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Abstract
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1 Introduction

As first shown by Akerlof (1970), Spence (1973) and Rothschild and Stiglitz (1976),
hidden-types (adverse selection) problems can have significant consequences in terms of
efficiency on economic outcomes!. More specifically, incentive compatibility constraints
limit the set of feasible allocations that can be attained. How are these restrictions
relaxed as more information becomes common knowledge? And what is the minimum
additional information required for achieving first-best efficiency? These are some of
the questions that have emerged in the attempt to better understand the effects of
information aggregation on efficiency. Indeed, some early papers by McAfee (1992),
Armstrong (1999) and Casella (2002) already point towards this direction.

In this paper we claim that if the number of agents with the same type is known for
all types in a population (in other words, the realized relative frequency of types), then
it is possible, under fairly general conditions, to implement first-best allocations. More
precisely, we consider an economy with asymmetric information, where each agent has
private information about his type. We also assume that i) the relative frequency of
types is common knowledge, ii) preferences satisfy the Local Non-Common Indiffer-
ence Property and iii) the social choice rule satisfies Anonymity. Given these general
conditions, we show that it is possible to construct a mechanism which has a unique
equilibrium, where all agents reveal their type truthfully and they receive a first-best al-
location. We obtain our equilibrium by using iterated elimination of strictly dominated
strategies, and hence it is also a Bayes-Nash equilibrium.

This result has two interpretations. On one hand, one may consider economic
applications with a finite number of agents, where, in addition to the private information
that each individual has, there is knowledge about how many agents have each type.
This additional information could come from a positive or negative information shock.
For example, a retail store has received pre-paid orders from its customers, has already
the goods in stock and is ready to make the deliveries. However, the records on the
orders get destroyed due to an accident and the store’s manager does not know who
made each order. What can he do? Can he induce the customers to reveal the orders
they have made truthfully without them making unreasonable claims or receiving orders
that were meant for other customers? We claim that this is possible, as long as the
manager posts a list with all the orders made and gives to each customer a basket of
goods, which depends on how many other agents have claimed to have ordered it.

On the other hand, one can interpret this result as an application of the law of
large numbers. If the ex-ante probability distribution is known, then, for sufficiently
large populations, one can obtain a quite accurate estimate of the aggregate number of

IThe title of our paper may be slightly misleading. Adverse selection is, of course, the outcome
that may be generated in private information environments. The true source of the problem is the
hidden information. Despite the fact that in our paper we have a hidden-types economy, we show
that in the equilibrium of our mechanism, individuals reveal their information truthfully and they
receive first-best allocations based on that. Therefore, adverse selection problems never arise as an
equilibrium of our game. So, our main claim is that information aggregation, under certain conditions,
can eliminate the possibility of adverse selection outcomes.



agents who have a specific type and, based on this information, he can address adverse
selection problems. An example of this case would be insurance companies, which have
data on millions of cases, collected over decades, and know with very high accuracy
the probability of certain accidents taking place and how personal characteristics affect
these probabilities. While the main result is originally stated for the case where the
frequency of types is known with perfect precision, we subsequently prove that it also
holds in the case where it is known with a small noise.

Our formulation is general enough to accommodate both interpretations and the
intuition behind the result is common. If the frequency of types is known, then one can
aggregate the messages that all agents are sending out and uncover any misreport(s),
even if the identity of the liar is not known. As a consequence, appropriately designed
punishments for lying can induce agents to reveal their information truthfully.

We talk about appropriately designed punishments, because one of the features of
our mechanism is that punishments must not be too extreme. If the punishment from
detecting a lie is too severe, then some agents may deliberately lie about their type in
order to force other agents to also do so. The lies cancel out in terms of the aggregate
information and the former agents “steal” the allocations of the latter, who are forced
to lie under the fear of the extreme punishments. This can lead to coordination failures
and multiplicity of equilibria. Therefore, uniqueness of the equilibrium requires a careful
construction of the allocations when lies are detected. We show that such punishments
exist when the indifference curves of different types are not locally identical, meaning
that in the neighborhood of any allocation one can find other allocations such that each
type prefers one of these over the rest.

We acknowledge that requiring the realized frequency of each type being common
knowledge seems a very restrictive assumption, particularly if it concerns games with
small number of agents. However, in games with large populations and independently
distributed types, the realized frequency of a type is identical to the ex-ante probability
that an agent will draw this type?.

Therefore, in all these cases, our mechanism requires no additional information than
what is usually assumed. In fact, this argument holds even if there is correlation in the
distribution of types (for example, if types are drawn from an ergodic Markov chain),
as long as the drawing of types leads to a unique realized frequency. To make this point
as clear as possible, in section 4.4 we re-examine the well-known economies by Spence
(1973) and by Rothschild-Stiglitz (1976) and we show how our mechanism can be used
in order to provide first-best allocations. To the best of our knowledge, this is the only
mechanism that can solve these allocation problems efficiently?.

2There are many papers which fall in this category, particularly in macroeconomics. For example,
the literature on the implementation of the Walrasian correspondence in economies with adverse selec-
tion has traditionally made these assumptions. See also the papers by Prescott and Townsend (1984),
Gale (1992 and 1996), Dubey and Geanakoplos (2002), Dubey, Geanakoplos and Shubik (2005), Bisin
and Gottardi (2006), Rustichini and Siconolfi (2008).

3The Jackson-Sonnenschein mechanism requires infinite replicas of these economies in order to
provide first-best allocations, while our mechanism can achieve the same outcome even if there exists



Moreover, the common knowledge of the realized frequency is assumed for our results
because we consider general social choice rules. If we focus on the implementation
of specific allocations on the Pareto frontier so that allocations depend only on ones
type, we can implement the first-best as a unique equilibrium even if agents have
heterogeneous beliefs or no information at all about the realized frequency (e.g. the
Walrasian correspondence in the Rothschild-Stiglitz model). Our mechanism can still
implement the desirable allocations truthfully, given that the social planner knows the
realized frequency of types. This is because, as becomes clear in section 4, players’
best-response correspondences depend on their beliefs about how many misreports will
be detected by the mechanism and not on their ability to detect other agents’ lies. For
instance, this formulation fits the example of the store manager we provided earlier.
The manager does not have to post the list of orders as we suggested earlier (though it
was useful for the purposes of the exposition). It is sufficient that agents know that he
knows them.

Furthermore, our results are fairly general. Types can be multi-dimensional, valua-
tions can be independent or interdependent and the joint probability distribution over
type-profiles allows for correlation across types or dependencies on the identity of the
agents (different agents may face different probability distributions over types). The
only restriction we impose on our notion of (Pareto) efficiency is Anonymity. Anonymity
requires that the allocation, which an agent receives, depends only on his type (and
possibly on the realized frequency of types) but not on his identity. It is a reasonable
assumption which is satisfied by the majority of social choice rules. For instance, in
many mechanism design papers, a mechanism is efficient if it implements the utilitarian
social choice rule, which satisfies our definition of Anonymity?.

We also provide necessary and sufficient conditions for full implementation. It should
be stressed that we obtain our equilibrium by using iterated elimination of strictly
dominated strategies and, hence, it is also a Bayes-Nash equilibrium. This contrasts
with most of the existing papers, where the Bayesian equilibrium concept is used.
Finally, we examine issues of robustness to small perturbations regarding the knowledge
of the realized frequency of types and issues of participation constraints.

2 Related Literature

Our paper is most closely related to papers that use information aggregation to imple-
ment first-best allocations in economies with asymmetric information. Thus, in terms
of spirit and research questions, Jackson and Sonnenschein (2007) is the paper closest
to ours. They consider a specific set of agents, who play multiple copies of the same
game at the same time and their types are independently distributed across games.
They allow for mechanisms, which “budget” the number of times that an agent claims
to be of a certain type. If the number of parallel games becomes very large, then all

only one economy.
4See for example the papers by Mezzetti (2004), Jackson and Sonnenschein (2007).
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the Bayes-Nash equilibria of these mechanisms converge to first-best allocations.

Our model differs from that of Jackson and Sonnenschein in four dimensions: i)
we do not require multiple games to be played at the same time but we impose a
stronger assumption on what is common knowledge (or, in certain cases, what is known
by the central planner). ii) We allow for interdependent values, while they consider
an independent values setting. iii) We allow for a more general joint probability over
type profiles, since types can be independently or interdependently distributed in our
formulation, and apart from preferences, types may concern other individual character-
istics as well (productivity parameters, proneness to accidents, etc.). iv) We also allow
for a more general social choice rule. In terms of results, if values are interdependent
(but still independently distributed), the Jackson-Sonnenschein mechanism may have
multiple equilibria in the limit, while we prove the uniqueness of the equilibrium under
small perturbations.

McLean and Postlewaite (2002, 2004) also consider efficient mechanisms in economies
with interdependent values. The state of the world is unknown to all agents, but each
individual receives a noisy private signal about the state. They show that when signals
are sufficiently correlated with the state of the world and each agent has small informa-
tional size (in the sense that his signal does not contain additional information about
the state of the world when the signals of all the other agents are taken into account),
then their mechanism implements allocations arbitrarily close to first-best allocations.

