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Abstract

Spatio-temporal models are becoming increasingly popular in recent regression re-
search. However, they usually rely on the assumption of a specific parametric distribu-
tion and homoscedastic error terms. In this paper we propose to apply semiparametric
expectile regression to model spatio-temporal effects. Besides the removal of the as-
sumption of a specific distribution and homoscedasticity, with expectile regression the
whole distribution of the response is estimated and not just the mean. For the use
of expectiles we interpret them as weighted means and estimate them by standard
tools of the least squares regression. The spatio-temporal effect is set up as a three-
dimensional interaction between time and space based on P-splines. Thus, the model
can be split up into main effects and interactions. The method is presented with the
analysis of spatio-temporal variation of temperatures in Germany from 1980 to 2014.

Keywords: generalized additive model, expectile regression, spatio-temporal model,
p-spline, main effects

1 Introduction

In applied science data are often recorded at several locations and multiple time points.
Although in basic reports the dimensions are reduced and only aggregated values are
published (see for example World Meteorological Organization, 2017). Simple statistical
models estimate the temporal and the spatial effects as additive models (see for example
Fahrmeir et al., 2004). Hence, the impact of time and space is estimated independently and
variations of the spatial effect depending on time are not considered. Thus, statisticians
developed several approaches to incorporate both time and space jointly and in interaction,
the so-called spatio-temporal models. Since these models are rather complex and computa-
tionally demanding Cressie and Wikle (2011) called them the “next frontier”. In their book
they explain ideas how to estimate spatio-temporal Kriging models. Other publications
that tackled the “frontier” use P-splines as introduced by Eilers and Marx (1996). A first
step towards spatio-temporal models was the introduction of two-dimensional P-splines as
tensor products by Eilers and Marx (2003). The extension of the two-dimensional case to
the three-dimensional case, the spatio-temporal model, is straightforward. However, Wood
(2006) was among the first to discuss the three-dimensional splines in detail. Furthermore,
he developed an alternative penalization which is based on a theoretic understanding of
smoothness in the larger dimensions. The separation into main effects and interaction
effects is important for the practical use of spatio-temporal models. Therefore, Wood
(2006), Lee and Durbán (2009), Lee and Durbán (2011) and Wood et al. (2013) developed
several approaches mostly relying on the representation of P-splines as mixed models (see
Fahrmeir et al., 2004, for example). Several other papers deal with interactions of smooth
effects, like Gu (2002), where tensor products of smoothing splines are discussed. However,
in Gu (2002) the penalty term remains the integral of the second derivative, such that the
estimation bases on more complicated techniques like reproducing Kernel-Hilbert Spaces.
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Contrarily, P-splines as introduced in Eilers and Marx (1996) are easier to calculate due
to their approximation of the penalty as differences of the coefficients.

In most of the articles a Gaussian distribution for the error terms is assumed and only
some refer to other distributions of the exponential family. Even if the error distribution
was specified correctly, the assumption of homoscedasticitiy of the errors might still not
be fulfilled. If we suppose that the reasons for heteroscedasticity are measured by some
covariates generalized additive models for location, scale and shape (GAMLSS) (Rigby
and Stasinopoulos, 2005; Stasinopoulos et al., 2017) could be applied. These models have
separate regression predictors assigned to each parameter of the distribution. Umlauf
et al. (2016) model the spatio-temporal distribution of rain in Austria with help of the
Bayesian version of GAMLSS (Klein et al., 2015). Therefore, besides the mean they
also model the variance parameters of the normal distribution with some spatio-temporal
trend. This model can be used to show that the variance increases for specific regions or
times. In the GAMLSS framework a large variety of distributions is available. So the data
can be modeled quite flexibly. However, the model always depends on the correct choice
of the distribution and the link functions. Due to the complex design of the predictors
these choices are non-trivial (Rigby et al., 2013). An alternative that also deals with
heteroscedasticity is expectile regression as introduced by Newey and Powell (1987). With
expectiles we do not assume a specific distribution and account for heteroscedasticity
by putting more or less emphasis on specific parts of the distribution. Therefore, this
model is very flexible and omits the specification of a parametric distribution. Basically,
expectile regression is a weighted least squares regression, where the weights depend on the
observations and the fitted values (for details see Section 2). Quantile regression is a similar
alternative to model effects beyond the mean without distributional assumption. Since
quantiles are defined as generalization of the median, while expectiles are a generalization
of the mean, they are easier to interpret, but harder to estimate, in particular in smoothed
settings.

Thus, we will use expectile regression to analyze the spatio-temporal trend of temper-
ature in Germany. We estimate the distribution of temperatures depending on time and
location as in previous spatio-temporal models. Based on expectile regression we further
determine, where especially cold winters occur and which areas have relatively hot sum-
mers. Additionally to the detection of increased variance in some regions we may also
specify the direction of the divergence from the mean.

