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Abstract: Spatio-temporal models are becoming increasingly popular in recent

regression research. However, they usually rely on the assumption of a specific para-

metric distribution for the response and/or homoscedastic error terms. In this paper,

we propose to apply semiparametric expectile regression to model spatio-temporal

effects beyond the mean. Besides the removal of the assumption of a specific distri-

bution and homoscedasticity, with expectile regression the whole distribution of the

response can be estimated. For the use of expectiles, we interpret them as weighted
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means and estimate them by established tools of (penalized) least squares regression.

The spatio-temporal effect is set up as an interaction between time and space ei-

ther based on trivariate tensor product P-splines or the tensor product of a Gaussian

Markov random field and a univariate P-spline. Importantly, the model can easily be

split up into main effects and interactions to facilitate interpretation. The method is

presented along the analysis of spatio-temporal variation of temperatures in Germany

from 1980 to 2014.

Key words: expectile regression; interaction terms; main effects; tensor product;

P-spline; spatio-temporal model

1 Introduction

In many areas of applied sciences, longitudinal data are recorded at several locations

and multiple time points. Simple statistical models then estimate the temporal and

the spatial effects as additive components (see for example Fahrmeir et al., 2004).

Hence, the impact of time and space is assumed to be independent of each other

while, for example, variations of the spatial effect over time are not considered. To

allow for such interactions, statisticians developed several approaches to incorporate

both time and space jointly and in interaction, the so-called spatio-temporal models.

Since these models are rather complex and computationally demanding, Cressie and

Wikle (2011) called them the “next frontier”. In their book, they explain ideas

how to estimate spatio-temporal Kriging models. An alternative that deals with

interactions of smooth effects, was introduced by Gu (2002), where tensor products
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of smoothing splines are discussed. However, in Gu (2002) the penalty term remains

the integral of the second derivative, such that the estimation bases on more complex

techniques like reproducing Kernel-Hilbert Spaces. To simplify the estimation in

comparison with smoothing splines, P-splines were introduced by Eilers and Marx

(1996). P-splines are easier to calculate due to their approximation of the penalty

via differences of the basis coefficients. A first step towards spatio-temporal models

using P-splines was the introduction of bivariate P-splines as tensor products by

Eilers and Marx (2003). The extension of the bivariate case to the trivariate case,

the spatio-temporal model, is then conceptually straightforward. Wood (2006) was

among the first to discuss trivariate splines in detail and developed an alternative

penalization which is based on a theoretical understanding of smoothness in larger

dimensions. The separation into main effects and interaction effects is important

for the practical use and interpretation of spatio-temporal models. Therefore, Wood

(2006), Lee and Durbán (2009), Lee and Durbán (2011) and Wood et al. (2013)

developed several approaches mostly relying on the representation of P-splines as

mixed models (see Fahrmeir et al., 2004, for example). In this paper, we will make

use of a representation of spatio-temporal models which is achieved without using the

mixed model decomposition. This representation was introduced by Wood (2017)

and based on the corresponding mgcv package the estimation is easily possible. Using

the representation as mixed model several extensions have been provided to improve

the selection of the smoothing parameters, these include Lee et al. (2013), Rodŕıguez-

Álvarez et al. (2015) and Rodŕıguez-Álvarez et al. (2018). Wood and Fasiolo (2017)

however, provides an algorithm to select the smoothing parameters, that does not

need the specification as a mixed model.

In most of the articles discussed above, a Gaussian distribution for the error terms
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is assumed and only some refer to other distributions usually from the exponen-

tial family. Even if the error distribution was specified correctly, the assumption of

homoscedasticity of the errors might still not be fulfilled. If we suppose that the

reasons for heteroscedasticity are measured by some covariates, generalized additive

models for location, scale and shape (GAMLSS) (Rigby and Stasinopoulos, 2005;

Stasinopoulos et al., 2017) can be applied. These models have separate regression

predictors assigned to each parameter of the distribution. Umlauf et al. (2016) model

the spatio-temporal distribution of rainfall in Austria with help of the Bayesian ver-

sion of GAMLSS (Klein et al., 2015). Therefore, besides the mean they also model

the variance parameters of the normal distribution with some spatio-temporal trend.

This model can be used to show that the variance increases for specific regions or

times. Alternatively, models for extreme values can also be used to discuss effects

beyond the means and to detect specific structures for extremal events. Umlauf and

Kneib (2018) and Kneib et al. (2017) for example build complex covariate structures

for the generalized Pareto distribution to study, for example, 100 year return levels

of rainfall.

In the GAMLSS framework, a large variety of distributions is available and therefore

given data can be modeled quite flexibly. However, the model always depends on the

correct choice of the distribution and the link functions. Due to the complex design

of the predictors, these choices are non-trivial (Rigby et al., 2013). An alternative

method for distributional regression that also deals with heteroscedasticity is expectile

regression as introduced by Newey and Powell (1987). With expectiles we do not

assume a specific distribution and account for heteroscedasticity by putting more

or less emphasis on specific parts of the distribution. Therefore, this model is very

flexible and omits the specification of a parametric distribution. Basically, expectile
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regression is a weighted least squares regression, where the weights depend on the

observations and the fitted values (for details see Section 3). Based on the similarity

with ordinary mean regression, smooth effects can easily be incorporated in expectile

regression. Therefore, semiparametric expectile regression has been introduced by

Schnabel and Eilers (2009) and Sobotka and Kneib (2012). More details on inference

in semiparametric expectile regression can also be found in Sobotka et al. (2013).

Quantile regression (Koenker and Bassett, 1978) is an alternative to model effects

beyond the mean without distributional assumption. Since quantiles are defined as

generalization of the median, while expectiles are a generalization of the mean, they

are easier to interpret, but harder to estimate, in particular in settings including

smooth terms.