There are two main differences between their setting and ours. First, in the model
of McLean and Postlewaite when private signals are perfectly correlated with the state
of the world all agents learn not only their own type but also the type of all other
agents. That is, in the limit, the framework of McLean and Postlewaite is one of
complete information. In contrast, in our setting agents can, at most, know the realized
frequency of types (when the signal is perfect)®. Second, McLean and Postlewaite
implement allocations arbitrarily close to first-best while we achieve exact first-best
implementation even when agents face a slight uncertainty about the frequency of types,
i.e. when private signals are slightly noisy.

Our paper is also related to the auctions literature with interdependent types. In
this context, Crémer and McLean (1985) and Perry and Reny (2002, 2005), show the
existence of efficient auctions when types are interdependent. Crémer and McLean,
however, require large transfers which may violate ex-post feasibility. Also, Perry and
Reny require the single crossing property on preferences which is a stronger restriction
than ours. Our general framework can encompass auction design problems as well.
Furthermore, our main focus is the uniqueness of the equilibrium, an issue which is not
studied in these papers.

It is also noteworthy that in the framework of auction design the papers by Maskin
(1992), Dasgupta and Maskin (2000) and Jehiel and Moldovanu (2001) show, in increas-
ing generality, that efficiency and incentive compatibility can not be simultaneously

5In a sense, in our model agents receive private signals as well, but one can think of them as perfect
signals about the frequency of types. As we have already mentioned, a small noise about the precision
of these signals does not alter our results.



satisfied if the single crossing condition is violated or if signals are multidimensional. In
that respect, the additional information of our environment allows us to overcome this
impossibility and implement efficient outcomes, even if conditions, which are necessary
in the standard mechanism design literature for implementation, are violated.

Rustichini, Satterthwaite and Williams (1994) show that the inefficiency of trade
between buyers and sellers of a good, who are privately informed about their preferences,
rapidly decreases with the number of agents involved in the two sides of the market and
in the limit it reaches zero. Effectively, the paper examines the issue of convergence to
the competitive equilibrium as the number of agents increases. However, their model
is limited to private values problems and hence it can be seen as a special case of our
formulation.

More recently, the papers by Mezzetti (2004) and Ausubel (2004),(2006) examine the
issues of efficient implementation under interdependent valuations and independently
distributed types. However, they also assume that agents’ preferences are quasi-linear
with respect to the transfers they receive, whereas in our model utility may not be
transferable. Moreover, the mechanisms proposed in these papers may generate multiple
equilibria (in most of which truth-telling is violated), while we are interested in a
mechanism which has a unique truth-telling equilibrium.

3 The Economy

The economy consists of a finite set I of agents, with I standing for the aggregate number
of agents as well. © is the finite set of potential types (so 1J; is the type of a single agent
i). The vector @ contains I elements and is a type-profile, a realization of a type for
each agent. Fach agent has private information about his own type, but does not know
the types of the other agents. ¢(0) is the ex-ante probability that the type-profile 6
will realize and ®(®) is the ex-ante probability distribution over all type-profiles.

S is the finite set of all states. Each state s is a complete description of the publicly
available information. Depending on the application, this may include agents’ features
or public shocks. The probability distribution over states II is a function of the type-
profile €. Therefore, 7(s|@) is the probability of state s arising, conditional on the
type-profile 6.

B is the vector of realized relative frequencies of types in the population. Therefore,
B(9) = A(9)/1, where \(1J) is the number of agents who have type 9 in the population.
It follows that, if one knows 3, one can compute the exact number of agents, who have
the same type in the population: A(¢). The vector A contains the exact number of
agents for each type. We will often make allocations and mechanisms conditional on
either A or 3, depending which one is most convenient in terms of exposition, but the
equivalence between the two should be obvious. We will also use the terms relative
frequencies, realized frequencies or simply frequencies interchangeably and we always
refer to 5. ©(f) is the set of all type-profiles consistent with the realized frequencies
B, while ©(5) is the collection of types which have realized, as can be inferred from £.
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The above elements characterize the economy: F = {I,0,® S II, 5}. We assume
that £ is common knowledge. Given E, let A(E) (or simply A) be the set of all
feasible allocations, with elements a € A C RY*E) with L x S > 2. Therefore,
a={ay, .., a,..,ar}, where a; is the individual allocation of agent i: a; € RS**. L can
be interpreted as the number of commodities in the economy. Each a is an S-tuple of
feasible state-contingent allocations. In other words, the collection of feasible alloca-
tions may depend on the state of the world. Furthermore, we assume that preferences
are represented by expected utility functions:

Ui(a;) = BZ ;Sui(ai,S) 7 (s]di,0-) | 9005, 8) . 0_; € ©_;(B]Y;)

Ui(a;) is the expected utility to agent ¢ when he receives allocation a;, with u;(a;, s) the
decision-outcome payoff in state s (preferences may be state-dependent) and 0_; is a
type-profile for all agents, excluding ¢, which is consistent with 3% Hence, ¢(0_;|9;, 3)
is the probability of the type profile 8_; realizing for the other agents, conditional on
v; and B, and ©_;(S|¥;) is the set of all type profiles for the other agents which is
consistent with 3, conditional on ;.

The formulation of the economy allows for modeling a wide variety of economic
situations. Types may or may not be independently distributed, and the character-
istics of agents may or may not depend on the types of other agents. Hence, both
adverse-selection problems with independent or inter-dependent valuations can be seen
as special cases of our formulation.

Additional Notation

In many cases, the analysis will require additional terms. In order to facilitate expo-
sition, we would like to introduce as many of them as possible here, even though we
leave the definition of some terms for later.

We have already defined U;(a;). In many cases, however, it will be more convenient
to examine preferences on different allocations by using the usual binary preference
relation >;: a >=; b < U;(a) > U;(b) , a 7 b < Ui(a) = Uy(b). Also, later on we
will condition individual allocations on types, so that agents who have the same type
receive the same final allocation. Then, it will be convenient to drop the subscript ¢
and introduce the subscript ¥ instead. So, if agent 7 is of type 9 and all agents of this
type are to consume some allocation ay, then U;(ay) = Uy(ay). In other words, Ug(ay)
is used to denote the expected utility of any agent of type ¥/. The notations >y, 7y are
interpreted in the same way.

The following definitions are also useful. L,(a;) is the lower-contour set of agent ¢
associated with individual allocation a;: Li(a;) = {c € R7** : Ui(c) < Ui(a;)}. Vilay)

STherefore, we implicit require the standard six axioms for expected utility representation: Com-
pleteness, Transitivity, Local Non-Satiation, Convexity, Continuity and Independence of Irrelevant
Alternatives.



is the upper-contour set of agent i associated with a;: Vi(a;) = {c € R7** : Ui(c) >
Ui(a;)}. Ly(ag) and Vy(ay) are defined accordingly as above. Ci.(a;) = {c € R7*"
Ui(c) = Ui(aj),||lc — a;|| < €} is the indifference plane of 7 in the neighborhood of a;.
A(a;) ={ce R:ngL s < s, ¥ Is} is the set of individual allocations strictly less than
a;.

We have already defined (1)) as the number of agents with type ¢ according to £.
In a mechanism, where agents send messages about their types, Am (1)) is the number
of agents who report type ¢/, where m denotes the message profile sent by agents:
m = {mq, ... my, ..., my}.

In some cases we denote explicitly that individual allocations are conditional on some
other elements, like the message profile, other agents types or the realized frequencies
of types. This helps to distinguish allocations while keeping the same symbol (a) to
denote allocations throughout the paper. For example, the notation a(1J;, ) is used in
page 11 in order to show that, under Anonymity, Pareto efficient individual allocations
depend only on one’s type and the realized frequencies of types, but not one’s identity.
Similarly, a;(m;, m_;) in page 17 denotes that i’s final allocation depends on both his
report m; and the reports of all other agents m_;. We clarify any change of notation
on individual allocations every time we introduce a new one.

In other cases we perform simple mathematical operations between a scalar ¢ and
an individual allocation a;, like addition (a; + ¢) or multiplication (ca;). In all cases
involved, the interpretation is that we perform the same mathematical operation to
all the state contingent commodities in a;. Therefore, aj; — € in page 17 implies that
quantity € is subtracted from all state contingent commodities, while %ag in page

18 implies that all state contingent commodities in aj are scaled by /\1/r\1§119()19)' Finally, in

some cases many agents receive identical individual allocations. The notation n x a;
denotes a multi-agent allocation which consists of n replicas of the individual allocation
a; and helps us to separate this case from the case of multiplication of an allocation by
a scalar.