In the remainder of this article we start with a brief introduction to expectile regression
in Section 2. Afterwards, we recapture the ideas of semiparametric models, including
spatio-temporal models, in Section 3. In Section 4 we summarize a small simulation
study on the smoothing parameter selection in semiparametric expectile regression with
interactions. As an example the spatio-temporal analysis of temperatures in Germany is
displayed in Section 5. Finally, we conclude with a discussion in Section 6.

2 Expectile Regression

The classical linear model is based on the assumption of homoscedasticity. If this assump-
tion is violated several possibilities to model the covariate effects are possible. As discussed
in the introduction we will apply expectile regression as introduced by Newey and Powell
(1987) in this article. Theoretically an expectile eτ for some given density function g is
defined as

eτ =
(1− τ)G(eτ ) + τ(µ−G(eτ ))

(1− τ)F (eτ ) + τ(1− F (eτ ))
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where µ is the ordinary mean and F (x) =
x∫
−∞

g(u) du the cumulative distribution function

and G(x) =
x∫
−∞

u g(u) du the partial moment function.

In a standard expectile regression model the density g is unknown so we use connections
to the classical least squares estimation, since expectiles are a generalization of the mean.
In ordinary least squares models the squared residuals should be minimized. Taking the
derivative of the least squares equation with respect to the coefficients and setting it to
zero solves the problem. Furthermore, rearranging the derivative with respect to the
intercept, shows that the sum of the residuals must be 0. Thus, the solution will be the
predictor, where the sum of the residuals above and below are equal. Hence, the center
of gravity is estimated. In expectile regression the emphasis is now put on outer parts of
the distribution to detect variation of the effects beyond the mean. Therefore, in the least
squares equation a weight wτ (yi) is included such that observations yi below the fitted
effect x>i β̂τ get another weight than the observations above

β̂τ = argmin
βτ

n∑
i=1

wτ (yi)
(
yi − x>i βτ

)2
, (1)

where the weights are defined as

wτ (yi) =

{
τ if yi ≥ x>i β̂τ

1− τ if yi < x
>
i β̂τ

.

Thereby the predictor x>i β̂τ depends on the specified asymmetry parameter τ . Based
on this definition the 50% expectile is the ordinary mean. The fitted values then define
the weighted center of gravity. As discussed before in classical linear regression the error
terms εi = yi − x>i β are assumed to be identical and independent normal distributed
(εi ∼ N(0, σ2)). Contrarily in expectile regression we do not assume any distribution for
the error terms εi,τ = yi − x>i βτ , nor do we assume identical distributed error terms.
The only constraint is that the expectiles of the error terms themselves are 0, given the
estimated expectile êi,τ

E
(
wτ (εi,τ ) (εi,τ − êi,τ )2

)
= 0.

Since Equation (1) can be written in matrix notation as

β̂τ =
(
X>WτX

)−1
X>Wτy

where Wτ is the diagonal matrix of weights wτ (yi), it is obvious that for the estimation
of β̂τ the standard weighted least squares techniques can be applied. The only problem
is that Wτ depends on β̂τ and reverse. So the optimization of β̂τ and wτ (yi) is done
iteratively with an algorithm called least asymmetric weighted squares (LAWS, Newey
and Powell, 1987), where we start with a classical linear model with equal weights for all
observations. Afterwards, the new weights are estimated and a new weighted linear model
is fitted. The estimation of weights and coefficients is iterated until the weights remain
unchanged.

Additionally to the pure estimated effects their uncertainty is usually of special interest.
Sobotka et al. (2013) showed that in expectile regression the estimated coefficients β̂τ
follow a normal distribution

β̂τ ∼ N(βτ , V ar(βτ ))
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where V ar(βτ ) has to be estimated appropriately. This approach is not restricted to linear
effects. It can be adopted for smooth effects, similarly as in Marra and Wood (2012).
However, in the setting of spatio-temporal models the number of observations is usually
huge (in our example we have more than 4.3e6 observations) therefore the confidence
intervals will be very small. Thus, they are neglected in the following.

Alternatively, quantile regression (Koenker and Bassett, 1978) can be used to estimate
models beyond the mean. Therefore, in Equation (1) the l2-norm is exchanged with the
l1-norm. In quantile regression the fitted effects represent the line where the ratio of
numbers of observations below and above is the wanted fraction τ , while in expectile
regression the fitted values give the weighted center of gravity, so the line where the sum
of the weighted distances below and above is the given fraction is τ (Yao and Tong,
1996). So quantile regression only checks how many observations are below and above the
fitted values. The distance between the fitted values and the observations is not taken
into account. Since expectiles account also for the values of the distances it uses more
information. Moreover, applying quantile regression (Koenker and Bassett, 1978; Koenker,
2005) instead of expectile regression in this setting would hardly be possible, due to the
smooth three-dimensional interactions of space and time, which will be applied to model
spatio-temporal effects. Estimating those would be computationally quite burdensome for
the linear programming routines on which quantile regression relies. This might be the
reason why we have not found any publication on spatio-temporal quantile regression.
Although quantiles might be easier to interpret we rely on expectiles due to the limits of
quantile regression in smoothed settings.