Thus, we will use expectile regression to analyze the spatio-temporal trend of tem-

perature in Germany. Figure 2 on page 25 displays the characteristics of the data set.

We estimate the distribution of temperatures depending on time and location. Based

on expectile regression, we further determine, where especially cold winters occur and

which areas have relatively hot summers. In addition to the detection of increased

variance in some regions we may also specify the direction of the divergence from the

mean.

In the remainder of this article we recapture the ideas of semiparametric models,

including spatio-temporal models, in Section 2. Afterwards, we continue with a brief

introduction to expectile regression in Section 3 and discuss smoothing parameter

selection in spatio-temporal expectile regression. In Section 4 we summarize a small

simulation study on the smoothing parameter selection in semiparametric expectile

regression with interactions. As an example, the spatio-temporal analysis of temper-
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atures in Germany is displayed in Section 5. Finally, we conclude with a discussion

in Section 6.

2 Semiparametric Regression Models

2.1 Basis Function Approaches

In most classical regression models, the effect for each covariate is assumed to be

linear, or of a simple polynomial form. However, this is often not sufficiently flexible

to cover the true underlying effect, which may result in biased estimates. Hastie

and Tibshirani (1986) therefore introduced the class of generalized additive models

(GAM), where the effect per covariate is defined as a smooth curve. One possibility

to specify the smooth curve f1(x1) for a covariate x1 is to consider a set of basis

functions Bj1(x1), j1 = 1, . . . , J1 and scale them with basis coefficients γj1 leading to

the smooth curve representation

f1(xi1) =

J1∑
j1=1

Bj1(xi1)γj1 = B>i1γ1.

We index each effect, each covariate and all coefficients with the number of the co-

variate to be consistent with the notation for the later following tensor products.

The vector of function evaluations can then be written in matrix notation with

Bi1 = (B1(xi1), . . . , BJ1(xi1))
>. Since Bj1(x1) can be treated as a new covariate,

the coefficients γ1 = (γ1, . . . , γJ1)
> are estimated based on the usual least squares

approach. Several smooth effects can also be included in a model additively (for a

detailed introduction into splines see Wood, 2017). Different functions define ap-

propriate basis functions, including B-splines (de Boor, 1978) and thin plate splines
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(Duchon, 1977).

Additionally to the additive model of univariate smooth effects, the smooth inter-

action between two covariates x1, x2 is regularly wanted. In the analysis of weather

data, for example, the spatial effect should be an interaction between the north-south

and east-west effect. Therefore, we would like to have a smooth interaction surface

between both effects. This means we would like to define a function f12(x1, x2) for this

surface. Based on the ideas of splines from above, we define the interaction surface

as

f12(xi1, xi2) =
J∑

j12=1

Bj12(xi1, xi2)γj12

where Bj12(x1, x2) is a bivariate basis function. One possibility to define Bj12(x1, x2) is

to reduce the bivariate basis function Bj12(x1, x2) to be the product of two univariate

basis functions Bj1(x1) and Bj2(x2) in direction of x1 and x2 respectively (Eilers and

Marx, 2003). Thus, we get the bivariate surface as

f12(xi1, xi2) =
J∑

j12=1

Bj12(xi1, xi2)γj12 =

J1∑
j1=1

J2∑
j2=1

Bj1(xi1)Bj2(xi2)γj1,j2 = (Bi1 ⊗Bi2)
>γ

where γ = (γ1,1, γ1,2, . . . , γ2,1, . . .)
> is the new vector of coefficients with appropriate

ordering. Similar to the univariate case, we can write this in matrix notation with

⊗ the (row-wise) Kronecker product of the univariate matrices. More details on

bivariate surfaces can be found in Fahrmeir et al. (2013) and Wood (2017).

2.2 Penalization

In basic spline regression, as defined in Section 2.1, the number and location of the

basis functions need to be optimized. This is challenging for univariate splines and
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nearly impossible in higher dimensions. Consequently, Eilers and Marx (1996) in-

troduced a technique called P-splines for univariate smooth functions where they

start with a moderately large number of basis functions but restrict the curves to be

smooth. Therefore, they penalize the wiggliness of the curves by adding a penalty

term to the least squares argument such that not only the optimal model fit is a

criterion, but also the smoothness of the function. Additionally, this method has the

advantage that the locations and the number of basis functions do not need to be op-

timized anymore. In general, smoothness of a function can be quantified based on the

integrated squared second derivative of the function. Estimating the second deriva-

tive of the unknown function can be challenging, but for B-splines with equidistant

knots Eilers and Marx (1996) showed that the penalty can be approximated by the

sum of the coefficients second order differences λ1
J1∑
j1=3

(γj1 − 2γj1−1 + γj1−2)
2, where

λ1 is a scalar parameter which indicates the influence of the smoothness penalty on

the penalized least squares criterion. Rewriting this penalty in matrix form based on

the penalty matrix K1, results in the penalized least squares criterion

n∑
i=1

(yi −B>i1γ1)
2 + λ1γ

>
1K1γ1

which can be minimized analytically for fixed smoothing parameter λ1. Additionally,

more covariates can be included to the model either as linear effects or as smooth

effects, leading to the semiparametric predictor

ηi = β0 + f1(xi1) + f2(xi2) + . . . .

Each of the smooth effects needs a penalty for controlling the wiggliness. Thus, the

penalized least squares criterion of the additive model is given as

n∑
i=1

(yi − ηi)2 + λ1γ
>
1K1γ1 + λ2γ

>
2K2γ2 + . . . ,
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where γ1 are coefficients corresponding to the first smooth effect and so on. To get

the best model fit, the smoothing parameters λ = (λ1, λ2, . . .)
> have to be optimized.

Therefore, either goodness-of-fit criteria like the generalized cross-validation criterion

(GCV) or methods based on the Schall algorithm (Schall, 1991) can be applied (see

Wood, 2017, for details).

