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Abstract

• We give an overview of a broad class of statistical model
building tools-regularization methods-that have come from,
and populate both Statistics and Computer Sciences.

• Relations between Bayes estimates and this class is noted.

• Tuning of these models for prediction and for model selection
will be noted.

• Interplay between Statisticians and Computer Scientists in
extending this rich class of methods is noted.

• We proceed by example.
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1. The Regularization Class of Statistical Models.

2. Example: The cubic smoothing spline.

3. Cost functions.

4. Penalty functionals.

5. Relation to Bayes estimates.

6. More on quadratic penalty functionals.

7. Example: Spline ANOVA models:local global warming trends.

8. Classification: The support vector machine (SVM).

9. Example: Classification of satellite radiance profiles.

10. l1 penalties, the LASSO, Basis Pursuit, LASSO-Patternsearch.

11. Examples: Risk of progression of myopia, classification of
rheumatoid arthritis SNP data.

12. Comments and conclusions.
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Regularization Class of Statistical Models

• y ∈ Y: The observations, y1, · · · , yn.

• x ∈ X : The attribute vectors, x(1), · · · , x(n).

• f ∈ H: The model, to be found, relates x ∈ X to y ∈ Y. H is
the class of functions in which f is to be found.

• C(y, f): The cost-measures goodness of fit of the model to the
data.

• Jλ(f): Penalty functional on f , constrains complexity/degrees
of freedom of the model.

The model f is found as the solution to: min f ∈ H:
n∑

i=1

C(yi, f(x(i)) + Jλ(f).

The (set of) parameter(s) λ controls the tradeoff between fit and
complexity, a. k. a bias-variance in some contexts.
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One simple example leads
to the cubic smoothing
spline.

• y a real number.

• x ∈ [0, 1].

• f ∈ W 2
2 (Sobolev

space of functions with
square integrable sec-
ond derivative).

• C(y, f) = (y − f(x))2.

• Jλ(f) =
∫ 1

0
(f ′′(x))2dx.

Top: λ too small; Middle λ too big; Bottom λ just right, chosen by
Generalized Cross Validation GCV . Dotted line = “truth”.
Golub, Heath and Wahba, 1979 SVD, Craven and Wahba, 1979).
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Cost Functions C(y, f)

(Univariate)

Regression:

Gaussian data (y − f)2

Bernoulli, f = log[p/(1− p)] −yf + log(1 + ef )

Other exponential families other log likelihoods

Data with outliers robust functionals

Quantile functionals ρq(y − f), ρq(τ) = τ(q − I(τ ≤ 0))

Classification: y ∈ {−1, 1}
Support vector machines (1− yf)+, (τ)+ = τ, τ ≥ 0, 0 otherwise

Other ”large margin classifiers” e−yf and other functions of yf

Multivariate (vector-valued y) versions of the above.
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Penalty Functionals Jλ(f)

Quadratic (RKHS) Penalties:

x ∈ T , some domain, can be very general.

f ∈ HK , a Reproducing kernel Hilbert Space (RKHS)

of functions, characterized by some positive

definite function K(s, t), s, t ∈ T . λ‖f‖2HK
, etc.

lp Penalties:

x ∈ T , some domain, can be very general.

f ∈ span {Br(x), r = 1, · · · , N},
a specified set of basis functions on T .

f(x) =
∑N

r=1 crBr(x) λ
∑N

r=1 |cr|p

λ → (λ1, · · · , λq) Combinations of RKHS and lp penalties.
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Bayes Estimates: Let C be a log likelihood.

• RKHS penalties: λ‖f‖2HK
. Let fλ be the minimizer of

n∑
i=1

C(yi, f(x(i))) + λ‖f‖2HK
.

fλ is a Bayes estimate for the zero-mean Gaussian prior with
covariance some multiple of K(s, t), s, t ∈ T , controlled by λ.

• l1 penalties: λ
∑N

r=1 |cr|. fλ is a Bayes estimate for some
multiple of independent prior double negative exponential
distributions on the cr, controlled by λ.

• Remark: (Low rank) improper priors are allowed in RKHS
penalties and there are then no penalties on the components -
in the cubic smoothing spline example the estimate shrinks to
linear in the large λ case. (Similar for double neg. exponential.)
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Some Tuning References
Not complete. May not be the earliest reference. Not guaranteed.

• Unbiased Risk C. Mallows. Some comments on Cp. Technometrics, 15:661–675, 1973.