3 Additive Models

3.1 Basis Functions

In standard models the effect for each covariate is defined to be linear, or a polynomial of
the original variable. This is often not sufficient to cover the true underlying effect, which
results in biased estimates. Hastie and Tibshirani (1986) however introduced the class of
generalized additive models (GAM), where the effect per covariate is defined as a smooth
curve. One possibility to specify the smooth curve f(x1) for a covariate x1 is to build a
set of basis functions Bj1(x1), j1 = 1, . . . , J1 and scale them with an estimated parameter
γj1 . The resulting sum is the smooth curve

f(xi1) =

J1∑
j1=1

Bj1(xi1)γj1 = B>i1γ.

The function can be written in matrix notation withBi1 = (B1(xi1), . . . , BJ1(xi1))
>. Since

Bj1(x1) can be treated as a new covariate, the coefficients γ = (γ1, . . . , γJ1)> are estimated
based on the usual least squares approach. Several smooth effects can also be included
in a model additively (for a detailed introduction into splines see Wood, 2017). Different
functions define proper basis functions, including B-splines (de Boor, 1978) and thin plate
splines (Duchon, 1977).

Additionally to the additive model of smooth one-dimensional effects, the smooth
interaction between two covariates x1, x2 is regularly wanted. In the analysis of weather
data for example the spatial effect should be an interaction between the north-south and
east-west effect. Therefore, we would like to have a smooth interaction surface between
both effects. This means we would like to define a function f(x1, x2) for this surface.
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Based on the ideas of splines from above we define the interacting surface as

f(xi1, xi2) =
J∑
j=1

Bj(xi1, xi2)γj

where Bj(x1, x2) is a two-dimensional basis function. One possibility to define Bj(x1, x2)
is to reduce the two-dimensional basis function Bj(x1, x2) to be a product of two one-
dimensional basis functions Bj1(x1) and Bj2(x2) in direction of x1 and x2 respectively
(Eilers and Marx, 2003). Thus, we get the two-dimensional surface as

f(xi1, xi2) =

J∑
j=1

Bj(xi1, xi2)γj =

J1∑
j1=1

J2∑
j2=1

Bj1(xi1)Bj2(xi2)γj1,j2 = (Bi1 ⊗Bi2)
>γ

where γ = (γ1,1, γ1,2, . . . , γ2,1, . . .)
> is the new vector of coefficients with appropriate or-

dering. Similar to the one-dimensional case we can write this in matrix notation with
⊗ the (row-wise) Kronecker product of the one-dimensional matrices. More details on
two-dimensional surfaces can be found in Fahrmeir et al. (2013) and Wood (2017).

3.2 Penalization

In basic spline regression, as defined in Section 3.1, the number and location of the basis
functions need to be optimized. This is challenging for one-dimensional splines and nearly
impossible in higher dimensions. Consequently Eilers and Marx (1996) introduced a tech-
nique called P-splines for one-dimensional smooth functions where they start with a high
number of basis functions but restrict the curves to be smooth. Therefore, they penalize
the wiggliness of the curves by adding a penalty term to the least squares argument such
that not only the optimal model fit is a criterion, but also the smoothness of the function.
Additionally, this method has the advantage that the locations and the number of basis
function do not need to be optimized anymore. Overall, smoothness is defined as the
integrated second derivative of the function. For the one-dimensional case with only one
covariate this results in

λ1

∫ (
f ′′(x1)

)2
dx1

where λ1 is a scalar parameter which indicates the influence of the smoothness penalty on
the penalized least squares criterion

n∑
i=1

(yi − f(xi1))
2 + λ1

∫ (
f ′′(x1)

)2
dx1.

Estimating the second derivative of the unknown function is challenging. However, for
B-splines Eilers and Marx (1996) showed that the integral can be approximated by the

sum of the coefficients second order differences λ1
J1∑
j1=3

(γj1 − 2γj1−1 + γj1−2)
2. By applying

K1 a penalty matrix that maps γ to the penalization term, the penalized least squares
criterion shrinks to

n∑
i=1

(yi −B>i γ)2 + λ1γ
>K1γ
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which can be estimated by standard routines. Additionally more covariates can be included
to the model either as linear effects or as smooth effects, so the semiparametric predictor
is defined as

ηi = β0 + f1(xi1) + f2(xi2) + . . . .

Each of the smooth effects needs a penalty for controlling the wiggliness. Thus, the
penalized least squares criterion of the additive model is given as

n∑
i=1

(yi − ηi)2 + λ1γ
>
1 K1γ1 + λ2γ

>
2 K2γ2 + . . . ,

where γ1 are coefficients corresponding to the first smooth effect and so on. To get the
best model fit the smoothing parameters λ = (λ1, λ2, . . .)

> have to be optimized. There-
fore, either goodness-of-fit criteria like the generalized cross-validation criterion (GCV) or
methods based on the Schall algorithm (Schall, 1991) can be applied (see Wood, 2017, for
details).