Summary of Notation

G- realized relative frequencies of types
a;: individual allocation

a: collective allocation

A: set of feasible collective allocations
V- type

O: set of types

0: type-profile

0_;: type-profile of all agents except for ¢
O: set of type-profiles

©_,;(B]9;):  set of type-profiles excluding i, which are consistent with ’s information set
®(0): ex-ante probability of type-profile 8



d(O): ex-ante probability distribution over type-profiles
&(0_;|9;, 5): ex-ante probability of 6_;, conditional on i’s information set
S: state

S: set of states

7(s]|0): probability of state s conditional on type-profile @

w;(ag, s): utility of agent 4 conditional on a; and s

Ui(a;): expected utility of allocation ay for agent i

Uy(a;): expected utility of allocation ay for type

=it preference relation of agent ¢

9t preference relation of type ¥

Li(a;): lower-contour set of allocation a; for agent ¢

Vi(ay) upper-contour set of allocation a; for agent ¢

Cic(a;): indifference plane of 4 in the neighborhood of allocation a;

Ly(a;): lower-contour set of allocation a; for type ¢

Vo(a;): upper-contour set of allocation a; for type v

Cye(a;): indifference plane of type ¥ in the neighborhood of allocation a;

Alay): set of individual allocations, which are less than a; for at least one
state-contingent commodity

m;: message of agent ¢

m: message-profile

m_;: message-profile of all agents except for ¢

A(9): number of agents with type 9

Am (V): number of agents who have reported type ¥ according to message-profile m

a(9;, B): individual allocation conditional on ¥; and 3

a;(m;, m_;): individual allocation conditional on message-profile

a; £c: adding or subtracting ¢ from all state-contingent commodities in a;

ca;: multiplying all state-contingent commodities in a; by ¢

n X a;: number of times individual allocation a; is provided

4 Implementation of First Best Allocations

4.1 Implementation

In this subsection we show that the conditions specified in section 3 are sufficient for the
implementation of truthful strategies. Full implementation (i.e. the uniqueness of the
truthful equilibrium) requires additional conditions, which we specify in subsections 4.2
and 4.3. The main idea is simple. The knowledge of the realized frequencies of types
allows the construction of a direct mechanism, which provides allocations conditional
on the message profile being consistent with these frequencies. If the message profile
is not consistent with [, this is considered as an indication of lying by some agent, in
which case the mechanism provides a “punishment” allocation. As a result, an agent



reveals his information truthfully, if all other agents reveal their information truthfully
as well.

Let a* = (af,a},...,af,...,a}) be a Pareto efficient allocation of the economy. Let
a™ be an individual allocation such that a}? = min{aj,,} for every i € I and for each
state-contingent commodity ls. By construction, I x a™ is feasible. Consider the direct
mechanism My(g,a) , g : M — A, in which agents state their type. Agents receive

allocations according to the following message profiles:
o If \(¥) = Im(¥), VI e€O(B), thena;, =a;, Viel.
o If A\(¥)) # Am (V) for at least one ¥ € ©(8), then a; = a™, Vi€ I.

Claim 1: M, has a truthful equilibrium.

Proof: Suppose I — 1 agents report truthfully. By Local Non-Satiation, U;(af) >
Ui(a™). Therefore, it is a best-response for agent i to report truthfully as well.

This demonstrates that, if § is common knowledge, then this is a sufficient condition
for truthful implementation in general economic environments. In fact, implementation
of the truthful equilibrium is possible even when there is a single state contingent
commodity. Hence, the implementation of first-best allocations is possible in the most
well-known models of adverse selection (Akerlof (1970), Spence (1973), Rothschild-
Stiglitz (1976)) if one makes the additional assumption that the realized frequencies of
types are known.

Even though this is a strong assumption, in subsection 4.6, we show that as the
number of agents increases, [ converges to the ex-ante distribution of types. Hence,
the standard assumptions of the literature are sufficient for implementation of first-best
allocations when the number of agents is sufficiently large’.

4.2 Full Implementation

In this section we provide sufficient conditions for full implementation. We make three
assumptions additional to section 3. We then present a series of Lemmata, which
are used in the proof of the main Proposition, and provide the main claim of the
paper: if the realized frequencies of types are common knowledge, preferences satisfy the
Local Non-Common Indifference Property (LNCIP) and the social choice rule satisfies
Pareto efficiency and Anonymity, then a mechanism exists that fully implements it.
The assumptions required for this result are the following.

Assumption 1: The Social Choice Rule satisfies Anonymity.

" Actually, for our results to obtain we do not require that the realized frequencies converge to the
ex ante distribution. We only need that they converge to a unique distribution, given the correlation
between draws.
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Definition 1: A Social Choice Rule satisfies Anonymity if af = a(9;, 5) = a}), Vi € I,
where ¢¥; = 9.

Under Anonymity, agents who have identical types receive identical allocations. There-
fore, an agent’s identity per-se has no impact on the agent’s final allocation. As a result,
for any [ there is a unique collection of allocations to be assigned to agents. The order
of the allocations does depend on the type-profile 8, but the collection of individual
allocations is the same for all type-profiles consistent with the same f.

It is also noteworthy that Anonymity is a desirable property for a social choice rule.
In most cases of interest, economists are concerned with the economic characteristics
of agents and not with their identity. Therefore, it is reasonable to assume that, if the
distribution of these characteristics remains unchanged, so does the distribution of the
economically desirable outcomes. It is also a property satisfied by many commonly used
social choice rules, like the Walrasian correspondence and the utilitarian social welfare
function.

Assumption 2: Preferences satisfy the Local Non-Common Indifference Property
(LNCIP).

This is a requirement that the intersection of the indifference planes around any in-
dividual allocation of any two agents with different types is of at least one dimension
lower than the dimensions of the indifference planes themselves. In other words, if the
indifference planes are n-dimensional (e.g. three-dimensional surfaces), the intersection
around any allocation a; is (n-1)-dimensional (e.g. curves). Formally:

Definition 2: Let Ci(a;) = {c € R*Y : Ui(c) = Ui(aj),|lc — a;]| < €}. The Lo-
cal Non-Common Indifference Property is satisfied if Vi € I, Va; € RiXL and
Vh e I, 9, # U;, there exists € > 0 : dim (Cic(a;) N Che(a;)) K L xS =1, Ve<e,.

LNCIP is a weaker restriction than the Single-Crossing Property (SCP) which is usually
used in the literature. For example, any pair of indifference curves that has finitely
many intersections satisfies the LNCIP but it violates the SCP. Also, LNCIP allows for
tangent indifference planes (as long as the tangent parts “miss” at least one dimension
compared to the indifference planes), while the SCP does not. On the other hand, if
SCP is satisfied then LNCIP is also satisfied®. Figure 1 provides two diagrams, which
illustrate the LNCIP and distinguish it from the SCP.

8Note that we could alternatively characterize this restriction on preferences in terms of the ax-
iomatic approach. Apart from the standard axioms (Completeness, Transitivity, Local Non-Satiation,
Convexity, Continuity and Independence of Irrelevant Alternatives), we would require the Axiom of
Local Non-Common Indifference. In this case, the only difference from the definition provided above
is the definition of Cjc(a;): Cic(a;) = {c € RiXL te~viaj, |le — aj]] < €}

11



Figure 1: Indifference Curves satisfying LNCIP

Assumption 3: If for 9,9’ holds that a}y >y aj and a, >y c, Ve e A(ah)NLy(a)),
then A(¢) > A(¥9), where ¢ and ¢ are different types.

Assumption 3 ensures feasibility off-the-equilibrium-path and is used for deriving Lemma
4. Here, we provide the main economic intuition behind it with the help of figures 2 and
6. The main point is that given any two types ¢, ¥, such that ¥ envies the first-best
allocation of ¥, one can find incentive compatible and feasible allocations for all agents
of these two types.

To see why we need restrictions on the realized number of types, consider Figure 2
which depicts an economy with only two goods (X; and X3) and two types. Suppose
also that a} and aj, are the first-best allocations for types ¥ and ' respectively. By
construction, both types prefer aj to aj. In order to implement these allocations
fully, we need to make sure that: (i) if ¥ reports untruthfully, ¥ still prefers to report
truthfully, (ii) if type ¥ reports truthfully, then type ¥ prefers to report truthfully as
well (these conditions are proved to be necessary for full implementation in subsection
4.3 and in the Appendix). The first condition requires to find some feasible allocation,
say d, such that d >y a},, while the second requires some c such that aj, >y ¢ >y d
(see also subsection 4.3). So the allocations {c,d} can be seen as “punishment” for
¥ for misreporting his type and as a “reward” for ¢ if he reports truthfully when the
other type misreports.

However, off-the-equilibrium-path feasibility places restrictions on the pair {c, d}.
By the definition of the Pareto frontier, the pair {aj,a} } is feasible, but, because
we consider a very general economy, we do not know how the frontier behaves away
from the pair of first-best allocations. This is not a problem when A(aj) N Ly(a),) C
A(al)N Ly (a}), because then we can find d € A(aj) such that requirement (i) above is
satisfied (this is shown in Figure 6 in the Appendix). In this case, whenever the number
of types ¢ and ¥ do not match the realized frequency of types, we let agents choose
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allocations from the set {a},,d}. Because these allocations are incentive compatible by
construction, all ¥ choose d and all ¥’ choose a}j,. Furthermore, this is always feasible,
because we can provide (1) allocations d (as many as the number of agents who would
like to receive them) and A(¢) allocations @), (again as many as the agents who would
like to receive them). In other words, A\(J) x d and A(¥') x a, are both feasible due to
the Pareto efficiency of {a},a}, }.