• AIC H. Akaike. A new look at the statistical identification model. IEEE Trans. Auto. Control,
19:716–723, 1974.

• Leaving-out-one G. Wahba and S. Wold. A completely automatic French curve. Commun.

Stat., 4:1–17, 1975.

• GCV-illposed G. Wahba. Practical approximate solutions to linear operator equations when
the data are noisy. SIAM J. Numer. Anal., 14:651–667, 1977.

• Unbiased Risk M. Hudson. A natural identity for exponential families with applications in
multiparameter estimation. Ann. Statist., 6:473–484, 1978.

• BIC G. Schwartz. Estimating the dimension of a model. Ann. Statist., 6:461–464, 1978.

• GCV G. Golub, M. Heath, and G. Wahba. Generalized cross validation as a method for
choosing a good ridge parameter. Technometrics, 21:215–224, 1979.

• GCV P. Craven and G. Wahba. Smoothing noisy data with spline functions: estimating the
correct degree of smoothing by the method of generalized cross-validation. Numer. Math.,
31:377–403, 1979.

• GML G. Wahba. A comparison of GCV and GML for choosing the smoothing parameter in
the generalized spline smoothing problem. Ann. Statist., 13:1378–1402, 1985.

• Randomized Trace D. Girard. A fast ‘Monte-Carlo cross-validation’ procedure for large least
squares problems with noisy data. Numer. Math., 56:1–23, 1989.

• Randomized Trace M. Hutchinson. A stochastic estimator for the trace of the influence
matrix for Laplacian smoothing splines. Commun. Statist.-Simula., 18:1059–1076, 1989.

• GACV D. Xiang and G. Wahba. A generalized approximate cross validation for smoothing
splines with non-Gaussian data. Statistica Sinica, 6:675–692, 1996.
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• GACV-multiple outcomes X. Lin. Smoothing spline analysis of variance for polychotomous
response data. Technical Report 1003, PhD thesis, Department of Statistics, University of
Wisconsin, Madison WI, 1998. Available via G. Wahba’s website.

• SVM T. Joachims. Estimating the generalization performance of an SVM efficiently. In
Proceedings of the International Conference on Machine Learning, San Francisco, 2000. Morgan
Kaufman.

• GACV-SVM G. Wahba, Y. Lin, and H. Zhang. Generalized approximate cross validation for
support vector machines. In A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans,
editors, Advances in Large Margin Classifiers, pages 297–311. MIT Press, 2000.

• GACV-clustered outcomes F. Gao, G. Wahba, R. Klein, and B. Klein. Smoothing spline
ANOVA for multivariate Bernoulli observations, with applications to ophthalmology data,
with discussion. J. Amer. Statist. Assoc., 96:127–160, 2001.

• SVM O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple
parameters for support vector machines. Machine Learning, 46:131–159, 2002.

• GACV-l1 H. Zhang, G. Wahba, Y. Lin, M. Voelker, M. Ferris, R. Klein, and B. Klein.
Variable selection and model building via likelihood basis pursuit. J. Amer. Statist. Assoc.,
99:659–672, 2004.

• GACV-multicat-SVM Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector
machines, theory, and application to the classification of microarray data and satellite
radiance data. J. Amer. Statist. Assoc., 99:67–81, 2004.

• B.Efron. The estimation of prediction error: Covariance penalties and cross-validation. J.

Amer. Statist. Assoc., 81:619–642. (with discussion), 2005.

• GACV-l1,BGACV W. Shi, G. Wahba, S. Wright, K. Lee, R. Klein, and B. Klein.
LASSO-Patternsearch algorithm with application to ophthalmalogy data. Technical Report
1131, Department of Statistics, University of Wisconsin, Madison WI, 2006.

• M. Yuan. GACV for quantile smoothing splines. Comp. Stat. Data Anal., 50:813–829, 2006.
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More on Quadratic (RKHS) Penalties

Are defined by a positive definite function K(s, t), s, t ∈ T . The
domain T can be any domain on which you can define a positive
definite function:

T = (. . . ,−1, 0, 1, . . .)

T = [0, 1]

T = Ed (Euclidean d-space)

T = S (the unit sphere)

T = the atmosphere

T = {♦,4,♥} (unordered set)

More...
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More domains:

T = A Riemannian manifold

T = A collection of trees

T = A collection of graphs

T = A collection of proteins

T = A collection of gene microarray chips

Vector sums and products of domains are allowed.
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Quadratic (RKHS) penalties:

• To every positive definite function K(s, t), s, t ∈ T there
corresponds a unique RKHS and vice versa.