Based on the one-dimensional penalties the two-dimensional splines can also be pen-
alized. Eilers and Marx (2003) suggest to use the sum of the squared differences of the
coefficients in each direction to obtain a valid penalty. In detail they propose to apply the
joint penalty

P = λ1

J2∑
j2=1

J1∑
j1=3

(γj1,j2 − 2γj1−1,j2 + γj1−2,j2)2 + λ2

J1∑
j1=1

J2∑
j2=3

(γj1,j2 − 2γj1,j2−1 + γj1,j2−2)
2

= γ> (λ1K1 ⊗ IJ2 + λ2IJ1 ⊗K2)γ

to reduce the surfaces wiggliness. Therefore, Kk are the penalty matrices in each direction
k = 1, 2 and IJk are unit matrices of dimension of the number of basis function in the
other direction. More details on this idea can also be found in Fahrmeir et al. (2013).
Beside this approach Wood (2006) proposes to define the penalty as

P̃ =

∫
x1x2

λ̃1

(
∂2f

∂x21

)2

+ λ̃2

(
∂2f

∂x22

)2

dx1dx2.

This definition turns out to be similar to the definition from Eilers and Marx (2003), but a
reparameterization of the penalty and the basis functions has to be applied. Furthermore,
using P̃ instead of P often results in smaller MSE. However, the reparameterization is
numerically instable in our example such that we skip it here and refer to Wood (2006)
for further details.

3.3 Spatio-Temporal Models

Correspondingly to the interaction between two covariates we can use the above strategy
to build interactions in any dimensions (compare Wood, 2006). An application of a three-
dimensional interaction is the temporal variation of a spatial effect. This is the so called
spatio-temporal model. Therefore, we build the three-dimensional smooth surface based
on the one-dimensional basis functions as

f(timei, loni, lati) = (Btime,i ⊗Blon,i ⊗Blat,i)
>γ (2)

with lon the longitudinal and lat the latitudinal coordinate of the observation station.
Moreover the penalty term is then defined as

P = γ>(λtimeKtime ⊗ IJlon ⊗ IJlat + λlonIJtime ⊗Klon ⊗ IJlat + λlatIJtime ⊗ IJlon ⊗Klat)γ
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with penalty matrices Kk as introduced above. However, in spatio-temporal models the
need of a separation into the interacting surface and the main effects increases, since we
would like to be able to interpret the main time effect and the main spatial effect separ-
ately from their interaction. Therefore, some identification constraints have to be applied.

In basic one-dimensional P-splines identifiability is not fulfilled since each smooth func-
tion could be shifted on the y-axis and the shift would be absorbed by the intercept or
another smooth function. Therefore, the identifiability constraint

∑
i fk(xik) = 0 is in-

cluded. One approach to achieve this constraint is to transform the basis functions and
the penalty matrices with a QR-decomposition of the vector of column means of Bk (see
Wood, 2017, Section 5.4.1 and Section 1.8.1 for details). In a higher dimensional setting
this procedure could be adopted, such that first the multi-dimensional basis functions
(based on the unconstrained marginal basis functions) and penalties are built and after-
ward the QR-decomposition is applied to guaranty identifiability. This would result in the
standard multi-dimensional interaction surface without separate main effects.

To determine the separate main effects the order of the QR-decomposition and the
Kronecker product is switched. Thus, the multi-dimensional basis function is built as
Kronecker product of the one-dimensional basis functions with transformation based on
the QR-decomposition. To get valid estimates the marginal basis functions must be added
to the design matrix. Therefore, the design matrix of the spatio-temporal manifold with
separate main effects has the following structure[

1 : B̆time�B̆lon�B̆lat : B̆time�B̆lon : B̆time�B̆lat : B̆lon�B̆lat : B̆time : B̆lon : B̆lat

]
(3)

where B̆k are the marginal basis functions including the transformation based on the QR-
decomposition. Here � is the row-wise Kronecker product, for matrices as used in Lee
and Durbán (2011) and defined in Eilers et al. (2006). Based on this definition B̆timeγtime

build the main effect for time and B̆lon�B̆latγlon×lat + B̆lonγlon + B̆latγlat the main effect
for space with corresponding subvectors of γ. Since the transformed basis functions B̆k

have one column less than Bk the dimensions of Equation (2) and Equation (3) coincide.
Similarly the penalty matrix is now build as a block diagonal matrix

Kλ =



0
A1

A2 0
A3

A4

0 A5

A6

A7


with values

A1 = λ1K̆time ⊗ Ĭlon ⊗ Ĭlat + λ2Ĭtime ⊗ K̆lon ⊗ Ĭlat + λ3Ĭtime ⊗ Ĭlon ⊗ K̆lat

A2 = λ4K̆time ⊗ Ĭlon + λ5Ĭtime ⊗ K̆lon

A3 = λ6K̆time ⊗ Ĭlat + λ7Ĭtime ⊗ K̆lat

A4 = λ8K̆lon ⊗ Ĭlat + λ9Ĭlon ⊗ K̆lat

A5 = λ10K̆time

A6 = λ11K̆lon

A7 = λ12K̆lat
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where K̆k are the penalty matrices of the marginal basis functions including the trans-
formation based on the QR-decomposition. Therefore, Ĭk are of one-dimension less than
Ik. Based on this decomposition we can determine the main effects separately from their
interactions (Wood, 2017, p. 232). A similar idea has also been introduced by Lee and
Durbán (2011) and Wood et al. (2013), but there not the QR-decomposition, but the
mixed model representation of the marginal splines is used.