Based on the univariate penalties, penalties for bivariate splines can also be con-

structed. Eilers and Marx (2003) suggest to use the sum of the squared differences of

the coefficients in each covariate-direction to obtain a valid penalty. In detail, they

propose to apply the joint penalty

P = λ1

J2∑
j2=1

J1∑
j1=3

(γj1,j2 − 2γj1−1,j2 + γj1−2,j2)
2 + λ2

J1∑
j1=1

J2∑
j2=3

(γj1,j2 − 2γj1,j2−1 + γj1,j2−2)
2

= γ> (λ1K1 ⊗ IJ2 + λ2IJ1 ⊗K2)γ

to penalize the surfaces wiggliness. Therefore, Kk are the penalty matrices in each

direction k = 1, 2 and IJk are identity matrices with dimension corresponding to the

number of basis function in the other direction. More details on this idea can also be

found in Fahrmeir et al. (2013).

2.3 Spatio-Temporal Models

In analogy to the interaction between two covariates, we can use the above strategy to

build interactions in any dimensions (see Wood, 2006). An application of a trivariate

interaction is the temporal variation of a spatial effect (or, vice versa, the spatial

variation of a temporal effect) in a spatio-temporal model. Therefore, we build the

trivariate smooth surface based on the univariate basis functions as

f(timei, loni, lati) = (Bi,time ⊗Bi,lon ⊗Bi,lat)
>γ (2.1)
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where lon and lat represent the longitudinal and the latitudinal coordinate of an

observation, respectively. Furthermore, γ is now a new vector of coefficients corre-

sponding to the design matrix. Moreover, the penalty term is then defined as

P = γ>(λtimeKtime ⊗ IJlon ⊗ IJlat + λlonIJtime
⊗K lon ⊗ IJlat + λlatIJtime

⊗ IJlon ⊗K lat)γ

with penalty matrices Kk as introduced above.

The identifiability of semiparametric regression has, in this paper, not been discussed

so far. Applying several basic univariate P-splines in one model is not identified, since

each smooth function could be shifted on the y-axis and the shift would be absorbed

by the intercept or another smooth function. Therefore, the identifiability constraint∑
i fk(xik) = 0 is included. One approach to achieve this constraint is based on the

eigen decomposition of the penalty matrix. As a result, for each univariate P-spline

the intercept of each spline corresponds to one eigenvalue equal to zero, which could

be excluded (for more details see Fahrmeir et al., 2004, for example). Based on the

resulting diagonal penalty matrix the approach is called mixed models decomposition.

Applying the decomposition on multidimensional P-splines has the effect, that the

marginal splines can be separated from the interaction term. So we can separate the

main effects, form the interaction term. This so called ANOVA decomposition was

discussed in Gu (2002), Lee and Durbán (2011), Lee et al. (2013), Wood et al. (2013)

and Kneib et al. (2017).

An alternative approach to achieve identifiability is to transform the basis functions

and the penalty matrices with a QR-decomposition of the vector of column means

of Bk (see Wood, 2017, Section 5.4.1 and Section 1.8.1 for details). In a higher

dimensional setting, this procedure could be adopted, such that first the multi-

dimensional basis functions (based on the unconstrained marginal basis functions)

and penalties are built and afterward the QR-decomposition is applied to guaran-
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tee identifiability. This would result in the standard multi-dimensional interaction

surface without separate main effects. To determine the separate main effects, the

order of the QR-decomposition and the Kronecker product is interchanged. Thus, the

multi-dimensional basis function is build as Kronecker product of the univariate basis

functions which have already been transformed based on the QR-decomposition. To

get valid estimates, the marginal basis functions must be added to the design matrix.

Therefore, the design matrix of the spatio-temporal model with separate main effects

has the following structure

[
1 : B̆time�B̆lon�B̆lat : B̆time�B̆lon : B̆time�B̆lat : B̆lon�B̆lat : B̆time : B̆lon : B̆lat

]
(2.2)

where B̆k are the marginal basis functions including the transformation based on the

QR-decomposition. Here � is the row-wise Kronecker product, for matrices as used

in Lee and Durbán (2011) and defined in Eilers et al. (2006). Based on this definition,

B̆timeγtime build the main effect for time and B̆lon�B̆latγ lon×lat + B̆lonγ lon + B̆latγ lat

the main effect for space with corresponding subvectors of γ. Thus, we separate the

main effects from the interaction effects. Since the transformed basis functions B̆k

have one column less than Bk, the dimensions of Equation (2.1) and Equation (2.2)

coincide. Similarly the penalty matrix is now build as a block diagonal matrix Kλ =

diag (0,A1,A2,A3,A4,A5,A6,A7) with values

A1 = λ1K̆time ⊗ Ĭ lon ⊗ Ĭ lat + λ2Ĭtime ⊗ K̆ lon ⊗ Ĭ lat + λ3Ĭtime ⊗ Ĭ lon ⊗ K̆ lat

A2 = λ4K̆time ⊗ Ĭ lon + λ5Ĭtime ⊗ K̆ lon

A3 = λ6K̆time ⊗ Ĭ lat + λ7Ĭtime ⊗ K̆ lat

A4 = λ8K̆ lon ⊗ Ĭ lat + λ9Ĭ lon ⊗ K̆ lat

A5 = λ10K̆time A6 = λ11K̆ lon A7 = λ12K̆ lat

where K̆k are the penalty matrices of the marginal basis functions including the

transformation based on the QR-decomposition. Therefore, Ĭk are of one dimension
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less than Ik. Based on this decomposition, we can determine the main effects sepa-

rately from their interactions (Wood, 2017, p. 232). Thus, we interpret the marginal

spatial and the temporal effect separately from the interaction.

The separation as mixed models and the separation based on the QR decomposi-

tion results in the same predictions, if appropriate smoothing parameters are chosen.