• Consider the optimization problem: find f ∈ HK to minimize
n∑

i=1

C(yi, f(ti)) + λ‖f‖2HK
.

The representer theorem says, under mild conditions on a
convex C, the minimizer has the form

fλ(t) =
n∑

i=1

ciK(ti, t)

for some c = (c1, · · · , cn).

• Furthermore ‖f‖2HK
is then given by

∑
i,j cicjK(ti, tj) so that

f may be computed by solving a convex optimization problem
with a finite number of unknowns.
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Tensor sums and products of positive definite functions are positive
definite. Spline ANOVA models:

A Time and Space Model for Global Warming.

t = (x, P ), x = 1, · · · 30, (year) P = space =(latitude, longitude).

H =
[
[1(1)]⊕ [φ]⊕H(1)

s

]
⊗

[
[1(2)]⊕H(2)

s

]
time space

φ is linear in time orthogonal to the one dimensional constant
function [1(1)].

Expands out to 6 terms - next slide.
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The trend by space term below will show how the warming trend
varies with latitude and longitude

H = [1] ⊕ [φ] ⊕ [H(1)
s ] ⊕ [H(2)

s ]

f(x, P ) = µ + dφ(x) + f1(x) + f2(P )

= mean + global + time + space

time main main

trend effect effect

⊕ [[φ]⊗H(2)
s ] ⊕ [H(1)

s ⊗H(2)
s ]

+ φ(x)fφ,2(P ) + f12(x, P )

+ trend + space−
by space time

effect interaction
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Trend by Space Effect-Global Warming

Average Nov. Dec. Jan. surface temperature, 1961-1990. Local
trend as a function of latitude and longitude. Note warmer swath
from the Upper Midwest to Alaska, noticeably affecting the X-C ski
season in the Upper Midwest. 1000 stations (dots) for 30 years
with missing data. Solve a large linear system.
Luo, Wahba and Johnson, Spatial-temporal analysis of temperature using smoothing spline
ANOVA, J. Climate 11, 1998, Chiang et. al. 1999
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Classification: The Support Vector Machine (SVM)

The Support Vector Machine for classification is very popular
among Computer Scientists, for good reason, to be explained.

The simplest case is the “Standard” two class situation y = ±1, a
“representative” training set is available, and costs for the two
types of misclassifications are the same. Given {yi, ti}, i = 1, · · · , n,
find f ∈ HK to min

n∑
i=1

(1− yif(ti))+ + λ‖f‖2HK
,

where (τ)+ = τ if τ > 0 and 0 otherwise.

To classifiy a future object with attribute t∗: the + class if
fλ(t∗) > 0 and the −class if fλ(t∗) < 0. Minimize a quadratic
functional subject to a family of linear inequality constraints.
Solutions tend to be sparse.
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Classification: The SVM (continued).

The SVM may be compared with the penalized likelihood estimate,
which estimates the probability that an object is in the +1 class,
by recoding Bernoulli data (y ∈ {0, 1}) as y ∈ {−1,+1}. With this
recoded data the Bernoulli log likelihood −yf + log(1 + ef )
becomes log(1 + e−yf ). For classification the log likelihood is
replaced by the so-called hinge function (1− yf)+. Observe that
now both the log likelihood and the hinge function depend on yf ,
the so-called “margin”.
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Let C(y, f) = c(yf)) = c(τ), τ = yf . Comparison of the
misclassification function c(τ) = (−τ)∗ = 1 if τ ≤ 0, and 0
otherwise, the hinge function (1− τ)+ and the log likelihood
function log2(1 + e−τ ). Any strictly convex function that goes
through 1 at τ = 0 will be an upper bound on the misclassification
function (−τ)∗ and will be a looser bound than some SVM (hinge)
function (1− θτ)+.
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Penalized log likelihood estimates the log odds ratio
f(x) = log[p(x)/(1− p(x)], while the SVM is estimating the sign of
the log odds ratio, just what you need for classification. (Yi Lin
2002). Vertical scale is 2p(x)− 1 for “truth” and logistic regression
and fλ(x) for the (tuned) SVM. Data were 300 equally spaced
Bernoulli observations from “truth”.
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The (tuned) multicategory SVM of Lee, Lin and Wahba (2004).
Data are functions of radiance observation vectors from the MODIS
satellite and the categories are clear sky, water clouds, and ice
clouds. Note a few outliers-probably human error.
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Some comments on the SVM and penalized likelihood:

• If you want the probability that an object is in class 1, then you
want to use the penalized log likelihood. The SVM does not
estimate a probability, despite many erroneous remarks to this
effect in the literature.