However, by applying the main effects decomposition we have to optimize 12 instead
of 3 smoothing parameters λ. An alternative would be to assume isotropy in the spatial
effects. Then we would assume (i) that the manifold is defined as[

1 : B̆time�B̆spat : B̆spat : B̆time

]
(4)

where B̆spat is based on a two-dimensional isotropic basis function; (ii) that the penalty
changes accordingly and is now dependent only on 4 smoothing parameters. In the iso-
tropic setting different scaling of the wiggliness in longitudinal and latitudinal directions
are not possible anymore. Therefore, isotropy might not be correct in meteorological
data. Furthermore, we will discuss expectile regression later as we would like to reduce
any assumption on the distribution. Thus, we retain the formerly discussed anisotropic
model.

So far we estimated the spatial trend based on the longitudinal and latitudinal co-
ordinates of the location. In many data sets, however, the location is only measured in
regional grids like ZIP-code areas or states. Then the spatial surfaces based on the cat-
egorical covariates can be estimated as smooth effects, if neighboring regions have similar
coefficients. This is achieved by some penalized regression, where the penalty is defined
by joint borders of the regions. Generally this approach is motivated by Gaussian Markov
random fields (GMRF) (Rue and Held, 2005). There the variation over time is interpreted
as random walk, which is also described in terms of neighborhood structures. So the
spatio-temporal model is built similarly as in Equation (4), where the interaction of time
and space bases on the Kronecker products of the main effects and the penalties. Alternat-
ively, the centroids of the regions can be used as standardized location of the observations,
thus the three-dimensional P-splines can be applied (see for example Ugarte et al., 2010).
Based on similarities of GMRF and P-splines as penalized models the spatio-temporal
model could also be defined as an interaction of a P-spline and a GMRF.

3.4 Cyclic Splines

Additionally to the separation into the main effects, another condition has to be discussed.
In our definition of spatio-temporal models we use multiple years to estimate the seasonal
effect. Thus, the seasonal effect should be identical in multiple years. It is defined as a
function from January to December. A general variation between the years, for example
due to climate change, can be modeled as additional term. Alternatively, the seasonal
effect could be varying for each year, such that we would get a temporal effect for each
day in the observation period. However, predictions and interpretations of the spatio-
temporal effect are more complex with the latter definition and each effect relies on less
data. Thus, we propose to use the first idea, i.e. a single seasonal effect for all years.
In order to get a valid curve for the seasonal effect we have to ensure that there is a
smooth transition between December and January. Therefore, we implement conditions
for the curve to be equal on the left and the right end of the parameter space up to the
second derivative. For B-splines this could be done quite easily. In standard B-splines
of degree 3 the first three and the last three basis functions usually are truncated at the
edge of the parameter space. For cyclic B-splines those truncated basis function are now
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defined to coincide appropriately. Moreover the neighborhood structure which is used for
the penalization is now changed such that the originally truncated basis functions have
neighbors on both sides (de Boor, 1978; Wood, 2017).

3.5 Semiparametric Expectile Regression

In Section 2 we defined expectile regression for linear predictors. In order to gain more
flexibility semiparametric predictors are useful. Therefore, Schnabel and Eilers (2009)
and Sobotka and Kneib (2012) introduced semiparametric expectile regression with the
penalized least asymmetric weighted squares criterion

n∑
i=1

wτ (yi)
(
yi − x>i γτ,λ

)2
+ γ>τ,λ Kλ γτ,λ. (5)

Here x>i γτ,λ is the semiparametric predictor of linear effects and smooth functions de-
pendent on the smoothing parameters and the asymmetry τ . Kλ is the penalty matrix
including the smoothing parameters, which are dependent on the asymmetry. Due to the
technical equivalence between weighted linear regression and expectile regression this is
straightforward. So spatio-temporal models can also be applied in expectile regression. In
the estimation the critical point is the optimization of the smoothing parameters λ. It
has to be done from outside the LAWS algorithm otherwise the iteration does not always
converge.