X

-
|

X,

Figure 2: Feasible and Incentive Compatible Allocations. Case (ii):A(aj) N Ly (al) C
Ly(ay)

The problem arises when A(aj) N Ly (af) C Ly(a)), which is depicted in figure 2.
In this case, if d is chosen in the interior of A(aj) it will either violate restriction (i)
or (ii). As a result, d is chosen in the neighborhood of @}, while ¢ is chosen in the
interior of Ly(a},) N A(aj}), as shown in the figure. The problem is that d, which is
incentive compatible for type 1, is available only as many times as the number of 1
(A(©)), while there are \(1)) agents, who would like to receive this allocation off-the-
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equilibrium path. This means that, if A(J) > A(¥'), some agents of type ¥, will have
to receive allocation ¢, which violates restriction (i). In this case, some ¢ types do not
have an incentive to remain truthful if they believe that some ¢ may lie and this leads
to issues of multiplicity of equilibria. Assumption 3 is sufficient (but not necessary) for
avoiding these problems®.

Another sufficient condition is to assume the single-crossing property on the utility
functions of different types, so that the types who are envied have steeper indifference
planes than those types who envy them. Under this assumption, the case of figure
2 would not arise, so that Assumption 3 is not needed for the feasibility of the out-
of-equilibrium-path allocations. In fact, the single-crossing property is a special case
of our conditions, which are weaker sufficient conditions. In 4.3 we also provide the
necessary conditions for full implementation.

We proceed by providing three results which hold for any Pareto efficient allocation.
The combination of these results shows that every allocation on the Pareto frontier of
an economy generates a “social ranking” among the agents of the economy, such that
agents of “lower ranks” envy the allocations of “higher ranks”. We exploit the common
knowledge of this ranking, due to the common knowledge of 5 and the efficiency of the
allocation, in order to construct a mechanism, which has a unique equilibrium and in
which agents reveal their private information truthfully.

Lemma 1: Let PF(E) be the Pareto Frontier of economy E. Then, for every allo-
cation a on the Pareto Frontier, there exists at least one agent ¢ € I, who does not envy
the allocation of any other agent: U;(a;) > U;(a;),Vj € 1.

Proof: See the Appendix

Lemma 2: For every allocation a on the Pareto Frontier, there exists at least one
agent i € I, whose allocation is not envied by any other agent: Uj(a;) > Uj(a;),Vj € 1.
Proof: See the Appendix

Corollary 1: If a € PF(E), then Lemma 1 and 2 hold for any subset of I. Namely, let
I C I andlet A= {a;:i€I}. Then,ifa € PF(F), Lemma 1 and 2 hold for I with

regard to A as well.

Proof: See the Appendix

9Note that we do not care about the opposite situation, where A\(¢') > (), because then we have
sufficient number of allocations for all the 9 agents, and the fact that there are not enough allocations
for the 19 types only increases their “punishment” for misreporting.
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Lemma 1 and 2 provide two necessary conditions for Pareto efficiency. If these condi-
tions are violated, then an allocation can not be Pareto efficient. However, they are not
sufficient. One can easily find examples, where these conditions hold but the allocation
is not on the Pareto frontier of the economy. Most importantly for our purposes, they
imply that any Pareto efficient allocation exhibits a social ranking between groups of
agents who envy and groups who are envied.

Let Rank(K) = {i € I : U;(a;) = U;(a;),Vj € I}, be the set of agents who do not
envy the allocation of any other agent. By Lemma 1, we know that this set is non-
empty. Then, by removing this set of agents from the set I and applying Corollary 1,
we can define Rank(K-1) = {i € I — Rank(K) : U;(a;) > U;(a;),¥j € I — Rank(K)}.
By iteration, we can define K groups, 1 < K < I, such that the agents in each one of
them do not envy any of the agents in their own group or groups with lower rank, but
they envy the allocation of some agent(s) in groups with higher rank!®. We will also
refer to group Rank(K) as the group with the highest rank and group Rank(1) as
the group with the lowest rank. Some additional results required for the proof of the
main result come from the LNCIP and are provided in Lemma 3 and Lemma 4.

Lemma 3: Under LNCIP, there exists €(a;) and ay, ag, such that:

(1) ap =9 ai, [lag —aif| <e
(ii) Qyr =y Q; Haﬂ’ - al“ <€
(iil) ag =9 ay , ay =9 ap

Ve<e(a),V0,9€0,9#9, and ¥V a; € R

Proof: See the Appendix

In effect, Lemma 3 states that, if the LNCIP holds, then in the neighborhood of any
individual allocation a;, there exists a set of allocations such that each agent of a certain
type prefers a particular allocation over the rest. In other words, it is possible to find
incentive compatible allocations for any type in the neighborhood of any allocation,
which implies that it is possible to satisfy no-envy, at least in a local sense.

Lemma 4: Suppose a* € PF(FE) and Assumptions 1 and 2 hold. Vd,¢ € O(f) there
exist some feasible individual allocations {a;(9,7"), az(,9")}, such that, if a} =y a},
then ay(0,9) =y aly Zo ax(0,0), al Ze ax(9,9) =y ar(0,7).

Y

00ne extreme case is when an allocation exhibits no-envy, in which case Rank(K) contains the
whole set of agents and Lemma 1 and 2 apply for all (egalitarian allocations). The other extreme case
is when each rank-group contains a single agent, in which case the agents form a complete hierarchy,
from the one who is envied by all the other agents to the one who is not envied by anyone else.
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Proof: See the Appendix

First, in terms of notation, a;(¢,9) , as(¥,79') are used to denote that the alloca-
tions a; and as depend on the types ¢ and 1. This is useful because in Proposition
1 we use {a1(9,9) , az(¥,9")} as off-the-equilibrium-path allocations if there is some
discrepancy in the reported number of two types from the number expected under the
realized frequencies. Obviously, then, the off-the-equilibrium-path allocations should
depend on the types involved.

Second, in terms of meaning, Lemma 4 states that for any pair of types, such that
one type envies the first-best allocation of the other, one can find a pair of feasible
individual allocations such that the envied type prefers one of the two allocations over
the other and over the first-best allocation of the other type. While the type, who
envies, prefers his first-best allocation over these two allocations. This Lemma allows us
to construct an off-the-equilibrium-path credible “reward” for ¥ if he reports truthfully
even if ¥ misreports, while at the same time these allocations turn into a “punishment”
for ¢ if he misreports when 9 reports truthfully. In Proposition 1, we exploit Lemma
4 in conjunction with the ranking of agents on the Pareto frontier in order to prove the
uniqueness of equilibrium of our mechanism.

This also brings us back to the discussion of Assumption 3. In Lemma 4, feasibility
is ensured under the implicit assumption that the number of agents is equal across
types. If this is not true, then additional restrictions on the number of realized types
are required, specifically for the case where A(a}) N Ly (af) C Ly(al). As we have
already discussed, this is the case where the envied type 1, receives an allocation in
the neighborhood of aj, off-the-equilibrium-path. Incentive compatibility is ensured
whenever all agents of type ¥ (equal to A(1))) receive this allocation with certainty,
but feasibility implies that there are only A(¢') such allocations available. Assumption
3 is sufficient for incentive compatibility and off-the-equilibrium-path feasibility to be
satisfied simultaneously.

Lemmas 3 and 4, along with the knowledge of the “social ranking” of the allocations,
allows us to construct a mechanism which makes it a dominant strategy for agents of
higher rank to report their type truthfully. The main idea is that, if the number
of agents, who report a specific type is higher than the number who have this type,
according to the realized frequencies, then they all receive an allocation, which the
“true” types prefer to the first-best allocations of the misreporting types, but the other
types do not prefer. This acts as an effective punishment for lies by those who envy
allocations of other types. Hence, we use iterated elimination of dominated strategies
to prove the uniqueness of the proposed equilibrium.

A final note, before presenting our result. The mechanism, which we use in the
proof, may induce a sub-game if the number of reports do not match the realized fre-
quencies for two types. The game is one where the agents of the two misreported types
choose an allocation from a “pool” of feasible and incentive compatible individual allo-
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cations. More specifically, if two types, ¢ and 9’ are misreported, then the agents who
reported these two types are sequentially drawn at random to choose an allocation from
a collection of allocations. The collection contains (1)) times an identical allocation,
which is incentive compatible for type v, and A(¢') times an allocation, which is incen-
tive compatible for type 9. Each time an agent chooses an allocation, this allocation is
removed from the collection and the next agent chooses from the remaining allocations.
Since this sub-game is induced when only two types are misreported, the number of
agents, who are involved, is exactly equal to the number of individual allocations of the
collection.

Formally, this game is represented by G(¢,9', A(¥) X ay, A(¥') x ag), where ¥ and
¥ are the types involved and A(¥) X ay denotes the number of times (A(¢)) of the
individual allocation (ay), which is incentive compatible for ¥: ay =y ay. It is easy to
check that the unique sub-game perfect equilibrium of this game is for each agent to
receive his most preferred allocation. With this in mind and with the use of Lemmas
1-4, we are now in position to present our main result.