• However, when the classes are (nearly) separable, or you are in
high dimensions, then the penalized likelihood estimate will
cause computational trouble, since, as p(x) tends to 0 or 1,
f(x) tends to ±∞.

• Various flavors of the SVM have become highly popular in the
applied machine learning literature they work very well in high
dimensions and/or, when classes are (nearly) separable.

• Many in-sample competing tuning methods can be found in the
literature. When n large, a withheld tuning set is popular.
Much activity-graphs, trees, heterogenous data sources ...
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l1 penalties, the LASSO, Basis Pursuit (1994).

l1 penalties give sparse so-
lutions. Note the ellipse
meets the diamond at a
vertex- where c1 = 0.

c1

c2

l1 l2

f(x) =
∑N

r=1 crBr(x), where the basis functions, {Br} are chosen
with respect to the practical problem at hand.

Given {yi, x(i), i = 1, · · ·n}, find c = (c1, · · · cN ) to min

n∑
i=1

C(yi, f(x(i))) + λ

N∑
r=1

|cr|

It is well know that the l1 penalty tends to give sparse solutions,
that is, many of the cr = 0, unlike lp penalties for p > 1.
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Thus the LASSO is popular when it is appropriate to start with a
large number of basis functions (when N >> n, known as basis
pursuit) in the expectation that only relatively few of the cr are
non-zero. The number of non-zero coefficients is controlled by the
choice of λ. Many variations have been proposed including multiple
tuning parameters, weighted and grouped coefficients. A growing
literature exists on the theoretical properties of this class when C is
squared error, but no doubt extends to the general case.
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There are a number of interesting practical issues, not completely
solved. They include:

• Choice of λ. Before thinking about this it is good to consider
what the objective of the analysis is. Assuming that the “true”
model (or the nearest model of the assumed form to some
“true” model) is sparse, it is good to recognize that choosing λ

for best prediction is not necessarily the same as choosing λ to
extract just the right non-zero coefficients. (One way to think
about this is to contemplate the difference between AIC
(prediction) and BIC (variable selection)).

• Numerical methods for minimizing a convex functional with
possibly a very large number of linear inequality constraints, or
other formulation of this optimization problem. Global vs.
sequential methods for choosing the non-zero coefficients in the
LASSO very large N context.
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The LASSO-Patternsearch Algorithm

We will describe how the two issues:

• Prediction vs. Model Selection, and

• Large scale computation

were handled via two recent examples with Bernoulli response data,
C(y, f) = −yf + log(1 + ef ),

Example 1. Risk of progression of myopia in a demographic study.
Example 2. Classification of rheumatoid arthritis SNP data in a
case-control study.

W. Shi, G. Wahba, S. Wright, K. Lee, R. Klein, and B. Klein. LASSO-Patternsearch algorithm
with application to ophthalmalogy data. Technical Report 1131, Department of Statistics,
University of Wisconsin, Madison WI, 2006.
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There are several assumptions behind the algorithm we will call
“LASSO-Patternsearch”.

• y ∈ {0, 1}, x a p-vector of zeroes and ones, possibly long.

• For all or nearly all of the components of x the possibly “risky”
direction is known a priori, and is coded as 1.

• It is desired to see if high order interactions/synergy between
the components of x are present.
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Example 1: Risk of progression of myopia in a
demographic study.

Applied to to “progression of myopia” from the Beaver Dam Eye
Study, BDES 1 to BDES 2, five years apart. n = 876 records of
persons aged 60-69 at BDES 1. A person whose “worse eye” scored
at a decrease of .75 diopters or more is labeled y = 1, and 0
otherwise. Which variables or clusters of variables are predictive of
this outcome? Consider seven variables of possible interest and
want to see if there are high order interactions among the variables.
The continuous variables are dichotomized so as to be able to do
this.
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Table 1: Trial Variables and Cutpoints

variable description binary cut point

(higher risk )

X = 1)

X1 sex sex Male

X2 inc income < 30

X3 jomyop juvenile myopia < 21

X4 catct cataract 4-5

X5 pky packyear >30

X6 asa aspirin not taking

X7 vtm vitamin not taking

There are 27 possible subsets (clusters) of variables that could be
important.
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For the LASSO-Patternsearch the basis functions will be all
products of the components of x = (x1, x2, · · · , xp) up to order q:

Bj1,j2,..,jr (x) =
∏

xj1xj2 ...xjr , r = 1, · · · , q.