In the application we use the power (memory and speed) of the mgcv package of Wood
(2017) in the statistical programming language R (R Core Team, 2017) to estimate the
spatio-temporal model as weighted least squares model. The bam function of the mgcv

package was optimized to reduce the memory demand, by avoiding to calculate the design
matrix and applying other smart tricks (see Wood et al., 2015, 2017, for details). In our
example this function reduced the memory demand from more than 40GB to 5GB. The
exact code for estimating expectile regression with spatio-temporal effects is attached in
the supplementary material. Basically in the inner loop we fix the smoothing parameters
and estimate the LAWS algorithm, with help of the function bam. Then we apply standard
numerical optimization routines to optimize the smoothing parameters from outside. As
criterion for the optimization the asymmetric generalized cross-validation criterion (GCV)

n
n∑
i=1

wτ (yi)
(
yi − x>i γ̂τ,λ

)2
(trace(I −H))2

proved good properties in Schnabel and Eilers (2009). Moreover, it is straightforward
to perform the classical optimization of smoothing parameters in the linear model (see
Wood, 2017, for example). In the above formula I is a unit matrix of dimension n × n
and H = W

1/2
τ X(X>WτX + Kλ)−1X>W

1/2
τ is the hat matrix. More details on the

estimation of semiparametric expectile regression in general are presented in Sobotka and
Kneib (2012).

Due to the possibility to write P-spline as mixed models the Schall algorithm (Schall,
1991) for selecting smoothing parameters was introduced to semiparametric expectile re-
gression by Schnabel and Eilers (2009). However, the Schall algorithm only allows for one
smoothing parameter per smooth term. Thus, the Schall algorithm is not applicable in
spatio-temporal models. Alternatively, the generalized Fellner-Schall algorithm of Wood
and Fasiolo (2017) can be adopted to semiparametric expectile regression, by interpreting
expectile regression as weighted linear regression. Moreover, the generalized Fellner-Schall
algorithm allows for the estimation of smoothing parameters in interaction settings.
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In the generalized Fellner-Schall algorithm the smoothing parameters are optimized
iteratively with the model fit. So the model is estimated given some smoothing parameters
λ. Thus, Wτ and γ̂τ,λ are the respective weights and the estimated coefficients of the
expectile regression given the current smoothing parameter λ. Afterwards new smoothing
parameters are fitted as

λ∗k = φ
tr(K−λSk)− tr((X>WτX +Kλ)−1Sk)

γ̂>τ,λSkγ̂τ,λ
λk

where φ is a scaling parameter based on the variance and K−λ is the Moore-Penrose pseu-
doinverse of the full penalty matrix Kλ including the current smoothing parameters λ.
Furthermore, Sk is similarly to Kk, respectively K̆k the penalty matrix corresponding to
one smoothing parameter λk. However, Sk is filled with zeros to have the same dimen-
sions as Kλ. Nevertheless Sk does not include λk. In the estimation of new smoothing
parameters some kind of step halving is established to ensure a better model fit in each
iteration. Via step halving the new smoothing parameters are calculated as

λnew =
λ∗ − λ

2p
+ λ

where p = 0, 1, 2, . . . is the minimal integer such that the goodness-of-fit decreases. There-
fore, either the penalized LAWS criterion as defined in Equation (5), or the GCV can
be applied. The generalized Fellner-Schall algorithm has some numerical drawbacks.
First, estimating K−λ is only possible, if the smoothing parameters are in an appropri-
ate range, otherwise the pseudoinverse will vanish. Therefore, we have to restrict the
possible smoothing parameters and fix them, if they reach the limit. Second, calculat-
ing (X>WτX + Kλ)−1 is computationally burdensome, but it is estimated anyway for
the standard confidence intervals (see for example Marra and Wood, 2012). Thus, these
estimates can be reused.

Alternatively the SAP-algorithm of Rodŕıguez-Álvarez et al. (2015) could be extended
to expectile regression. Though, the SAP-algorithm uses the mixed models representation
of the splines, which we would like to avoid here. Moreover, it includes calculations based
on the full design matrix, which is computationally demanding in our example. So we
choose the generalized Fellner-Schall algorithm and the GCV optimization due to their
compatibility with the output of the mgcv package.

4 Simulation Study

Applying the GCV to select smoothing parameters in semiparametric expectile regression
with interactions is straightforward. Nevertheless the generalized Fellner-Schall algorithm
has, to our knowledge, never been used in expectile regression before. Therefore, we
provide in this section a small simulation study to compare the goodness-of-fit of both
approaches. Here the goodness-of-fit is calculated as (predicted) mean weighted squared
error (P)MWSE

(P)MWSE =
n∑
i=1

wτ (yi)
(
yi − x>i γ̂τ

)2
.

The covariates x1, x2 are simulated based on the standard uniform distribution
(x1, x2 ∼ U(0, 1)). As distribution of the error terms a Gaussian distribution is assumed
(εi ∼ N(0, σ2i )). However, for the variance either homoscedasticity (σi = 2 ∀i) or het-
eroscedasticity (σi = xi1+1

1.5 + xi2+1
1.5 ) is applied. As covariate effects we use two different
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functions, similarly as in Wood (2006):

f1(x1, x2) = 1.2π
(

1.2e−(x1−0.2)
2/0.32−(x2−0.3)2/0.42 + 0.8e−(x1−0.7)

2/0.32−(x2−0.8)2/0.42
)

f2(x1, x2) = 2 sin(π x1) + exp(2x2).