Proposition 1: Assume that the economy F, described in section 3, satisfies Assump-
tions 2 and 3. Then, for every allocation a* € PF(FE), which satisfies Assumption 1,
there exists a mechanism, for which a* is the unique Bayes-Nash equilibrium allocation
and agents report their private information truthfully.

Proof: The proof is done by construction. Let a* € PF(FE), which satisfies Anonymity,
and let a*(0) be the first-best allocation which is to be implemented for each type-
profile. Also, let ag(a,e€) denote an individual allocation in the e-neighborhood of al-
location a which is incentive compatible for type ¥, in the sense of Lemma 3!, and
let ay(9,7), az(9,9") be individual allocations as constructed by Lemma 4. Recall that
A(¥) and Am(?) is the number of agents of type ¥ according to  and the received
messages m, respectively, and a™ is the minimum allocation, as defined in 4.1.

Each agent reports his type m; and a final allocation is received according to the
following mechanism M (g, a):

i) If m € ©(3), then a;(m;,m_;) = a;,. , Vi€ 1.

ii) If m is such that for only two types, (¢, '), the number of reported agents is
different from the number of agents according to the realized frequencies by one,
specifically Am (V) = A(9) + 1, Am(¥') = A(¥) — 1, then:

o If a}) =y a}, , a}y =y aj), then, for the agents who reported types 9,1, the
mechanism induces G(9,9, A\(9) X (a} — €), \(¥) X (a} — €))'%

180, ¥ prefers ay(a,€) to a and to any other allocation ay(a,€), which is provided for any other
type in the neighborhood of a.
12¢ is strictly positive for all state-contingent commodities and it is sufficiently small so that ay—€ =y
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o If a}) =y aj,, then, for the agents who reported types ¥, v, the mechanism
induces G (9,9, A(¥) x a1(9,9"), A(¥') x az(¥,9")).

o If a} =y aj, agents who report tylz(e; )19’ receive allocation aj, and agents who
Am (9)

e For all my, # {9,9'}, ax(my, m_;) = a, .

report type ¥ receive allocation ay.

iii) For any other case, a;(9, m_;) = ag(a™,€), VI € ©.

Under the mechanism above, it is a strictly dominant strategy for all agents with
types of rank(K) to report their type truthfully. To see this consider the different
beliefs of an agent of rank(K) (say ¢ of type 1) about the messages that other agents
will send. If ¢ believes that all other agents will report their type truthfully, then the
best-response for him is to report truthfully. This is because aj >=; aj; — €, in the case
he reports another type, who does not envy ay, and aj >~; %afg,, in the case he
reports a type, who envies a; (recall that a rank(K) agent does not envy anyone.).

If i believes that only one other agent will misreport, then i still prefers to report
his type truthfully, irrespectively of who misreports. Say that i believes that j is of
different type (say 9'), does not envy a} and that j will misrepresent her preferences as
being of type . If i reports that he is of type ¢, then the two lies will cover each other
and ¢ receives a},. But if he reports ¢, then Am(¢¥') = A(¢) — 1 and Am(¢) = A\(¥) + 1.
In the latter case, G(9,9, \(¥) x (a — €), A(¥') x (a}, — €)) is induced and i receives
ajy — €. Since aj, — € is constructed to be strictly preferred by ¢ to aj,, ¢ strictly prefers
to report truthfully.

The same argument holds if ¢ believes that j is of type ¢, that j envies a} and
that j will report 9. Note that, by construction of the set {a;(¢,9"), az(9,9)} (see also
Lemma 4), there are \(9) times which allocation a(1,%') is feasible and A\(¢') times
which allocation as(¥, ") is feasible. Since i strictly prefers a,(9,v') to aj,, he prefers
to report truthfully. Also, note that whenever ¢ believes that j misreports, ¢ strictly
prefers to report truthfully than to send any other message 9 # {¥,9'}, because, in the
latter case, i receives ag(a™,€), which makes him strictly worse-off.

In the case where ¢ believes that multiple misrepresentations will take place, then,
irrespectively of his message, m # () (if all reports but one cancel out then we go
back to the analysis of the previous cases). This means that his message, alone, can
not hide the fact that some agent(s) misrepresents(misrepresent) her(their) type(s).
His best response remains to report truthfully: U;(ag(a™,€)) > U;(ag (a™,€)), V¥ # 0
(recall that I x a™ is feasible). We conclude that, under all possible beliefs, i strictly
prefers to report truthfully.

Given this, it is a best response for an agent of rank(K-1) to report his type truthfully
as well. Say that agent i, who is of rank(K-1) and type ¢, envies the allocation of some
type ¥ of rank(K). Of course, if ¢ believes that some agent of type ¢ will report as
being of type 1, then the best response for i is m; = ¢/, but, as we showed, this cannot

ay, and ay, — € =y ay.
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be an equilibrium!3. Hence, if i believes that all agents will report truthfully, he prefers
to report truthfully as well. If he believes that only one agent of the same or lower rank
will misreport their types as his own, he will still prefer to reveal his type truthfully, for
the same type of reasoning as in the case of an agent of rank(K). Finally, if he believes
that many agents will misreport their types, he still prefers to receive an incentive
compatible allocation (by construction) than misrepresenting his own type. Therefore,
given that rank(K) agents report truthfully, agents of rank(K-1) also report truthfully.

By induction, we conclude that for an agent of Rank(k), if all agents of higher rank
are expected to report truthfully their types, his best-response is to report truthfully,
irrespectively of the actions of agents of the same or lower rank. Since it is a dominant
strategy for rank(K) agents to report truthfully, then, by iterated elimination of strictly
dominated strategies, the only possible equilibrium is when all agents report truthfully.
Therefore, the unique Bayes-Nash equilibrium of the mechanism is for all agents to
reveal their type and to receive the allocation aj, , Vi€ I. B

The result depends crucially on the fact that the rank of types is known. This is due
to the realized frequencies of types being common knowledge. On the other hand,
Anonymity ensures that agents do not gain any strategic benefit from their personal
identity. For instance, even if § is common knowledge, if different type-profiles result in
different ranks between types, then it may not be a dominant strategy for any agent to
reveal his type truthfully. As one’s rank, in this case, also depends on the realized types
of the other agents, there may be situations where an agent misreports his type in order
to force someone to misreport as well. This may cause multiplicity of equilibria. In
other words, if Anonymity fails, implementation is still possible, but full implementation
may fail.

The LNCIP is also required for the uniqueness of the equilibrium, as it allows for
agents to strictly improve their payoff if they report truthfully. Once again, if LNCIP
is violated, then one can still construct mechanisms which implement the first-best al-
locations, but the uniqueness of the equilibrium may not be possible. Therefore, the
common knowledge of the realized frequencies, Anonymity and LNCIP (along with
Assumption 3) are jointly sufficient conditions for full implementation of first-best al-
locations, but they are not necessary.

We would also like to comment on the advantages of our mechanism in comparison
to the existing literature (see for example, Jackson, 1991, Maskin, 1999). First, our
mechanism holds even with two agents (or even in the degenerate case of one agent).
Second, the required message space is minimal, since agents send messages only about
their own type. Third, we do not require any ad-hoc game, which has no equilibrium in
pure strategies (like an integer game), in order to rule out undesirable equilibria. This
is achieved by “enticing” some of the misreporting agents to report truthfully, whenever
there are multiple misrepresentations. Fourth, full implementation is also achieved if the

13This argument also makes clear that our paper is not one of dominant strategy implementation,
as only rank(K) individuals have dominant strategies.
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equilibrium concept is changed to iterated elimination of strictly dominated strategies,
which is, in fact, the solution concept we use in the proof of Proposition 1. Therefore,
our mechanism is not limited only to Bayesian implementation.

Finally, Assumptions 1,2 and 3 are relatively weak and there are many cases of
interest that comply with them. To demonstrate this, in 4.4, we provide some well-
known examples of economies with hidden types and the solutions that our framework
provides. But first, we characterize the problem by providing necessary and sufficient
conditions for full implementation.

4.3 Full Implementation: Necessary and Sufficient Conditions

Condition 1: Suppose a* € PF(E). V0,9 € O(p) such that a}), =y a} , I a €
A such that: (i) ag =y af, , and (ii) aj =y ay.

Proposition 2: Condition 1 is necessary for full implementation.

Proof: Suppose that Condition 1 is not satisfied. Full implementation of a* requires
that g(m) = a* if m; = 9;, Vi € I and that the strategy profile m; = 0;, Vi € I
is the unique Bayes-Nash equilibrium. Consider any direct mechanism M (g, a), which
specifies some allocation a(m) # a*, whenever m is such that Am (¢”) # A(¢”) for some
V" € ©(F) (whenever this is the case, then, by common knowledge of 53, it follows that
m; # U; for some ¢ € I). Suppose that, apart from i (of type ) and j (of type '),
incentive compatibility is satisfied for all other agents and that they report truthfully
(this is done in order to check the necessity of the condition).