Thus, Bj1,j2,...,jr
(x) = 1 if x is a p-vector which has ones in each of

the j1, j2, · · · , jr positions, and Bj1,...,jr
(x) = 0 otherwise. The

number N of basis functions is then

N =
(

p

0

)
+

(
p

1

)
+

(
p

2

)
+ ... +

(
p

q

)
.

For q = p, (all possible patterns), N = 2p. For the myopia data
there are 27 = 128 coefficients, or, not counting the constant, 127
possible “patterns”.
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Note that the conditional distribution of one Bernoulli random
variable y given p other Bernoulli random variables x1, · · · , xp has
2p paramteters and can be expanded in complete generality in these
basis functions. The representation will be most compact, however,
if all the risky variables are coded with the risky direction as 1.

A special purpose algorithm which can handle N up to 4000 on our
3.4 GHz cpu and 4Gb memory workstation has been designed by
our CS collaborator Stephen Wright working with Weiliang Shi is
in Shi et. al., see also Steve Wright’s June 07 talk “Solving l1

Regularized Regression Problems” in his talks directory at
http://pages.cs.wisc.edu/~swright/
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The LASSO-Patternsearch has the following steps:

Step 1. Minimize
∑n

i=1 C(yi, f(x(i))) + λ
∑N

`=1 |c`|, choose λ by
GACV -what is GACV?

Step 2. Enter all basis functions with ` : |c`| > 0 into a parametric
logistic regression model:

f(x) =
∑

`:c`>0

a`B`(x)

and fit. Twelve patterns passed Step 1. Four of them are
significant at significance level q =96.92%. Choose q by
BGACV -what is BGACV?
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Step 2. continued. Estimates and q = 96.92% confidence intervals
in parametric logistic regression for the twelve patterns (plus
constant) that passed Step 1, |cr| > 0. Red dots at the estimates
indicate four significant coeficients.
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• What is GACV? What is BGACV? Begin with ordinary
leaving-out-one cross validation CV (λ):

CV (λ) =
n∑

k=1

C(yk, f
[k]
λ (x(k)))

where f [k] is the estimate with the kth data point left out.

• Make several approximations. Perform some averaging.

• End result is: GACV: find λ to min

GACV (λ) =
n∑

i=1

C(yi, fλ(x(i)))+trH(λ)
n∑

i=1

yi(yi−pλ(x(i)))/(n−NB),

where H(λ) is the inverse Hessian of the variational problem,
pλ is the estimated probability of a 1, and NB is the number of
basis functions.
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• BGACV: find λ to min

BGACV (λ) =
n∑

i=1

C(yi, fλ(x(i))+log n/2trH(λ)
n∑

i=1

yi(yi−pλ(x(i))/(n−NB).

Minimizer of GACV is a good estimator of the minimum of
Eftrue

∑n
i=1 C(ynew, ftrue(x(i)),(1995). Many simulation results,

could use some theory. BGACV - adhoc insertion of log n/2 for
model selection, motivated by the difference between AIC and BIC.
Needs theory. Many works on model selection. Here the 12
patterns passing Step 1. will be lined up in significance order and
BGACV minimized to get q=96.92%.
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Step 3. Select all ` for which a` are significant at the
q% = 96.92%(BGACV ) level, to fit the final model. The patterns
passing this test are:

1. Constant
2. catct (Cataract)
8. pky vtm (Packyear > 30 and not taking vitamins)

12. sex inc jomyop asa (Male, low income, juvenile myopia, not
taking aspirin)
13. sex inc catct asa (Male, low income, cataract, not taking
aspirin)
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Step 3.(continued) Fit the final model with the five patterns
significant at the 96.92% (BGACV) level.

f(x) =
∑

`:a` significant

b`B`(x).