However, we focus here on the separation based on the QR decomposition, since this

is included in the mgcv package, which allows for using large data sets. More details

are discussed in Section 3.2.

2.4 Regional Data

So far we estimated the spatial trend based on the exact longitudinal and latitudi-

nal coordinates of the location. In many data sets, however, the location is only

measured in regional grids like ZIP-code areas or states. A simple model would

use the regional information as a factor variable and estimate independent effects

for each region. However, this results in rather wiggly estimates comparing neigh-

boring regions. Therefore, our goal is to estimate a smooth surface of the spatial

effect also with regional data. Generally, the smoothed regional effects approach is

motivated by Gaussian Markov random fields (GMRF) (Rue and Held, 2005). The

spatial surfaces based on the categorical covariates can be estimated as smooth ef-

fects f(si) = B>i,GMRFν where si the region in which yi was observed. The coefficients

ν = (ν1, . . . , νS) define the effect for each of the S regions.

For estimation, the design matrix of the regional covariate BGMRF is build as an
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indicator matrix, i.e. the ith row of BGMRF is defined as the vector with elements

Bi,GMRF =

 1 if yi was observed in region s,

0 otherwise.

To get a smooth effect, differences between neighboring regions are penalized with a

penalty matrix KGMRF whose elements are defined as

KGMRFsr =


−1 , if s 6= r and s ∼ r

0 , if s 6= r and s � r

total number of neighbors of s , if s = r

where s ∼ r denotes that s is a neighbor of r. The coefficients ν are then estimated

with penalized likelihood methods similarly to P-splines. Due to the similarities of

GMRF and P-splines as penalized models, they can also interact in a spatio-temporal

model. Therefore, we define the design matrix similarly as in Equation (2.2) as matrix[
1 : B̆time�B̆GMRF : B̆time : B̆GMRF

]
with B̆GMRF being the centered indicator matrix BGMRF. Furthermore, the spatio-

temporal penalty matrix is defined as the block diagonal matrix

Kλ = diag
(

0, λ1K̆time ⊗ ĬGMRF + λ2Ĭtime ⊗ K̆GMRF, λ3K̆time, λ4K̆GMRF

)
,

where K̆GMRF is the penalty matrix for the spatial effect considering the centering.

K̆time and Ĭ · are defined as above.

3 Expectile Regression

The classical linear model is based on the assumption of homoscedasticity. If this

assumption is violated, the standard estimators for the mean effects are still valid
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while the estimation of their uncertainty is not valid anymore. Moreover, we are then

interested what the drivers for the heteroscedasticity are and how they influence the

response. There are several models, that allow for heteroscedastic error terms and

analyze the drivers, including generalized additive models for location scale and shape

(Rigby and Stasinopoulos, 2005) and quantile regression (Koenker and Bassett, 1978).

As discussed in the introduction, we will apply expectile regression as introduced by

Newey and Powell (1987) in this article. For the introduction of expectile regression

we start with only linear effects in Section 3.1, before we introduce semiparametric

expectile regression in Section 3.2.

3.1 Classical Expectile Regression

In ordinary least squares models, the sum of squared residuals should be minimized

with respect to the regression coefficients. Taking the derivative of the least squares

equation with respect to these coefficients and setting it to zero yields the least squares

estimate. Furthermore, rearranging the derivative with respect to the intercept shows

that the sum of the residuals must be 0. Thus, the solution will be the predictor,

where the sum of the residuals above and below are equal which corresponds to the

center of gravity in a physical interpretation. In expectile regression, the emphasis is

now put on outer parts of the distribution to detect variation of the effects beyond the

mean. Therefore, in the least squares equation, a weight wτ (yi) is included such that

observations yi below the fitted effect x>i β̂τ get another weight than the observations

above, yielding

β̂τ = argmin
βτ

n∑
i=1

wτ (yi)
(
yi − x>i βτ

)2
, (3.1)
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where the weights are defined as

wτ (yi) =

 τ if yi ≥ x>i β̂τ

1− τ if yi < x
>
i β̂τ

.

Thereby the predictor x>i β̂τ depends on the specified asymmetry parameter τ ∈ (0, 1).

Based on this definition, the 50% expectile coincides with the ordinary mean while

fitted expectiles provide a weighted center of gravity. As discussed before, in classical

linear regression the error terms εi = yi − x>i β are assumed to be independent and

identically normally distributed (εi ∼ N(0, σ2)). Contrarily, in expectile regression

we do not assume any parametric distribution for the error terms εi,τ = yi − x>i βτ ,

nor do we assume identically distributed error terms. The only constraint besides

independent error terms is that the expectile of interest is 0 for the error terms (this

is in complete analogy to assuming that the quantile of the error terms is equal to 0

in quantile regression, see Schnabel and Eilers, 2009; Schulze Waltrup et al., 2015,

for details).

E
(
wτ (εi,τ ) (εi,τ − êi,τ )2

)
= 0.

The solution for Equation (3.1) can be written in matrix notation as

β̂τ =
(
X>W τX

)−1
X>W τy

where W τ is the diagonal matrix of weights wτ (yi). As a consequence, standard

weighted least squares techniques can be applied for the estimation of β̂τ . The only

problem is that W τ depends on β̂τ and vice versa. So the optimization of β̂τ and

wτ (yi) is done iteratively with an algorithm called least asymmetric weighted squares

(LAWS, Schnabel and Eilers, 2009), where we start with a classical linear model with

equal weights for all observations. Afterwards, the new weights are estimated and a
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new weighted model is fitted. The estimation of weights and coefficients is iterated

until the weights remain unchanged. The estimated coefficients β̂τ asymptotically

follow a normal distribution (Sobotka et al., 2013). However, in the setting of spatio-

temporal models, the number of observations is usually huge (in our example we have

more than 4.3 · 106 observations) therefore the confidence intervals will be very small.