Because Condition 1 is violated, then either part (i) or part (ii) of the condition
is violated (or both). This means that at least one of the following will hold: (i)
a;(m; = 9, m; =9, m_;;) =; ay, (i) aj >; a;(m; = 9,m; = J,m_;;). In case (i),
truthful reporting is not equilibrium, because, if everyone else reports truthfully, j’s
best-response is m; = ¥ (incentive compatibility is violated for j). In case (ii), there
are multiple equilibria because, if the truthful equilibrium exists, then so does another
equilibrium, where 7 reports type ¢ and j reports type ¢. To see this, notice that if
i believes that j is of type ¥ and that m; = 1, then his best-response is m; = ',
in which case it is also a best-response for j to report m; = ¢. Finally, in the case
where both parts of Condition 1 are violated, then there can be no truthful equilibrium
(as j strictly prefers to report ¥, if everyone else reports truthfully). In all cases, full
implementation is impossible.

Condition 1 is similar in spirit to Bayesian Monotonicity, which is necessary for full
implementation in economies with incomplete information (Jackson, 1991). In our
case, full implementation is possible, if there is a feasible allocation through which
some agent (i) “signals” cases of misreport. As a result, not all efficient allocations
are fully implementable when [ is common knowledge. Note that Condition 1 holds
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whenever the number of agents of lower-rank are less or equal to the number of agents
of higher ranks. Assumption 3 in section 4.2 made this restriction clear. On the other
hand, Condition 1 is weaker than Assumption 3, and may hold in cases where this
assumption is violated.

Furthermore, Condition 1 is sufficient for full implementation if one allows for mech-
anisms with games that do not have an equilibrium in pure strategies (for example
integer games, as in Maskin (1999) or modulo games, as in Jackson (1991))!. This
is because one can rule out undesirable equilibria with multiple misrepresentations of
types (sub-case (iii) in the mechanism of Proposition 1) by making agents to play such a
game, whenever the message-profile is not consistent with 5 by more than one message.
However, if one restricts attention to mechanisms where agents send only messages
about their types, the following condition is also required.

Condition 2: Suppose a* € PF(FE). There exists allocation an a € A, such that
CL1*9 =9 g and ay =y ag V 19,’19/ S @(ﬂ)

Condition 2 ensures that whenever there are more than one misrepresentations of types,
it is a best-response for one of the “liars” to deviate and report truthfully, while it is not
a best-response to deviate from truth-telling. It becomes apparent that Assumption
3 and the LNCIP satisfy Condition 1 (Lemma 4), while LNCIP also satisfies Con-
dition 2 (Lemma 3). Jointly, Condition 1 and 2 are necessary and sufficient for full

implementation for this restricted set of mechanisms'®.

4.4 Examples
Spence (1973)

The Spence economy consists of two types. Group I has low productivity a and its
proportion in the population is ¢;. Group II has high productivity @ and its proportion
in the population is 1 —¢;. Acquiring y units of education costs y/a for Group I and y/a
for Group II. Productivity parameters are private information and firms hire workers
according to a wage schedule, based on verifiable educational attainment. The payoff
for an individual is the value of his wage minus the educational cost and for a firm the
productivity parameter minus the wage.

Spence argues that agents will acquire education (which does not increase produc-
tivity in his model) in order to signal their productivity to firms. In equilibrium, the
wage schedules are such that high productivity workers acquire some education and
credibly signal their type, while low productivity workers acquire no education, and
firms correctly infer that they are low productivity. The education acquired by Group
IT is a deadweight loss, but necessary for credible signaling.

14See the Appendix for the proof. We omit it here, since it is similar to the proof of Proposition 1.
15See the Appendix for the proof.
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Assume that the total population N is common knowledge. Then Ng is the total
number of agents of Group I and N(1 — ¢;) is the total number of agents of Group II.
Based on this, the following mechanism can separate types without any agent incurring
educational costs in equilibrium.

Let all workers report their type. If the number of agents who report Group I and
IT is Ng; and N(1 — ¢qy), respectively, then agents who report Group I receive wage
wg, = a and those who report Group II, receive wage wg,, = @. Otherwise, those who
report Group I receive wg, = a and those who report Group II, are asked to undertake

one unit of education and receive wg,, = a+ €, with % < e < é (recall that a unit of

education costs % for high productivity workers and = for low prBductiVity workers).

19 [—

The above mechanism fully implements the first-best allocations in this economy.
First, consider the strategies of an a-type. It is clear that, irrespectively of the reports
of the other agents, it is a dominant strategy for her to report a, since @ > a and
a+e— % > a. Then, it is a best-response for an a-type to report truthfully as well.
This is because a > a + € — % Hence, all agents report truthfully in equilibrium and
acquire zero education. In Figure 2 contract ay denotes the offer to high-productivity

workers when lies are detected.

FB
as az

FB
a 44

Figure 3: Spence, 1973
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Rothschild-Stiglitz (1976)

Consider the Rothschild-Stiglitz economy. There is a continuum of risk-averse agents
with mass equal to one and a risk-neutral entrepreneur. There is one commodity.
Agents have a stochastic endowment with two possible states, H, L, with corresponding
endowments wy and wy, where wy > wyr. An agent’s expected utility function depends
on her consumption on both individual states: U(c, cy). The Bernoulli utility function
u(.) is strictly increasing and concave. There are two types of agents. A proportion A
of the population are of type 1 and face a high probability of suffering from the low
endowment state: py. The remaining 1 — \; are of type 2 and have a low probability
of wr: pr < py. Types are private information, but the rest characteristics of the
economy are common knowledge.

G ZPL, . 45°

ZPL,

Figure 4: Rothschild-Stiglitz, 1976

Assuming that insurees have full bargaining power and hence the entrepreneur makes no
profits from her services, the following mechanism can be utilized in order to implement
first-best allocations (see also Figure 4). All agents report their type. If the message-
profile matches the realized frequencies of types then each agent receives the insurance
contract that corresponds to her message (C{? and CI'P are the state-contingent al-
locations resulting from the first-best insurance contracts for 1 and 2 respectively).
Otherwise, agents who report type 1, receive an insurance contract which results to
allocation A;, while agents who report type 2, receive As,.
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Notice that, by construction, Ay =y CIB =5 A; and CF8 =, A, =, A,
Also, providing any combination of these individual allocations to the agents of the
economy is feasible, since they all lie in the interior of A(C3?). Therefore, Condition
1, is satisfied. It is easy to check that it is a dominant strategy for type 2 to report
truthfully. Given this, it is a best-response for any agent of type 1 to report truthfully,
as well. Therefore, the proposed mechanism has a unique Bayes-Nash equilibrium,
which is truthful.

For this result to obtain, we have implicitly assumed that potential deviations from
equilibrium take place by an € mass of same-type agents so that the aggregate number of
messages is affected by these deviations. Alternatively, one can use Al-Najjar (2004) to
transform the economy into one with discrete large number of agents, which is equivalent
to having a continuum of agents but preserves the results of discrete games. Therefore,
our claim is that one can solve the allocation problem in the Rothschild-Stiglitz economy
without any additional information than what was originally assumed. To the best of
our knowledge, this is the only mechanism that achieves this result.

4.5 Robustness to Small Perturbations

So far we have assumed that the realized frequencies of types are commonly known
with perfect precision. This is a very strong assumption, and hence we would like to
make sure that small relaxations of it would not change our results dramatically. As it
turns out, if there is a sufficiently small noise about 3, then our main claim still holds.

Let ' be the set of all possible frequencies of types that can be generated by ©.
By definition, U’yEF ©(y) = ©. Suppose, now, that there is a small noise about the
probability of the frequency . Agents have a probability distribution over the set of

7. With probability 1 — > €, the frequency of types  will be realized, while €, is the
yel’
probability that some other frequency v will be realized, with e, > 0,Vy € T'.

We maintain the assumption that each agent knows his own type with certainty but
has no information about the other agents’ type. The expected utility of agent 7 has to
be modified in order to include the uncertainty over frequencies:

Ula)=(1-Ye) ¥ [zn4w»>w@wne»]woiw“m

vel'  0_,€0_;(8]9;) Lses

+Z®L > [zm@@w@maﬂammmi

,,L-E@,i(’ywi) seS

We also assume that for every v there is a Pareto optimal allocation to be implemented,
which satisfies Anonymity: a*(v), with individual allocations a}(y) = a*(9;, 7).

In the case of uncertainty about the realized frequency, the rank of each agent is
also uncertain, as different v may correspond to different sets of realized types and dif-
ferent ranks. The problem then would be similar to the problem when the Anonymity

24



property is violated. However, if this uncertainty is sufficiently small, the equilibrium
strategies of agents will not change. To see this, consider an agent ¢ who has the high-
est rank under 5 (and potentially other ranks for other +’s). If he knows that 3 is the
realized frequency with certainty, then under the mechanism presented in 4.2, he would
strictly prefer to report his type truthfully than report any other type:

Ul(ﬁz,m,Aﬂ) > Ui(ﬂ/,m,ﬂﬁ), v 7é ¥, €0, Vm_; € M

Adding a small uncertainty about § means that his expected utility by reporting his
type truthfully becomes:

Ui(0;, m_;) = (1 = 3 )Ui(5, m|B8) + 3 € Us(¥i, m_s]v)
vyel vyel

It is evident that, if €, is sufficiently small for every v, the expected utility of i ap-
proaches the expected utility under 5 and hence it remains a strictly dominant strategy
to report his type truthfully. The argument can be repeated for any other agent j of
different rank according to 8. Given a sufficiently small vector of probabilities €, j
expects all higher-rank agents to report truthfully and his best-response is to report
truthfully as well, irrespectively of the messages send by agents of the same or lower
ranks. Hence, there exists some vector €, with strictly positive elements, such that the
equilibrium strategies under certainty over § remain the unique equilibrium strategies
under uncertainty over .

