = 1, 2,
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with

aσ2
1

= aσ2
2

= 0.001 +
n

2
,

bσ2
1

= 0.001 + 0.5
n∑
i=1

y21i −
L∑
l=1

(
n∑
i=1

y1ivil

)
δ1l − 0.5

n∑
i=1

(
L∑
l=1

vilδ1l

)2

and

bσ2
2

= 0.001 +
β2
21

2

n∑
i=1

y21i − β21
n∑
i=1

y1iy2i + 0.5
n∑
i=1

y22i

− β21
L∑
l=1

(
n∑
i=1

y1ivil

)
δ2l +

L∑
l=1

(
n∑
i=1

y2ivil

)
δ2l + 0.5

n∑
i=1

(
L∑
l=1

vilδ2l

)2

,

with vil and δjl as above.

Finally, the full conditional distribution of the covariance structure of the coe�cient

vector γ is given by

A| · · · ∼ IW (γ̃ ′γ̃ + Ψ, L− k + κ) .

Iteratively drawing from these full conditional distributions consequently constitutes

the Gibbs sampler on which our inference is based.1

B Uncertainty of Country-speci�c E�ects for

the Malnutrition Data

The �gures in this section of the appendix show the marginal credibility intervals

of the country-speci�c e�ects from the application on malnutrition in Africa and

Asia (see Section 5). The intervals are calculated based on the MCMC samples

for the regression coe�cients.

1When comparing our results to those from a model with uncorrelated semiparametric e�ects
during the simulation study in Section 4, we employ inverse-gamma priors for the individual
variance τ21 and τ22 . The Gibbs sampler is accordingly adjusted in this case.
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Figure 11: Marginal credibility intervals for the country-speci�c e�ects on
wasting (upper panel) and stunting (lower panel) in Africa. The 80% and
90% credibility intervals are illustrated in gray and black, respectively.
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Figure 12: Marginal credibility intervals for the country-speci�c e�ects on
wasting (upper panel) and stunting (lower panel) in Asia. The 80% and 90%
credibility intervals are illustrated in gray and black, respectively.
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