Thus, we omit them in the following.

3.2 Smoothing Parameter Determination in Spatio-Temporal

Expectile Regression

In Section 3.1 we defined expectile regression for linear predictors. In order to gain

more flexibility, semiparametric predictors are useful. Therefore, Schnabel and Eilers

(2009) and Sobotka and Kneib (2012) introduced semiparametric expectile regression

with the penalized least asymmetric weighted squares criterion

n∑
i=1

wτ (yi)
(
yi − x>i γτ

)2
+ γ>τ Kλ γτ . (3.2)

To simplify notation, xi is now not the pure vector of covariates, but the joint vector of

covariates for linear effects and evaluated basis functions for smooth effects. Further-

more, γτ is the vector of all coefficients corresponding to linear and smooth effects.

Thus, x>i γτ is the semiparametric predictor of linear effects and smooth functions

dependent on the smoothing parameters and the asymmetry τ . Kλ is the penalty

matrix including the smoothing parameters, which are dependent on the asymmetry.

Due to the technical equivalence between weighted linear regression and expectile

regression, this is straightforward. So spatio-temporal models can also be applied in

expectile regression. In the estimation, the critical point is the optimization of the

smoothing parameters λ. It has to be done from outside the LAWS algorithm since
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otherwise the iteration does not always converge. Generally, there exist two ideas

for the optimization: Either using goodness-of-fit criteria or applying ideas of mixed

model based estimation.

In our application, we use the power (both with respect to memory requirement and

computational speed) of the mgcv package of Wood (2017) in the statistical pro-

gramming environment R (R Core Team, 2017) to estimate spatio-temporal expectile

models via weighted least squares. The bam function of the mgcv package was op-

timized to reduce the memory demand, by avoiding to calculate the design matrix

and applying other smart tricks (see Wood et al., 2015, 2017, for details). The exact

code for estimating expectile regression with spatio-temporal effects is attached in the

supplementary material. Basically, in the inner loop we fix the smoothing parameters

and estimate the LAWS algorithm, with help of the function bam. Then we apply

standard numerical optimization routines to optimize the smoothing parameters from

outside. The asymmetric generalized cross-validation criterion (GCV)

n
n∑
i=1

wτ (yi)
(
yi − x>i γ̂τ

)2
(trace(I −H))2

proved to have good properties in Schnabel and Eilers (2009) as a criterion for the

optimization. Moreover, it is straightforward to the classical optimization of smooth-

ing parameters in the model based on homoscedastic Gaussian distributed errors (see

Wood, 2017, for example). In the formula above, I is an identity matrix of dimension

n×n and H = W 1/2
τ X(X>W τX+Kλ)−1X>W 1/2

τ is the hat matrix. More details

on the estimation of semiparametric expectile regression in general are presented in

Sobotka and Kneib (2012).

Due to the possibility to write P-splines as mixed models, the Schall algorithm (Schall,
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1991) for selecting smoothing parameters was introduced to semiparametric expec-

tile regression by Schnabel and Eilers (2009). However, the Schall algorithm only

allows for one smoothing parameter per smooth term, since it needs a standard form

in the penalty matrix (see Wood and Fasiolo (2017) p.3 or Rodŕıguez-Álvarez et al.

(2015) p.943). Thus, the Schall algorithm is not applicable in spatio-temporal models,

where we have multiple smoothing parameters per smooth term. Alternatively, the

generalized Fellner-Schall algorithm of Wood and Fasiolo (2017) can be adopted to

semiparametric expectile regression, by interpreting expectile regression as weighted

linear regression. Moreover, the generalized Fellner-Schall algorithm allows for the es-

timation of smoothing parameters in interaction settings. Other approaches like Lee

et al. (2013), Rodŕıguez-Álvarez et al. (2015) and Rodŕıguez-Álvarez et al. (2018) also

provide powerful extensions to the standard approach of Schall (1991) for interaction

settings. These approaches could also be used in expectile regression due to the equiv-

alence to weighted least squares. However, the Fellner-Schall algorithm for expectile

regression can be implemented based on the memory saving algorithms of the mgcv

package, while the other approaches all need the calculation of the design matrix,

which is expensive if not prohibitive. In our example in the 50% expectile case, we

only needed approximately 5GB RAM using the Fellner-Schall approach, while we

had to stop the SAP algorithm of the supplementary material of Rodŕıguez-Álvarez

et al. (2015) at 180GB to prevent our server from crashing. Moreover, the available

SAP algorithm does not account for additional covariates. So we only provide here

the Fellner-Schall algorithm additionally to the GCV optimization.

In the generalized Fellner-Schall algorithm, the smoothing parameters are optimized

iteratively with the model fit. So the model is estimated given some smoothing

parameters λ. Thus, W τ and γ̂τ are the respective weights and the estimated coef-
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ficients of the expectile regression given the old smoothing parameter λ. Afterwards

preliminary smoothing parameters are fitted as

λ∗k = φ
tr(K−λSk)− tr((X>W τX +Kλ)−1Sk)

γ̂>τ Skγ̂τ
λk (3.3)

where φ is a scaling parameter based on the variance and K−λ is the Moore-Penrose

pseudoinverse of the full penalty matrix Kλ including the old smoothing parameters

λ. Furthermore, Sk is similarly to Kk (or K̆k) the penalty matrix corresponding to

one effect k. However, Sk is of the same dimensions as the complete penalty matrix

Kλ, so it is padded with zeros at all elements that do not correspond to the effect

k. Nevertheless, Sk does not include the factor λk. In detail, we specify the block

diagonal matrix Sk = (0, . . . , 0,Kk, 0, . . . , 0). In the estimation of new smoothing

parameters, some kind of step halving is established to ensure a better model fit in

each iteration. Therefore we define λ the old smoothing parameters, λ∗ the vector of

preliminary smoothing parameters calculated via Equation (3.3) and λnew the final

new smoothing parameter of this iteration. Via step halving, the new smoothing

parameters are calculated as

λnew =
λ∗ − λ

2p
+ λ

where p = 0, 1, 2, . . . is the minimal integer such that the goodness-of-fit decreases.