Corollary 2: If the realized frequencies of types are uncertain but there is a sufficiently
high probability that some [ will be realized, then the mechanism of Proposition 1 fully
implements the first-best allocations for every realized frequency.

Proof: It follows from the analysis above.

It is noteworthy that, due to the fact that truthful revelation of one’s type is the
only equilibrium action for all agents, the desirable individual allocations will be im-
plemented for any . In other words, the almost certainty about § makes agents to
report their type truthfully irrespectively of the frequencies of types that are eventually
realized. As a consequence, agents receive first-best allocations for all realized frequen-
cies. This confirms that our result is robust to small perturbations of the information
structure and it is not just a construction of perfect knowledge of 5.

4.6 Convergence to Ex-Ante Distributions

So far we have shown our main result and that it is robust to small uncertainty about
the realized frequencies. We also want to point out that if the number of agents becomes
very large then the realized frequencies converge to the ex-ante probability distribution

25



of types'®, in which case our informational assumptions converge to the widely used
assumptions in the standard mechanism design literature, i.e. agents know the ex-ante
probability of each type occurring. This allows us to relate our formulation and results
to large economies with adverse selection problems, and make the claim that in these
economies, because the realized frequencies are effectively common knowledge, one can
implement first-best allocations.

Of course, this requires some restrictions on the joint probability function ®. The
easiest way is to assume that types are independently and identically distributed. This
means that the probability of acquiring type 9, 7(¢), is the same across all agents and
the draws of types from the ex-ante distribution are uncorrelated. Then, by directly
applying the Weak Law of Large Numbers we get:

Jim (%) = 7(0)
This is exactly the information provided by g: the number of agents, for whom type
Y has realized. Hence, at the limit, the relative frequency of types in the population
coincides with the ex-ante probability distribution '7. Hence, our mechanism can be
applied to economies with large populations without requiring any additional informa-
tion than the standard mechanism design literature on asymmetric information and
with minimal restrictions on the joint probability function.

4.7 Participation Constraints

A final note is required regarding the issue of participation constraints. In many impor-
tant applications of adverse selection problems, agents are given the opportunity not
to participate in a contract or in a mechanism if the expected utility they anticipate by
entering is less than some exogenously given threshold. In our model, however, we have
completely ignored any participation constraint restrictions. Fortunately, this omission
does not result in loss of generality. If participation constraints are to be taken into
consideration, then this only restricts the points of the Pareto frontier that satisfy these
constraints and does not alter the rest of the analysis!®.

16Note that, for our results to obtain we do not require that the realized frequencies converge to the
ex ante distribution. We only need that they converge to a unique distribution, given the correlation
between draws.

I"Notice, however, that other formulations of the Law of Large Numbers do not require independently
or identically distributed types. For example, suppose that the type generating process is an ergodic
Markov chain. Then, as the number of draws becomes infinitely large, the empirical distribution of
types converges to a unique distribution (see for example Grinstead and Snell, 1997). Clearly, in this
case, draws may be correlated, but, as long as the mechanism designer knows the transition matrix
of the Markov chain and assuming that all draws take place before the mechanism is played, then g
can be estimated with arbitrary precision as the number of agents approaches infinity. Generally, our
mechanism can be applied in all cases where the realized frequencies of types converge to a unique
distribution as the population becomes very large.

80f course, in all interesting problems, the intersection of all participation constraints with the
Pareto-frontier is non-empty. Notice that, in off-the-equilibrium-path situations, the resulting allo-
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Conclusion

In this paper we consider a general hidden-type economy and, under relatively weak
conditions, we show that it is possible to construct a mechanism which has a unique
Bayes-Nash equilibrium, where all agents reveal their type truthfully and they receive
a first-best allocation. Our result relies on information aggregation and appropriately
chosen punishments. If the realized frequencies of types are known (perfectly or im-
perfectly), then one can aggregate the messages that all agents are sending out and
uncover any misreport(s), even if the identity of the liar is not known.

Truth-telling, however, requires appropriately designed punishments for lying. If
the punishment from detecting a lie is too severe, then some agents may deliberately
lie about their type in order to force other agents to also do so. The lies cancel out
in terms of the aggregate information and the former agents “steal” the allocations of
the latter, who are forced to lie under the fear of the extreme punishments. This can
lead to coordination failures and multiplicity of equilibria. Therefore, uniqueness of the
equilibrium requires a careful construction of the allocations when lies are detected. We
show that such punishments exist when the indifference curves of different types are
not locally identical, meaning that in the neighborhood of any allocation one can find
other allocations such that each type prefers one of these over the rest.

It should be stressed that we obtain our equilibrium by using iterated elimination
of strictly dominated strategies and, hence, it is also a Bayes-Nash equilibrium. This
contrasts with most of the existing papers, where the Bayesian equilibrium concept is
used. Furthermore, the assumption on the realized frequencies of types being common
knowledge is needed because we consider general social choice rules. If we focus on the
implementation of specific allocations on the Pareto frontier so that allocations depend
only on one’s type (and not on the realized frequencies of types, as we have examined in
this paper), we can implement the first-best as a unique equilibrium even if agents have
heterogeneous beliefs or no information at all about the realized frequencies of types.
Our mechanism can still implement the desirable allocation truthfully, given that the
social planner knows these frequencies. This is because players’ best-response corre-
spondences depend on their beliefs about how many misreports will be detected by the
mechanism and not on their ability to detect other agents’ lies. Finally, an interesting
question is whether the implementation of first-best allocations in this setting can be
achieved through a decentralized mechanism. We plan to address this question in the
near future.

cations may violate certain participation constraints. But as long as agents decide and commit on
their participation before the mechanism is played (based on the expectation of an outcome, which
results from some equilibrium of the sub-game), then the uniqueness and efficiency of the equilibrium
guarantees the participation of all agents.
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Appendix

Lemma 1: Let PF(E) be the Pareto Frontier of economy E. Then, for every allo-
cation a on the Pareto Frontier, there exists at least one agent ¢ € I, who does not envy
the allocation of any other agent: U;(a;) > Uj(a;),Vj € 1.

Proof: Suppose that the claim does not hold. Then, all agents envy at least one other
agent: YV a; 3 j € 1,5 # i:Ufa;) > U(a;). But, since this holds for all agents, then
there exists at least one reassignment of individual allocations among the I agents such
that some of them are made strictly better-off and the rest remain as well-off as under
a.

In order to find one such reassignment, use the following algorithm. Pick an arbitrary
i€ Tandlet i = {j € I : Ui(a;) > Ui(a;)}, be the set of agents whom i envies. Reassign
aj, for some j € i, to i. If i € j, then reassign a; to j and stop the reassignment. If
i ¢ 7, then reassign some ay, h € j to j and then proceed to agent h. Continue until you
reach some agent k, such that either i € k or there exists some [ € k, whose allocation
a; has already being reassigned. In the first case, reassign allocation a; to k and stop
the reassignments. In the latter case, ignore all reassignments preceding agent [ (these
agents retain their original allocations), reassign to [ the allocation aj and stop the
reassignments.

Since the set of agents is finite and all agents envy at least one allocation, after at
most I reassignments, the algorithm above will end-up in some agent, whose allocation
has already been reassigned, or the first agent, where the reassignment started. In
this case, a reassignment of allocations has been found, which makes some agents in
I better-off (from agent [ until agent k) while the rest remain equally well-off. This
constitutes a Pareto improvement and violates the initial assumption that a € PF(E).
|

Lemma 2: For every allocation a on the Pareto Frontier, there exists at least one
agent ¢ € I, whose allocation is not envied by any other agent: U;(a;) > Uj(a;),Vj € 1.

Proof: The proof is similar to the proof of Lemma 1. Suppose that the claim does
not hold. Then, all agents are envied by at least one other agent: Va; 4 j € I,j #
i : Uj(a;) > Uj(aj). But, this implies that there exists at least one reassignment of
individual allocations among the I agents such that some of them are made strictly
better-off and the rest remain as well-off as under a.

In order to find one such reassignment, use the following algorithm. Pick an arbitrary
i € I and reassign a; to one of the agents in the set ¢ = {j € I : U;(a;) > Uj(a;)}. Then
reassign a;. If i € j, then reassign a; to 7 and stop the reassignment. If i ¢ j, then
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reassign a; to some arbitrary h € j and repeat the reassignment. Continue until you
reach some agent k, such that there exists some [ € k, whose allocation a; has already
being reassigned. Ignore all reassignments preceding agent [ (these agents retain their
original allocations), reassign to [ the allocation a; and stop the reassignments.

