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Origin:
1830—40; un-! + reliable

—Related forms
un-re-li-a-bil-i-ty, un-re-li-a-ble-ness, noun
un-re-li-a-bly, adverb

—Synonyms
undependable, irresponsible, untrustworthy

ACCURACY: EXTENT TO WHICH ONE DEVIATES FROM “TRUTH"

RELIABILITY: PRECISION OF THE STATEMENT

IT IS POSSIBLE TO BE RELIABLE AND INACCURATE: A CONSISTENT LIER



ON THE SEMANTICS OF THE PROBLEM

Z=0+pX
I—0
X = =—*
p
‘ Variable x is an inaccurate (biased) measure of z
corr(x,z) = pyar(x) =1
JVar(x)B2var(x)

D \oriable x is completely reliable (in the correlation sense)



LEARNING “ARCHITECTURE” WITH LINEAR MODELS

- We are given (x,y) data (n=10,000). It looks like this:

yhat= 0.07936+0.24814*x

> cor(x,y) ©
[1] 0.8064256 - o

> cor(y,yhat)
[1] 0.8064256

y - yhat

RESIDUALS DISPLAY
SINUSOIDAL BEHAVIOR
WHY?




TRUE MODEL
> e<-rnorm(10000,0,sqrt(9))
> x<-runif(10000,-30,30)
> a<-0.10
> b<-0.25
>y<-a+b*x+sin(x)+cos(x)+e

> model<-Im(y~x+sin(x)+cos(x))
>Estimated coefficients:

>(Intercept) X sin(x) cos(x)
>0.1030 0.2489 0.9518 0.9433

10

y - yhatgood

RESIDUALS LOOK RANDOM
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WE GENERATE A TESTING SET (n=10,000) AT THE SAME VALUES OF X

> enew<-rnorm(10000,0,sqrt(9))
>ynew<-a+b*x+sin(x)+cos(x)+enew

CALCULATE PREDICTIVE MEAN SQUARED ERROR: “BAD” +*GOOD” MODELS
> msepredbadmodel<-sum((ynew-yhat)**2/10000)
> msepredbadmodel= 9.7257

> msepredgoodmodel<-sum((ynew-yhatgood)**2/10000)
> msepredgoodmodel= 8.7293

CALCULATE PREDICTIVE CORRELATIONS

> cor(yhat,ynew)= 0.807
> cor(yhatgood,ynew)= 0.829

MSE(Good)/MSE(Bad)= 0.90
MSE(Bad)/MSE(Good)= 1.11

Cor(BAD)/Cor(GOOD)= 0.97




WHAT HAVE WE LEARNED FROM A LARGE CORRELATION?

> |Im(yhat~yhatgood)

Coefficients:

(Intercept) yhatgood
0.005653 0.953468

yhatgood
0
|

yhat

Point 1: HAS THE LINEAR MODEL LED US TO UNDERSTAND “ARCHITECTURE"?



Reliablility: standard formulae

v 4 PEV

reliability = 1 Var(u)

O e VRN ="
unreliability = 1 — reliability Var(u)

‘ PEV = Var(( — u) = Varg[E(G - u)|0] + Eg(Var[(G — u)[a])
= Eg(Var[(U—u)[u])
= E4 (Var[ult])
‘ Var(u) = Eg(Var[ula]) + Vars (E[u[a])
E;(Var[ult]) < Var(u)
Under MULVN = E;(Var[u[t]) = Var[u|U]

IN SOME NON-GAUSSIAN MODELS, POSTERIOR VARIANCE CAN BE SOMETIMES LARGER THAN PRIOR
VARIANCE, LEADING TO NEGATIVE RELIABILITY , AND POSITIVE UNRELIABILITY.

POINT 2: WHAT WE CALL “RELIABILITY” IS VERY MUCH TAILORED FOR NORMAL DISTRIBUTIONS AND
LINEAR MODELS



ILLUSTRATION OF SOMEPOINTS

Standard analysis (fixed X)

Genotypic value (signal from genome) Assumption

e

y=f+e=XB+e
Bayesian or Frequentist?

(more later) ‘ ﬂlGﬂ ~ N(O IG'B)

E(YIX,B) = XP
E(yX) =0
Var(y|X,05,0%) = XX'05 + log



Prediction of marker effects: BLUP
(iild marker effects)

62 ] 5
X'X + —SI B =Xy
Gﬂ / Assume inverse exists

2 0 -1/
[I + Z—%(X’X)‘l B = (X'X)XYy

-1
A 2 ~
B = [| 4 _gg (x'x)l} Pos = SHRINKAGE
p

Prediction of signal (Xp) to phenotype

Var(Xply) = XVar(ﬂIy)X’

-1
= x[ (x X)‘l} X'c2
o



Prediction of future record

E(X*B+erly, X, X*) = X*E(fly, X)
— -1

: _
* 9 — N

= X*| 1+ == (X'X) "1 Pos

Op

Var(X* B +e*|y, X, X*) = X*Var(Bly, X)X* + 1*o3



GAUSSIAN PROCESS ANALYSIS (IID MARKER EFFECTS)

y=Ff+e=Xp+e
,B N(O, l52) - [Read Falconer and Mackay IQG]

~ F
E(y|X, ,B) = Xf - [Genotypes vary at random: population Genetics]
E(y|B) = ExE(YX, B) = E(X)p )
E(y) = E5[E(X)B] = ECOE(B) = 0.