Therefore, either the penalized LAWS criterion as defined in Equation (3.2), or the

GCV can be applied. The generalized Fellner-Schall algorithm has some numerical

drawbacks. First, calculating (X>W τX + Kλ)−1 is computationally burdensome,

but it is estimated anyway for the standard confidence intervals (see for example

Marra and Wood, 2012). Thus, these estimates can be reused. Second, estimatingK−λ

is only possible, if the smoothing parameters are in an appropriate range, otherwise

the pseudoinverse will vanish. Therefore, we have to restrict the possible smoothing
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parameters and fix them, if they reach the limit. This drawback could be avoided

when using the SOP algorithm of Rodŕıguez-Álvarez et al. (2018), however than the

drawbacks with the memory usage would occur again.

Alternatively to expectile regression, quantile regression (Koenker and Bassett, 1978;

Koenker, 2005) can be used to estimate models beyond the mean. Therefore, in

Equation (3.1) the l2-norm is exchanged with the l1-norm. In quantile regression, the

fitted effects represent the line where the ratio of numbers of observations below and

above is the desired fraction τ , while in expectile regression the fitted values give the

weighted center of gravity, so the line where the sum of the weighted distances below

and above coincides with the given fraction τ (Yao and Tong, 1996). So quantile

regression only checks how many observations are below and above the fitted val-

ues. The distance between the fitted values and the observations is not taken into

account. Since expectiles account also for the values of the distances it uses more

information while, on the downside, becoming more susceptible for the influence of

outliers. Moreover, applying quantile regression instead of expectile regression in the

spatio-temporal setting would hardly be possible due to the smooth trivariate inter-

actions of space and time. Quantile regression relies on the l1-norm and therefore

no derivatives can be used to optimize the model. The linear programming routines

solving quantile regression are computationally more challenging in combination with

penalized estimation than the LAWS algorithm. In our approach of using trivariate

smooth interactions to model the spatial and temporal interaction, we need more

than 800 coefficients and 14 smoothing parameters. Optimizing such a model with

linear programming routines is time consuming. However, there are approaches that

tackle the spatial and spatial temporal dependence of effects in quantile regression.

Reich et al. (2011) and Reich (2012) for example estimate different time coefficients at
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each location and smooth them in a second step. This is done in a Bayesian setting.

However, they need to apply some approximations to get the spatial dependence and

to be able to deal with a larger number of observations. Contrarily to our smooth

time effect, they rely on a linear time trend.

4 Simulation Study

Applying the GCV to select smoothing parameters in semiparametric expectile re-

gression with interactions is straightforward. Nevertheless the generalized Fellner-

Schall algorithm has, to our knowledge, never been used in expectile regression be-

fore. Therefore, we provide in this section a small simulation study to compare the

goodness-of-fit of both approaches.

The covariates x1, x2 are simulated based on the standard uniform distribution (x1,

x2 ∼ U(0, 1)). As distribution of the error terms a Gaussian distribution is assumed

(εi ∼ N(0, σ2
i )). However, for the variance either homoscedasticity (σi = 2 ∀i) or

heteroscedasticity (σi = xi1+1
1.5

+ xi2+1
1.5

) is considered. As covariate effects, we use two

different functions, similarly as in Wood (2006):

f1(x1, x2) = 1.2π
(

1.2e−(x1−0.2)
2/0.32−(x2−0.3)2/0.42 + 0.8e−(x1−0.7)

2/0.32−(x2−0.8)2/0.42
)

f2(x1, x2) = 2 sin(π x1) + exp(2x2).

Here f1 represents and interaction setting of the covariates, while f2 represents an

additive setting of the covariates. Finally, the response is defined as yi = fj(xi1, xi2)+

εi. For each replication, a data set with 5000 observations is simulated to fit the model

and for all replications an independent test data set with 10000 observations is used
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to estimate the predictive mean weighted squared error (PMWSE) as measure for the

goodness-of-fit, i.e.

PMWSE =
n∑
i=1

wτ (yi)
(
yi − x>i γ̂τ

)2
.

Overall, 100 independent replications of expectile models with τ ∈ (0.01, 0.02, 0.5, 0.1,

0.5, 0.9, 0.95, 0.98, 0.99) are applied. For the estimation the model is specified with

separation of main effects as

y ∼ f(xi1) + f(xi2) + f(xi1, xi2)

with 15 B-spline basis functions in each direction. Since the smoothing parameters

in the Fellner-Schall algorithm have to be sized neither too small nor too large, we

restrict them to be larger than 10−5 and smaller than 105. For improved comparability,

this restriction is also applied in the GCV approach. Figure 1 on page 24 shows the

PMWSE of the estimated models. In each plots the range has a size of 0.10, but the

y-axis is shifted. Without any constraint on the range of the y-axis the plots would be

less comparable, while the same limits for all plots would result in too small graphics

to be interpretable. Thus, we decided to fix the range to 0.1, but let the absolute

values of the limits vary between the figures.

For the central asymmetries similar outputs for the optimization via GCV and gener-

alized Fellner-Schall occur. Comparing more extreme asymmetries, results in differ-

ences between the optimization methods. The Fellner-Schall algorithm has benefits

in the interaction setting (f1), while the GCV has advantages in the additive setting

(f2). However, no clear overall advantage of one method is detectable. Additionally,

the simulation study was also applied with fewer observations (n = 2000). There the

same pattern are detected. Thus, we show the results in the supplementary material
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only. Further analyses shows that the generalized Fellner-Schall algorithm is more

dependent on the starting values.