The (refitted) model is

f(catct, pky, vtm, sex, inc, jomyop, asa)

− 3.29 + 2.42 ∗ cact + 1.18 ∗ pky ∗ vtm

+ 1.84 ∗ sex ∗ inc ∗ jomyop ∗ asa + 1.08 ∗ sex ∗ inc ∗ cat ∗ asa.
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Step 4. Having done some “data mining”, the investigators can go
back and look at classes of people who may not have been
examined separately before. For example:

catct pky not take vitamins risk of progression

1 1 1 17/23 = 0.7391

1 1 0 7/14 = 0.5000

0 1 1 22/137 = 0.1606

0 1 0 2/49 = 0.0408

1 0 1 18/51 = 0.3529

1 0 0 19/36 = 0.5278

0 0 1 22/363 = 0.0606

0 0 0 13/203 = 0.0640

Looking at the smokers: (1, 1, 1, 1):
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Looking at the smokers: smokers with cataract are relatively
protected by taking vitamins, and smokers without cataract are
also relatively protected by taking vitamins. For non smokers
taking or not taking vitamins makes no (significant) difference.

Physiologically meaningful - recent literature suggests:
a) Certain vitamins are good for eye health.
b) Smoking depletes the serum and tissue vitamin level, especially
Vitamin C and Vitamin E.

(Although as usual, a “randomized controlled clinical trial would
provide the best evidence of any effect of vitamins on progression of
myopia in smokers”)
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Message: Aside from theoretical issues, there are practical
questions of scientific import in dealing with real problems.

To check on the “significance” of the patterns, randomly scramble
the ys while keeping the x’s fixed, and apply the entire
LASSO-Patternsearch algorithm to see how often false patterns are
generated. Repeat 600 times. (Statistical theory is not clear on
properties of multistep procedures)
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Detection of noise patterns found in scrambled data compared to
observed p values:

Log p values of the patterns
found (out of 600) are plotted
(l. to r. top to bottom) for ob-
served patterns of size 1,2,3,4.
Red lines are for the observed
p-values for catct, pky vtm,
none, and sex inc jomyop asa

(lower) and sex inc catct asa

(upper).
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Figure 1: Upper red line sug-
gests that sex inc catct asa is
borderline significant.
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Genetic Data (realistic simulation from the Genetic Analysis
Workshop 15, 2006).

y = phenotype Rheumatoid Arthritis or not.
x = SNPs, alleles, covariates, p = 9192 components.

Train: 1500 cases, 2000 controls
Tune: 1500 cases, 2000 controls
Test: 1500 cases, 2000 controls.

Pre-screen step: 9192 variables reduced to N = 2559 basis
functions for the LASSO step. Final model has 8 main effects and 3
interactions. Using p = .5 as a classifier, a competitive 12.6% error
rate was obtained. Identified a SNP near most of the genes that
were used to generate the data.

W. Shi, K. Lee, and G. Wahba. Detecting disease causing genes by LASSO-Pattern search
algorithm. TR 1140, Department of Statistics, University of Wisconsin, Madison WI, 2007.
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Message:

Regarding the special purpose algorithm we could do the LASSO
step with 2559 basis functions from the prescreen simultaneously.
There are many algorithms for doing this or similar problems but
most or all are greedy/sequential (at least up to 2006). We think a
global method here has advantages over a sequential method when
searching over a very large number of basis functions, and/or for
when high order interactions are present, assuming that the coding
is reasonably correct. Some preliminary simulations suggest that
the approach is relatively advantageous when extraneous variables
are correlated with relevant variables. All this rasises practical and
theoretical questions regarding numerical methods for solving very
to extremely large optimization problems regarding global vs.
sequential methods.
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In Conclusion:

• We looked at the cubic smoothing spline, a spline ANOVA
model, the support vector machine and the
LASSO-Patternsearch algorithm. RKHS and lp penalties were
noted.

• The regularization class of statistical model-building methods
can be used in an extremely wide variety of contexts.

• Tuning for prediction and for model selection do not
necessarily lead to the same results- choice of optimality
criteria can be an important issue

• Real applications require some understanding of the science
behind the data. By the nature of this class of methods this
understanding helps suggest reasonable penalties, basis
functions, optimality criteria.

• Computer scientists have developed and continue to develop
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computational tools which are crucially important to
statisticians.

• Theoretical and applied results are available for the practical
data analyst as well as the computer scientist, but many
challenging problems remain, along with opportunities for
novel applications, especially with complex data structures and
very large attribute vectors.
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