Finally the response is defined as yi = fj(xi1, xi2) + εi. For each replication a data set
with 5000 observations is simulated to fit the model and for all replications a data set
with 10000 observations was used to estimate the predictive goodness-of-fit. Overall 100
independent replications of expectile models with τ ∈ (0.1, 0.5, 0.9) are applied. For the
estimation the model was specified with separation of main effects as

y ∼ f(xi1) + f(xi2) + f(xi1, xi2)

with 15 B-spline basis functions in each direction. Since the smoothing parameters in the
Fellner-Schall algorithm have to be sized moderately, we restrict them to be larger than
1e-5 and smaller than 1e5. For improved comparability this restriction is also applied in
the GCV approach. The resulting predictive mean weighted squared errors are displayed
in Figure 1. The mean weighted squared error is slightly better for the optimization via
GCV, while the predictive mean weighted squared error is better for the optimization via
the generalized Fellner-Schall algorithm. Though the results are quite similar. Further
analysis shows that the generalized Fellner-Schall algorithm is more dependent on the
starting values.
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Figure 1: MWSE and PMWSE of the simulation study. On the left side of each plot
the models with heteroscedastic errors are displayed and homoscedastic errors are on the
right. For each data setting (1 or 2) the smoothing parameter selections are placed next
to each other.
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5 Spatio-Temporal Analysis of Temperatures in Germany

The distribution of the temperatures in Germany motivated us for a spatio-temporal
estimation beyond the mean. Therefore, we use data from the German weather service
DWD (2017). The response variable is the daily mean temperature, since we would like
to analyze the variation within years, the aggregation on the average per day does not
impair the expectile regression. In this example we use all stations with at least 24 years
of observations in the period 1980 to 2014. Furthermore, stations above 900m are included
if they have at least 3650 values, but the station on top of the “Zugspitze” is excluded,
due to fitting problems based on the large gap in the elevation scale. So finally we use
data of 374 stations, whose locations are visualized in Figure 2. On the right side of
this figure the marginal frequencies of the daily mean temperature from 1980 to 2014 are
plotted jointly with a Gaussian density of appropriate mean and standard deviation. Even
if the marginal density fits well with the Gaussian density we model the spatio-temporal
distribution of the daily temperatures with spatio-temporal expectile regression in the
following. Doing so we get not only information on the general temperature pattern in
Germany in different seasons of the year, but also information on areas, where at distinct
time points the spectrum of temperatures is wider or smaller.
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Figure 2: Location of the observation stations and marginal density of daily mean tem-
perature.

To model the spatial and temporal variation of the temperatures we apply the following
model

temperature = β0,τ + fτ (elevation) + fτ (year) + fτ (day) + fτ (lon) + fτ (lat)

+ fτ (day, lon) + fτ (day, lat) + fτ (lon, lat) + fτ (day, lon, lat)

for each asymmetry parameter τ ∈ (10%, 50%, 90%) separately. Thereby elevation is the
altitude above sea level of the observation station, while longitude and lat itude specify
the location. With day, the day of the year is meant. The main effects fτ (lon), fτ (lat),
fτ (day, lon), fτ (day, lat) are just included to get a valid design matrix and are only inter-
preted jointly with fτ (lon, lat) and fτ (day, lon, lat), respectively.

For the estimation we apply penalized B-splines of degree 3 and 15 basis functions for
the spline of the year. Moreover, the spatio-temporal effect has 15 basis functions for the
daily effect and 6 respectively 9 basis functions for the one-dimensional spatial margin-
als. The spatial effect has only few basis functions in each direction to obtain reasonable
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computational times. For the estimation of the elevation effect only 7 basis functions are
applied to avoid arbitrary results due to gaps in the parameter space. The smoothing
parameters are optimized via GCV. The results for optimizing the smoothing parameters
via the generalized Fellner-Schall algorithm are similar.

In Figure 3 the estimated main effects for elevation and day are displayed. There
we see some variation between the mean effects and the effects at the outer parts of the
distribution. While for the low areas the curves are parallel, which induces homoscedasti-
city, the 10% and 90% expectile curves diverge from the mean for higher altitudes. The
difference looks rather small, but we are talking about 2◦C difference between the 10%
and the 90% expectile. Thus, heteroscedasticity occurs in these areas.
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Figure 3: Main effects for day, elevation and year (without intercept).

For the main effect of the day in the year we can detect, that the lower expectile has a
greater range [−9.8◦C; 10.0◦C] than the upper expectile [−8.1◦C; 9.2◦C] (both excluding
the intercept of 4.8◦C respectively 11.1◦C). This means in winter the lower temperatures
are often lower than expected and in summer the low temperatures are higher than ex-
pected. Thus, the variance in winter is higher than in summer. Furthermore, the high
temperatures in summer are not as high as they should be, if the underlying process is
a homoscedastic Gaussian distribution. Overall the visualized expectiles look like there
might be crossing expectiles, which should not be the case by theory, but we plotted the
curves without intercept, as all other plots, to get a better view on the differences in the
shape of the curves.