— Big assumption

Are frequencies effect-dependent? Are effects frequency dependent?
[TURELLI, ZHANG&HILL, MACKAY WITH MARKERS AND ‘




Var(y) = Var(f) + Var(e) = Var(f) + lo3

Var(f) = Var(Xp)
= Ex(Var(Xg|X) + Varx[E(XB|X)]
= Ex[XVar(p)X']) + Varx[XE(p)]
_ EX[XX’G%] + Varx(0) BP= “best predictor”

Covariance (MULVN assumed)
) /
matrix of signal ‘ = opEx[XX], /

[%I+Var—1(f) f = iy
Oe -

|:I + "—gE—l[xx’]_? =
2 =X =Y

Op _
EXA[XX']| E [xx']+6—5| f =
X X 02 y
_ g
- By
Ex[XX'T+ 251 |T = Ex[XX'ly
o
_ p



Under multivariate normality

Var(fly) = Var(f) — Cov(f,y)Var~t(y)Cov'(f,y)
= Var(f) — Var(f)[Var(f) + 2] *Var(f)
— 62EX[XX'] - 63Ex[XX'][63E x[XX'] + 162] " 62E x[XX']

-1
-1 / 2
= 63Ex[XX'] - 03EX[XX". EXLXX] |:I + G;EX[XX’]:| G3Ex[XX']

2
Op Op

u Op _

- _
- {I —| 1+ ZEEXXX']

Proper assessment of posterior uncertainty requires knowledge
of the genotypic distribution
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ind,marker —
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X11

X21
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Under HW

p p
(Zx,) Z ar(x.,)+ZE (Xij)
j=1 j=1
p
ZZpJqJ + Z(pj - )’

(1-2p;q;) = p- ZZPJQJ

=1

Cov(Xy;Xp) + Z E(X1,)E(X2;)
=1

2¢p;q; + Z(p, a;)°

=1

p
E(Z X1]X21>
j=1

g A g

I
o

pi +a; —2pjqi(1 - ¢)
J

Cov(xy,X2,) = pf + 0 - 2pjj(1 - ¢) - (p; — @)
= 2pq¢
-How to obtain sensible estimates? Is XX' a good estimate of E(XX")?

-Should we assume HW and use estimates of allelic frequencies and
of @ (i,j) as if there were no selection, etc.?



Future record:
f* = X*B+e*
Em)  E(Ff) = E(f) + Cov(X* B, BX )Var(F)f
m E(f*ly) = EqyE([f,y) = EqyE(T[f)
m = Ef”y[Cov(X*ﬂ,ﬁX’)Var‘l(f)f]

Cov(X* B, BX') = Cov[E(X*B, BX'|X*,X)] + E[Cov(X*B, BX)[X*, X]
= 62E[X*X]

cuato JRY Eqy[ o3EDXC X I(XX 0 + 162) |
= o3E[X*X'JE[ (XX'0% + 103) ™ | T

m DOES ANYBODY KNOW HOW TO COMPUTE THE ABOVE?
(CALCULATING THE PEV IS EVEN MORE INVOLVED)



IS MY MODEL “RIGHT"?

TAKING MODEL UNCERTAINTY INTO ACCOUNT BY MODEL AVERAGING

p(oly) = > _ p(Oly, M)p(Mly)
= Y p(0ly, M)p(Mly)dMm

THE PUNCH LINE: VARIANCE OF PREDICTION ERRORS TAKING MODEL
UNCERTAINTY INTO ACCOUNT

Var(ly) = En[Var(dly,M)] + Var[Ey[6ly,M]]

Average PEV Variance among predictions
from different models




POINT 3: CROSS-VALIDATION

(take model uncertainty into account:
never did this in the BLUP era)

=>» A. Prediction and goodness of fit are
different ball games (a model that fits well to
training data may have atrocious predictive
ability

=>B. Any cross-validation scheme (e.g., k-
folds) has a cross-validation distribution



3A. GOODNESS OF FIT (TRAINING= TRN) vs. PREDICTIVE ABILITY (TESTING= TST)
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3B.

