

Statistik IV Übung mit Stata 10

-1 1-R-38-59-

Statistik IV

4. Auswertungen und graphische Darstellung

ŋ

Göttingen 26. Mai 2009

FRED. SHARA

Dozent: Jürgen Leibold

Terminplanung

Nr.	Termin	Inhalt
1	14.04.09	Einführung Organisatorisches und Scheinvoraussetzungen Statistik mit Softwareunterstützung?
2	28.04.09	Grundlagen Stata • Aufbau des Programms • Umgang mit Daten, Dokumentation Datenaufbereitung für statistische Auswertungen I
3	12.05.09	Datenaufbereitung für statistische Auswertungen II
4	26.05.09	Deskriptive Statistik und graphische Darstellung
5	09.06.09	Zusammenhangsanalyse I
6	23.06.09	Zusammenhangsanalyse II
7	07.07.09	Zusammenhangsanalyse III Probeklausur Besprechung der Probeklausur
8	14.07.09	Klausur (90 Minuten)

Übersicht

- Hausaufgabe 2
- Auswertungen und Gewichtung
- graphische Darstellung

Hausaufgabe 2

Datenanalyse und Gewichte

Disproportionale Stichproben und Designgewichtung

Im ALLBUS werden überrepräsentativ viele Fälle aus Ostdeutschland erhoben (oversampling). Dies geschieht, um zu gewährleisten, dass auch im Hinblick auf seltene Ausprägungen in den neuen Bundesländern komplexe Aussagen (insb. Zusammenhänge) möglich sind.

Um einen solchen "Stichprobenfehler", der bereits vor der Stichprobenziehung festgelegt wurde, auszugleichen, werden Gewichtungsvariablen verwendet.

Vergleich

. tab v3			
ERHEBUNGSGEBIET <wohngebiet>: WEST - OST</wohngebiet>	Freq.	Percent	⊂um.
ALTE BUNDESLAENDER NEUE BUNDESLAENDER	2,392 1,077	68.95 31.05	68.95 100.00
Total	3,469	100.00	

. tab v3 [iweight=v]	792]		
ERHEBUNGSGEBIET <wohngebiet>: WEST - OST</wohngebiet>	Freq.	Percent	⊂um.
ALTE BUNDESLAENDER NEUE BUNDESLAENDER	2,830.3288 638.671188	81.59 18.41	81.59 100.00
Total	3,469	100.00	

Gewichte in STATA

[pweight=VARIABLE]

- "Probabilityweight": Die Gewichtungsvariable enthält die Auswahlwahrscheinlichkeit der Fälle. Im Fall des ALLBUS liegt eine solche Gewichtungsvariable (v792) im Datensatz vor (im tab Befehl erfüllt iweight die Funktion von pweight)
- mean v3 [pweight=v792]
- tab v3 [iweight=v792]

Alternative Surveydatensatz

- Eine weitere Möglichkeit besteht darin, den Datensatz für Stata als Surveydatensatz zu definieren, dabei eine Gewichtungsvariable anzugeben und Kommandos speziell für Surveydatensätze zu verwenden, indem jeweils dem Befehl ein Präfix vorangestellt wird.
 - svyset [pweight=v792]
 - svy: tab v3

Änderung der Darstellung mit svy:

svy: tab	v3 kultte n est	imation sample)			
Number of : Number of B	strata = PSUs =	1 3469	Number of obs Population size Design df	= =	3469 3469 3468
ERHEBUNGS GEBIET <wohngebi ET>: WEST - OST</wohngebi 	proportions				
ALTE BUN NEUE BUN	.8159 .1841				
Total	1				
Key: pro	oportions =	cell proportions	;		

Aufgabe 8

 Schreiben Sie den Do-File der Hausaufgabe so um, dass alle Ergebnisse korrekt mit v792 gewichtet werden.

Graphiken

Graphiken und Skalenniveau

Skalen- niveau	Ausgewählte Grafiken	Befehl	
	Balkendiagramm	histogram [variable],	
Katagorial	(Bar chart)	discrete	
Nalegonal	Kreisdiagramm		
	(Pie chart)	graph pie, over(variable)	
	Histogramm	histogram [variable]	
	(Histogram)		
	Kern-Dichte-Schätzer	kdensity [variable]	
Metrisch	(kernel density		
	estimation),	graph box [variable]	
	Box-Plot (box and		
	whisker plot)		

Dot und Unterbefehle

In Stata ist es über Unterbefehle und Optionen möglich fast alles an einer Grafik den eigenen Ansprüchen anzupassen, d.h. auch die Hilfedateien zu den Grafik-Befehlen sind recht umfangreich.

- graph dot (mean) v388 [pweight=v792], over (v3)
- graph dot (mean) v388 [pweight=v792], over (v798)
- graph dot (mean) v388 [pweight=v792], over (v798, sort ((mean) v388))
- seperate v388, by (v151)
 - graph dot (mean) v3881 v3882 [pweight=v792], over (v798, sort ((mean) v388))

Säulendiagramme

graph bar v388 [pweight=v792], over(v3)

Für Anteile:

- tab v144, gen(nazi)
- graph bar nazi*, per

- graph box v388 [pweight=v792], over(v798, label(angle(45)))
- graph box v388 [pweight=v792], over(v798)
- graph box v388 [pweight=v792], over(v3)
- graph box v388 [pweight=v792]

Box-Plot

Box-Plots

Histogramme

- Histogramme lassen keine Gewichtung zu!
 - histogram v526, freq
 - histogram v526, discrete freq
 - histogram v526, discrete percent
 - histogram v526, discrete percent barwidth(0.9)
 - histogram v526, discrete percent barwidth(0.9) addlabels
 - histogram v526, discrete freq barwidth(0.9) addlabels xlabel (1/6, valuelabel angle(45))

Statistik IV Übung mit Stata 10

Kreisdiagramme

- graph pie [pweight=v792], over(v524)
- graph pie [pweight=v792], over(v524) title(Konfession)
- graph pie [pweight=v792], over(v524) title(Konfession) plabel(_all percent)
- graph pie [pweight=v792], over(v524) title(Konfession) plabel(_all percent) intensity(*0.3)

Histogramm und Kern-Dichte-Schätzer

- mvdecode v207, mv(999.9=.a \ 0=.b) /* Missings setzen*/
- histogram v207
- histogram v207, width(20)
- histogram v207, kdensity
- kdensity v207 [iweight=v792]

Aufgabe 9

- Erstellen Sie eine Graphik zur Wahlabsicht.
- Erstellen Sie Graphiken zum Alter der Befragten getrennt nach Geschlecht.
- Erstellen Sie Graphiken zum Nachrichtenkonsum der Befragten in den neuen und alten Bundesländern.
- Erstellen Sie Graphiken, die die Unterschiede von rechten und linken Befragten im Hinblick auf die Einstellung zum Nazionalsozialismus wiedergeben.
- Erstellen Sie getrennt nach Geschlechtern Graphiken, die über esoterische Ansichten Auskunft geben.

Hausaufgabe 3

 Versehen Sie Ihren Do-File mit anschaulichen Graphiken, die auch dem jeweiligen Skalenniveau entsprechen.