By including the parameter year in the model we control for varying effects in specific
years. Additionally we can check if we find some impact of the climate change in this rather
small example. The estimated curve for the trend per year is also plotted in Figure 3 on
the right. There we detect some small general increase in the temperatures, beyond the
natural fluctuation.

The main spatial effect for the whole year, as displayed in Figure 4, shows that in
the northeast the higher temperatures (90% expectile) are not as high as expected by the
mean regression. In general some twist in the spatial effect between the different parts of
the distribution is visible. While the temperature decrease from southwest to northeast
for the bottom part of the distribution it decreases more from south to north for the upper
part.

To get a better impression on how the spatial effect varies with time we plotted in
Figure 5 the temporal effect of four German cities. Their locations are indicated in the
spatial effect maps. Out of this figure we conclude that in Cologne the winters are a lot
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Figure 4: Main spatial effect without elevation and intercept.

warmer than in Munich or Berlin, while the summers are colder in Hamburg and warmer
in Berlin. This differentiation is valid for all parts of the distribution, but the amplitude
of the temperatures is smaller for the upper part of the distribution than for the lower
part.
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Figure 5: Effects of day in the year for four German cities, including elevation, but without
intercept.

We see similar results from the spatial effect of January 31st and July 31st as displayed
in Figure 6. The colors of both rows follow the same legend, while they are different from
Figure 4. However, in Figures 4 and 6 the steps between the colors are 1◦C. From Figure 6
we can conclude two things. The most obvious one is that the spatial effect in January
is different from July, since in January it gets colder from west to east, while in summer
the north is colder than the south. On the other hand the variation from the mean is
visible. So is the coast of the Baltic Sea a lot warmer in cold winters than expected for
this location. Furthermore, the coldest winters are detected east of Berlin, while there is
a rather constant effect for this area at the 90% expectile for January 31st. In general
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the variation of temperatures on January 31st is larger for the lower expectile than for
the upper expectile. Moreover, in northern Germany the variation for cold summers (10%
expectile) is rather low, while there is a clear cooling towards the sea for warm summers.
Similar patterns can be found for the effect with elevation as displayed in Figure 7 in the
Appendix.
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Figure 6: Forecast of the spatial effect for January 31 and July 31, excluding elevation
and intercept.

6 Conclusion

In this paper we present spatio-temporal effects for expectile regression. Spatio-temporal
modeling with interaction terms of P-splines is an established method. However, usu-
ally the data are analyzed with some pre-specified parametric distribution and the errors
are assumed to be homoscedastic. Contrarily, in expectile regression no assumption on
the distribution of the data is applied. Moreover, expectile regression is able to take
heteroscedasticity of the data into account. Based on the idea of weighted least squares
spatio-temporal expectile regression can be applied with help of the tools of standard least
squares regression. So it is a natural extension of the standard approaches. Furthermore,

15



expectile regression can be used to check whether the homoscedasticity assumption is valid.
Therefore, we check if all effects are equal for a grid of asymmetry parameters. This is
similar to the test of Newey and Powell (1987). Our analysis showed that the assumption
of homoscedasticity is not necessarily fulfilled for the temperature and the application of
expectile regression is necessary. Thus, the effect of elevation varies for the different parts
of the distribution and there are some regions where the spatial effect of the 10% and the
90% expectile varies from the mean effect.

Alternatively to the analysis of temperatures in Germany the amount of rain may also
have effects beyond the mean, as Umlauf et al. (2016) analyzed for Austria. However, there
we have to take care of the large number of days without any rain. Umlauf et al. (2016)
do this by using a censored normal distribution. Another possibility would be to apply a
hurdle model (Mullahy, 1986). Moreover, the hurdle model could then be generalized to
effects beyond the mean with help of expectile regression. Nevertheless, then all expectiles
than must have positive values. This could be achieved, for example, by including a
link function around the classical expectile model. However, a fixed link function would
impose a distributional assumption which is undesired in expectile regression. Thus, the
link function should be estimated jointly with the covariate effects, but this is beyond
the scope of this paper and left for further research. Modeling binary data with flexible
response function was introduced in Spiegel et al. (2017), were we modified the approach
of Muggeo and Ferrara (2008) to also include smooth effects in the predictor.

Another example where the temporal variation of spatial effects beyond the mean
would be interesting is the analysis of the development of undernutrition in developing
countries. Here USAID presents health data of children in many developing countries on
a yearly basis. However, the location of the children is only measured on district levels,
such that the models based on three-dimensional P-splines are not directly applicable.
Though the interaction of the spatial effect, estimated with a GMRF, and the time could
be applied. Then changes in the spatial distribution of undernutrition depending on the
year could be estimated. This is a natural case for expectile regression, since it would
be interesting to check if the effects for the undernourished children vary from the mean
effect of the healthy children.
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Figure 7: Forecast of the spatial effect for January 31 and July 31, including elevation,
but without intercept.
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