5 Spatio-Temporal Analysis of Temperatures in Ger-

many

The distribution of temperatures in Germany motivated us for a spatio-temporal

estimation beyond the mean. Therefore, we use data from the German weather

service (DWD, 2017). The response variable is the daily mean temperature in ◦C.

Since we are interested in analyzing the variation within years, the aggregation on

the average per day does not impair the expectile regression. In this example, we

use all stations with at least 24 years of observations in the period 1980 to 2014.

Furthermore, stations above 900m are included if they have at least 3650 values, but

the station on top of the “Zugspitze” is excluded, due to fitting problems based on the

large gap in the elevation scale. So finally we use data of 374 stations, whose locations

are visualized in Figure 2 on page 25. On the right side of this figure, the marginal

frequencies of the daily mean temperature from 1980 to 2014 are plotted jointly with

a Gaussian density of appropriate mean and standard deviation. Even if the marginal

density fits well with the Gaussian density, we model the spatio-temporal distribution

of the daily temperatures with spatio-temporal expectile regression in the following.

Doing so we get not only information on the general temperature pattern in Germany

in different seasons of the year, but also information on areas, where at distinct time

points the spectrum of temperatures is wider or smaller.
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Figure 1: PMWSE of the simulation study. On the left side of each plot the models

with heteroscedastic errors are displayed and homoscedastic errors are on the right.

For each data setting (interaction = 1 or additive = 2) the smoothing parameter

selections are placed next to each other. The size of the range of the PMWSE is fixed

to 0.10.
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Figure 2: Location of the observation stations and marginal density of daily mean

temperature.
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To model the spatial and temporal variation of the temperatures (in ◦C), we apply

the following model

temperature = β0,τ + fτ (elevation) + fτ (year) + fτ (day) + fτ (lon) + fτ (lat)

+ fτ (day, lon) + fτ (day, lat) + fτ (lon, lat) + fτ (day, lon, lat) + ετ

for each asymmetry parameter τ ∈ (0.01, 0.02, 0.5, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, 0.98, 0.99)

separately. In the models elevation is the altitude above sea level of the observation

station (in meters), while longitude (lon) and latitude (lat) specify the location in

Greenwich coordinates. With day, the day of the year is meant. Here we consider the

spatio-temporal effect to be identical for multiple years. To get a smooth transition

for December to January we apply cyclic P-splines for the temporal effect as discussed

in de Boor (1978) and Wood (2017). The variation between the years is considered

via an additive smooth effect. Alternatively, an interaction between the year of the

observation and the spatio-temporal model could be interesting to analyze the cli-

mate change. However, with this four-dimensional covariate structure we would run

into trouble with the curse of dimensionality (Fahrmeir et al., 2013, p. 531). The

same argument applies for an interaction between the spatio-temporal part and the

elevation.

As discussed in Section 2.3, the effects fτ (day), fτ (lon), fτ (lat), fτ (day, lon), fτ (day, lat),

fτ (lon, lat), fτ (day, lon, lat) represent the ANOVA-type decomposition of the spatio-

temporal model, similarly as introduced in Wood (2006), Lee and Durbán (2011)

and Lee et al. (2013) for example. Therefore, each of these effects corresponds to

its own smoothing parameters. However, we are here mainly interested in the time

effect fτ (day), the spatial effect fτ (day, lon) and the interaction between time and

space fτ (day, lon, lat). Thus, the univariate spatial effect in longitudinal or latitudi-
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nal direction only (fτ (lon), fτ (lat)), as well as the interaction of the one-dimensional

spatial effects with time (fτ (day, lon), fτ (day, lat)) are just included to get a valid

design matrix and are interpreted jointly with fτ (lon, lat) and fτ (day, lon, lat).

For the estimation, we apply penalized cubic B-splines with 15 basis functions for the

spline of the year. Moreover, the spatio-temporal effect has 15 basis functions for the

daily effect and 6 respectively 9 basis functions for the univariate spatial marginals.

The spatial effect has only few basis functions in each direction to obtain reasonable

computational times. Furthermore, with a higher number of basis functions we obtain

instabilities at the borders due to the small number of observation stations in certain

regions close to the German border. Lee et al. (2013) proposes to use different number

of basis function in nested designs. However, then we would assume that in the main

effects more information is contained than in the interaction, which we do not assume

in our model. For the estimation of the elevation effect, only 7 basis functions are

applied to avoid arbitrary results due to gaps in the parameter space. The smoothing

parameters are optimized via GCV (see Section 3.2). The results for optimizing the

smoothing parameters via the generalized Fellner-Schall algorithm are similar and

available on demand.

In Figure 3 on page 28, the estimated main effects for elevation and day are displayed.

We see some variation between the mean effects and the effects at the outer parts of

the distribution. While for the low areas the curves are parallel, which indicates ho-

moscedasticity, the outer expectile curves diverge from the mean for higher altitudes.

The difference looks rather small, but we are talking about 2◦C difference between

the 10% and the 90% expectile. Thus, heteroscedasticity occurs in these areas.

For the main effect of the day in the year, as displayed in Figure 3 on page 28 in the
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Figure 3: Main effects for elevation, day and year (including intercept).

middle picture, we can detect that the lower expectiles have a wider range than the

upper expectiles. This means, in winter the lower temperatures are often lower than

expected and in summer the low temperatures are higher than expected. Moreover,

the difference between the lower expectile and the upper expectile is in winter higher

than in the summer. Thus, the expected variance of temperatures in winter is higher

than in summer. Furthermore, the high temperatures in summer are not as high as

they had to be if the underlying process was a homoscedastic Gaussian distribution.