CROSS-VALIDATION UNCERTAINTY
(Erbe et al. 2010)

correlation(TBV,GEBV) - trait: milk yield (kg)

8 A+G

= G*

03.08.2010

300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

number of animals in the validation set (n total=2294)

WCGALP Leipzig



Recapitulating:
How should “reliability” be measured?

“Apparent reliability”: model dependent

Formulae for linear model with Gaussian assumptions
(even if “true”) do not carry universally to other models

There is model uncertainty...

There is cross-validation uncertainty, possibly
stemming from heterogeneity in training and testing
samples, or in environments

Should strive for “empirical” measures of “reliability” :
cautious with model-derived expressions

Not obvious how to develop a, say, sire specific
cross-validation reliability



Things perhaps one should do

mp

1. Look at "hat” matrix

B = (X'X+I10)XYy
7 = X(X'X +10) Xy

oy 1y
ay_X(><X+|;L)x

Hmry = X(X/X + |l)_1X/

,B TST — (y y) 137 VAR
Vst = Y'Yy
Hrst = 9(9'9)71y

Influence depends
on data structure

Influence depends
on training data




Example: 5000 sires, heritability= 0.20, Var(y)= 1000,

Values

0.0015 0.0025 0.0035

0.0005

N(TRN)=Poisson(100), n(TST)=Poisson(150)
Predictor(BLP sire), Predictand(Future performance of sire progeny)

TESTING SET

Diagonals of hat matrix Diagonals relative to maximum

1.0

— o

0.8

Values

04

0.2

0 1000 2000 3000 4000 5000

1000 2000 3000 4000 5000

Cluster
Cluster



Relative Hat

1.0

0.8

0.6

0.4

0.2

Reliability vs. Relative Hats

0.80 0.82 0.84

Reliability

0.86




Things perhaps one should do

2. Bootstrap CV regression line or CV

correlation (no |ID)

Bootstrap Distribution: Correlation (PTA,Future Performance) Bootstrap distribution: slope
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ootstrap Sample Cor

500 bootstrap samples E



L-O-O Corr

0.7402 0.7406

0.7398

Things perhaps one should do

3. Calculate k-out statistics

Leave-one out Squared CV Correlation: TST

I I I I I I
0 1000 2000 3000 4000 5000

Index

L-O-0

0.7402 0.7406

0.7398

L-O-O CV Squared Correlation: TST

0.78

I
0.80

I I
0.82 0.84

Model REL: TRN

0.86




0 100 200 300 400 500 600 700

Things perhaps one should do

4. Bootstrap CV procedure (in K-folds K is low)

Training correlation bootstrap BLPs: 100 clusters Testing correlation bootstrapped performance: 100 clusters
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Correlation

50 Bootstrap samples of each
of 100 clusters




Correlation

0.78 0.80 0.82 0.84 0.86

0.76

Predictive Correlation by Bootstrap Sample

10 20 30 40

Sample

50




Frequency

10

Bootstrap Distribution of Predictive Slopes

0.85

| | | |
0.90 0.95 1.00 1.05

Intercept

50 Bootstrap samples of each

of 100 clusters

1.10



Within-cluster Bootstrap Correlation
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Things perhaps one should do

5. Develop candidate-specific CV reliabilities
A procedure (have tried others...)

Two types of bootstrap correlations: among and within clusters

Fori = bootstrap sample and j = cluster

1+p;
1-p]

1+ pi
1—pi.

+ log

Lij = %['09 ]

Estimate (ANOVA)
. Var (z;, WITHIN CLUSTERS)
 Var(z;, AMONG CLUSTERS)

Form

o B . _
G = 2.+ 5 =2~ 1.]

Invert

. exp(2c;) -1
J exp(2c;) +1

rel;(CV) = r?




THE LINEAR MODEL LEADS US TO EXPECT, FOR EACH CLUSTER

rel(BLP,future mean) = NTRN NSt

N
TRN+4=h% TST+4-h2
h2 h2

rel(BLP, future mean)

logit[rel(BLP, future mean)] = log
1 —rel(BLP, future mean)

DO THE EMPIRICAL RELIABILITIES PREDICT THE EXPECTED RELIABILITIES
WHEN THE MODEL IS TRUE?