By including the parameter year in the model, we control for varying effects in specific

years. Additionally, we can check if we find some impact of the climate change in

this rather small example. The estimated curve for the trend per year is also plotted

in Figure 3 on page 28 on the right. There we detect some small general increase in

the temperatures, beyond the natural fluctuation.

The spatio-temporal result for τ ∈ (0.1, 0.5, 0.9) is displayed in Figure 4 on page 30

in terms of the spatial effect for January 31st and July 31st. The trends are also valid

for the other asymmetry levels, which are displayed in the supplementary material.



Spatio-Temporal Expectile Regression Models 29

The colors of both rows follow the same legend, the steps between the contour lines

/ color codes are 1◦C. From Figure 4 on page 30 we can conclude two things. The

most obvious one is that the spatial effect in January is different from July, since in

January it gets colder from west to east, while in summer the north is colder than

the south. On the other hand, the variation from the mean is visible. So is the

coast of the Baltic Sea a lot warmer in cold winters than expected for this location.

Furthermore, the coldest winters are detected east of Berlin, while there is a rather

constant effect for this area at the 90% expectile for January 31st. In general the

variation of temperatures on January 31st is larger for the lower expectile than for

the upper expectile. Moreover, in northern Germany the variation for cold summers

(10% expectile) is rather low, while there is a clear cooling towards the sea for warm

summers. Similar patterns can be found for the prediction including the elevation.

To get a better impression on how the spatial effect varies with time, we plotted the

temporal effect of four German cities in the supplementary material. Their locations

are indicated in the spatial effect maps. Out of this figure, we conclude that in

Cologne the winters are a lot warmer than in Munich or Berlin, while the summers

are colder in Hamburg and warmer in Berlin. This differentiation is valid for all parts

of the distribution, but the amplitude of the temperatures is smaller for the upper

part of the distribution than for the lower part.

Additional to the application of the exact location of the observation stations, we

apply the same data but with locations on a regional level. Therefore, we assign to

each location its “Raumordnungsregion” (BBSR, 2017). The “Raumordnungsregion”

is a special German classification of regions between the NUTS 2 and NUTS 3 level.

The advantage of this grid is that the 96 regions have similar size and we have for
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Figure 4: Prediction of the spatial effect for January 31 and July 31, excluding

elevation and intercept.
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each region at least one observation station (with region 506, Dortmund, as the single

exception without an observation station which is therefore merged with region 509,

Emscher-Lippe). To model the spatio-temporal trend based on grid data, we then

use the model of Section 2.4, while the rest of the covariate information remained

unchanged. Thus, the model is built as

temperature = β0,τ + fτ (elevation) + fτ (year) + fτ (day) + fτ (region)

+ fτ (day, region) + ετ .

As expected, the effects for year and elevation as well as the seasonal trend are similar

in this grid approach, compared to the original model. Also the spatial patterns as

displayed in Figure 5 on page 32 show a large similarity to the spatial effect based

on the exact locations of Figure 4 on page 30. We still observe an east-west trend

in winter and a north-south trend in summer. Furthermore, the variation for colder

winter is higher than for warmer winters.

All code and data to reproduce the analysis of this paper are included in the online

supplementary material.

6 Conclusion

In this paper, we present spatio-temporal effects for expectile regression. Spatio-

temporal modeling with interaction terms of P-splines is nowadays a well established

method. However, usually the data are analyzed with some pre-specified parametric

distribution and the errors are assumed to be homoscedastic. Contrarily, in expec-

tile regression no assumption on the distribution of the data is applied. Moreover,
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expectile regression is able to take heteroscedasticity of the data into account. Based

on the idea of weighted least squares, spatio-temporal expectile regression can be ap-

plied with the help of tools from standard least squares regression. So it is a natural

extension of the standard approaches. Furthermore, expectile regression can be used

to check whether the homoscedasticity assumption is valid. Therefore, we check if all

effects are equal for a grid of asymmetry parameters. This is similar to the test of

Newey and Powell (1987). Our analysis showed that the assumption of homoscedas-

ticity is not necessarily fulfilled for the temperature and the application of expectile

regression is necessary. Thus, the effect of elevation varies for the different parts of the

distribution and there are some regions where the spatial effect of the outer expectiles

varies from the mean effect.

In our example we do not have crossing expectiles. However, due to numerical issues

they might happen, in particular when considering a dense grid of asymmetries. Thus,

there exist several ideas to prevent crossing expectiles (see Schulze Waltrup et al.,

2015, and citations therein). These ideas could also be transferred to spatio-temporal

expectile regression, but are beyond the scope of this article. Alternatively to the

analysis of temperatures in Germany, other meteorological parameters like the amount

of rain or the duration of sunshine could also be analyzed and are likely to have effects

beyond the mean. However, several of these parameters feature a spike in zero. If we

would like to analyze these parameters with expectile regression, we would need to

build a new type of model. First, the zeros need to be considered with for example a

hurdle model (Mullahy, 1986). Second, in the following expectile regression the target

set needs to be considered, to prevent predicted negative expectiles. This could be

achieved, for example, by including a link function around the classical expectile

model. However, a fixed link function would impose a distributional assumption
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which is undesired in expectile regression. Thus, the link function should be estimated

jointly with the covariate effects. Generalized additive models with flexible response

function have, for example, been considered in Spiegel et al. (2017), where we modified

the approach of Muggeo and Ferrara (2008) to also include smooth effects in the

predictor. Extending this to semiparametric expectile regression is straightforwardly

possible, but beyond the scope of this paper and left for further research. Alternative

approaches to deal with zero-inflation in spatio-temporal models (Umlauf et al., 2016,

for example) usually deal with distributional assumptions which we avoid in expectile

regression.

Supplementary materials

Supplementary materials for this paper including all code and further graphics are

available from http://www.statmod.org/smij/archive.html. The data set used in

this article is available from https://www.uni-goettingen.de/de/zfs+working+

papers/511092.html.
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