Model reliability

Empirical vs. Expected reliability of future performance
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Model logit(rel)

1.5

1.0

0.5

0.0

Empirical vs. Expected logit(reliability of future performance)
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Creating havoc: model derived
measures reliabilities ignore:

Heterogeneous variance
Selection
Preferential treatment

ALL THESE ARE
ELEMENTS OF MODEL
UNCERTAINTY




Variance

12000

2000 4000 6000 8000

0

« 1500 CLUSTERS, h?. TRAINING RESIDUAL VARIANCE= 950

* nqry ~Poisson(100), nygr~Poisson(150)

« TESTING RESIDUAL VARIANCE VARIES AT RANDOM OVER

CLUSTERS: x2 (scale=950, df=8)

Residual variance of future performance, by cluster

Density
6e-04 8e-04

4e-04

2e-04

Index

Residual variance of future performance
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Variance



Future mean performance

110 120 130 140 150

100

Future Performance vs BLP

-10 0 10

BLP (cluster)

20

Density

20

15

10

Bootstrap distribution: slope
B=500

I
0.94

I I I I I
0.96 0.98 1.00 1.02 1.04

Slope

I
1.06



BUILDING SELECTION

(zero-inflated Poisson)

BLP(cluster i
AiTsT = AiTRN eXp( ( 10 )

Prob(njtst = 0|Zero state) = 1 — ®[BLP(cluster 1)]
oi = Bernoulli(1,Prob(njrst = 0|Zero state)
Nitst~0 % 8; + (1 — 9;)Poisson(Aitsr)

A “good” training BLP :

» decreases probability of “structural” zero
increases Poisson parameter of testing cluster size




Probability
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. Perfect zero probability vs BLP
Perfect Zero probability, by cluster
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Median probability= 0.37



Size

150

100

50

Testing set cluster size Testing set cluster size

o
o p—
N~
o
o p—
©
o
O p—
Te]
>
2 3
(0] <
>
(ox
o
T 8 —
o
o p—
AN
o
O p—
N O T T e S T o - —l—‘
T T | | I T T |
500 1000 1500 0 50 100 150 200
Cluster Cluster size

« 719 clusters do not have data in testing set

» Testing set cluster size varies between 2-179




PT (sd units)

BUILDING PREFERENTIAL TREATMENT

IN ADDITION TO SELECTION

A = 0.1[max(residualyst) — min(residual rsr ]
Vij,tsT = p + cluster; + A x ®[BLP(cluster 1)] + €jj 1st

Preferential treatment in residual SD units Density of PT (sd units)
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Density

10

Bootstrap distribution: slope
B=200

I I I I I
1.00 1.05 1.10 1.15 1.20

Slope

Median of bootstrap distribution= 1.08




Density

10

Bootstrap distribution (B=200): Bootstrap distribution (B=200):
Selection-PT and Heterogeneous variance Selection-PT and Heterogeneous variance
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0.95 1.00 1.05 1.10 1.15 1.20 0.95 1.00 1.05 1.10 1.15 1.20
Slope Slope
Df=8 for scale inverted chi-square Df=4 for scale inverted chi-square

Median of bootstrap distribution= 1.08 in both cases




* These are just one of the few complications that one can think of

* How can we arrive at credible measures of reliability when one cannot

. even get good point estimates of the CV slope?

* Need to think about data driven measure of CV reliabilities instead of
model driven quantities

| residual; (CV regression) |

triweight; = 1

max|residual; (CV regression) |

. . 2
i residual; (CV regression
bisquare; = 1 — ( (CV reg ) )

6xmedian| |residual; (CV regression) | ]



Model reliability

0.78

0.70 072 0.74 0.76

0.68

0.66

Relationship between CV weights and
model derived reliability of future

Relationship between CV logit (weights) and
model derived logit (reliability) of future

performance performance
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THERE IS NO RELATIONSHIP BETWEEN CV PERFORMANCE

(HIGHER WEIGHT=> BETTER ALIGNMENT)
AND MODEL DERIVED RELIABILITY




Weight

0.8

0.6

0.4

0.2

0.0

BRING INTO THE PICTURE AMOUNT OF INFORMATION

IN TRAINING AND TESTING SETS

Triangular weights from CV regression:

Triangular weights from CV regression weighted by TRN and TST cluster size

(¢]

0.6

triweights
04

0.2

0.0
|

Cluster

W1rN= Neuster TRN /Ma&X (Nguster TRN)
WTST= nc:Iuster,TST /max (ncluster,TST)



Model reliability

0.78

0.70 0.72 0.74 0.76

0.68

0.66

Relationship between CV weights and
model derived reliability of future

performance

logit (model reliability)

0.0 0.2 0.4

CV weights

0.6 0.8

1.2 1.3
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08 09 1.0

0.7

Relationship between CV logit (weights) and
model derived logit (reliability) of future
performance

logit (CV weights)




LIFE IS DIFFICULT...

« NOT IMMEDIATELY OBVIOUS HOW THESE
RELATIONSHIPS GENERALIZE TO "ANIMAL" OR
MORE GENERAL MODELS

« SAME HOLDS FOR GENOME-ENABLED PREDICTION

« CROSS-VALIDATION (SHOULD HAVE DONE THIS
40 YEARS AGO) GIVES AN OPPORTUNITY TO THINK
"OUTSIDE OF THE BOX"

« SHOULD DO THIS MORE OFTEN (...La vita & bella)
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