Since the set of agents is finite and all allocations are envied by at least one agent,
after at most I reassignments, the algorithm above will end-up in some agent whose
allocation has already been reassigned. In this case, we have found a reassignment of
allocations which makes some agents in I better-off while the rest remain equally well-
off. This constitutes a Pareto improvement and violates the initial assumption that
a € PF(E). 1

Corollary 1: Ifa € PF (E),vthen Lemma 1 and 2 hold for any subset of I. Namely, let
I'CJandlet A= {a;:i€l}. Then,if a € PF(E), Lemma 1 and 2 hold for / with
regards to A as well.

Proof: Take any subset of agents I of the set I. Suppose that Lemma 1 and 2 do
not hold over the set A, which is the set of individual allocations of the agents in I.
Then, it is possible to find a reassignment of allocations between the agents in I, such
that some of them will be made better-off while the rest remain as well-off. But that
is a Pareto-improvement for some agents in I, which contradicts the assumption that

a€ PF(E). &

Lemma 3: Under LNCIP, there exists €(a;) and ay, ag, such that:

(1) ay =y ai, [lag —ail| <e
(ii) ag =9 a; , |lag —aif| <€
(iii) Ay >y Ay, Ay 9 Ay

Ve<e(a), V0,9 €0 9+, and ¥V a; € R

Proof: Recall that Ci.(a;) = {c € RI** : Ui(c) = Uilay), ||lc — aj| < €}. Also, recall
that L;(a;) is the lower-contour set of agent j associated with allocation a; and V;(a;)
is the upper-contour set.

H is a L x S — 1 hyper-plane, which passes through a;, and is perpendicular to
the marginal rate of substitution of some type’s indifference plane, which also passes
through a;. H splits the space of allocations in two sub-spaces, A; and A,. In each of
these sub-spaces, and due to the LNCIP, there exists some € > 0 such that for every
€ < € within the open ball B.(a;), the upper contour set of a type is a subset of the
upper contour set of some other type (see also the figure below).

Say that agent k is the type with the smallest upper contour set within ball B.(a;)
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Figure 5: LNCIP and Local Incentive Compatibility

and subspace A;: Vi(a;) () Be(ai) (VA1 C Vi(a;) () Be(a;) (A1, ¥Vl € ©. Then, by
LNCIP, there exists some allocation b € B.(a;) such that a; is strictly preferred to
b by agents of type k, but the agents of all other types strictly prefer b to a;: b € Li(a;)
and b € Vj(a;),VIl € O.

Likewise, there exists allocation ¢, which does not belong in the two smallest upper
contour sets within B(a;) but it is within all the other upper contour sets, which means
that a; is strictly preferred by type k to b and ¢, b is strictly preferred by the type with
the second smallest contour set to a; and ¢ and all the other types prefer ¢ to a; and b.
By induction, one can construct © — 1 allocations in the e-neighborhood of a;, such that
the agents of one type strictly prefer one allocation over all the other. The properties
described by Lemma 3 follow immediately. B

Lemma 4: Suppose a* € PF(F) and Assumptions 1 and 2 hold. V9,79’ € O(f) there
exist some feasible individual allocations {a,(9,7"), az(9,9")}, such that, if a} =y a},
then ay(9,9) =y aly Zo ax(9,0), al e a2(9,9) =y ar(0,7).

Proof: Because a Pareto efficient allocation is feasible by definition, any allocation
c € A(a}) U A(a}) is feasible. Also, due to the Pareto efficiency of a* and the fact
that ¥ envies the first-best allocation of ¥, Ly (aj) N A(a}) # 0. Take an individual
allocation ¢ inside this intersection and arbitrarily close to the indifference plane of
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that passes through aj,. Therefore, aj >y c. There are two possible sub-cases to
consider, which are shown in figures 6 and 2 respectively.

Case (i): ¢ >y ajy. In this case, let ay(0,7') = ¢ and a2(¥,9') = a}, and this com-
pletes the proof. A(¥) allocations ¢ and A(J') allocations a}, are feasible on aggregate.

Case (ii): aj >y c. In this case, by LNCIP, it is possible to find an allocation d
very close to aj, such that: d >y aj, and ¢ >y d. Because c is in the interior of A(aj),
it is always possible to find such points (we could define distance € and make sure that
B.(e)NUgy (a}) # 0, while B(d)NUy (aj) = 0, where B.(c) is the open ball with radius
e around c¢). Therefore, let a;(9,9) = d and az(¢,9") = ¢. A(¥9) allocations d and (')

allocations c are feasible on aggregate. W

X

Figure 6: Feasible and Incentive Compatible Allocations. Case (i): A(a}) N Ly(a),) C
Alay) N Ly (aj)
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Proposition 3: In the space of mechanisms, which permit sub-games with no equilib-
rium in pure strategies, Condition 1 is sufficient for full implementation.

Proof: Suppose that G;(P, A) is a simultaneous move game G : P — A with I players,
and assume that G has no Nash equilibrium in pure strategies (examples include Jackson
(1991) and Maskin (1999)). Also, arbitrarily restrict the payoffs of G; such that the
maximum possible payoff for any type is lower than if he were to receive the first-best
allocation of any other type'?. Let R;(p_;, G) be the best-response correspondence of
agent ¢ if game (G is played. Finally, suppose that Condition 1 is satisfied and thatg
is common knowledge. The mechanism below fully implements any Pareto efficient
allocation which satisfies Anonymity:.

Each agent reports his type m; and a final allocation is received according to the
following mechanism M(g, a):

i) If m € ©(3), then a;(m;,m_;) = a, , Vi € I.

ii) If m is such that for only two types, (¢, '), the number of reported agents is
different from the number of agents according to the realized frequencies by one,
specifically Am (¢) = A(9) + 1, Am(¢') = A(¢¥') — 1, then:

o If aj >y aj , aj >y a, then, for the agents who reported types ¥,1', the
mechanism induces G(9,9', A\(9) x (a; — €), A(V') x (a} — €)).
o If aj >y aj,, then, for the agents who reported types ¥,1’, the mechanism

induces G(9, 9, A(¥) x a1 (9,9"), \(¥") x as(¥,9")).

o If a, >y a}, agents who report type ¥’ receive allocation @), and agents who

A(®)
Am (¥)

e For all my, # {9,9'}, ar(my, m_;) = ay, .

report type 1 receive allocation ay.

iii) For any other case, the mechanism induces Gj.

If more than one misreport is detected, M induces G, which has no equilibrium?’.
Therefore, there can be no equilibrium of the mechanism where agents believe that more
than two misreports will be detected. Conditional on that, it is a strictly dominant
strategy for the agents of the highest rank to report truthfully their type. To see
this, take agent i of type ¥ and suppose that his rank is K. Agent ¢’s only possible
equilibrium beliefs are that: either (i) all other agents will report truthfully or (ii) one
other agent will misreport or (iii) there will be multiple misreports but they will cover

9An easy way to do this is to multiple all payoffs of G; with an arbitrarily small but positive
number.

20More than one misreport detected means that either Ag(9) # Am () for more than two types or
that Am (9) — Ag(¥) > 2 and Am (9) — Ag(?') < 2 for some types O, ¥'.
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each other (e.g. type Uy reporting as type J; and vice versa) apart from one. Case (ii)
and (iii) are strategically equivalent for ¢ as his response induces the same allocation.

If i believes that all other agents will report their type truthfully then his best
response is to report truthfully as well. Otherwise, he receives either the allocation
ay — € or the allocation )\’I\g(?g) ay,. Clearly, ¢ strictly prefers aj to the above allocations
and his best response is to report his type truthfully.

If, on the other hand, i believes that an agent (say j of type 9') of rank(K) will
misreport his type as 1, then ¢, by reporting truthfully, receives aj—e, while by reporting
type ¥ he receives a},. By construction, aj — € >y aj,. If i reports any other type then
his payoff will be even less due to the restrictions on the payoffs of G;. Hence, ¢’s best
response is to report truthfully.

If i believes that an agent (say m of type 9”) of a lower rank (and who envies a}) will
misreport his type as 9, then a similar argument goes through. Reporting truthfully
is strictly preferred to reporting any other type, since ai(9,9”) =y aj,. Finally, if
¢ believes that some agent m of type ¢,, will misreport his type to 9, then 7 prefers
reporting truthfully and receiving aj to reporting untruthfully and receiving some payoft
induced by Gj.

Hence, for all beliefs that can be consistent with equilibrium, all agents of rank
K strictly prefer to report their type truthfully. Given this and by following the same
reasoning, agents of rank(K —1) strictly prefer to report truthfully as well. By induction
and iterated elimination of strictly dominated strategies, we conclude that all ranks will
report truthfully and hence the unique Bayes-Nash equilibrium of the mechanism is for
all agents to report their type truthfully. H

Proposition 4: Condition 1 and 2 are jointly sufficient for full implementation.

Proof: Suppose that Condition 1 and 2 are satisfied and that £ is common knowledge.
The mechanism below fully implements any Pareto efficient allocation which satisfies
Anonymity. Each agent reports his type m; and a final allocation is received according
to the following mechanism M(g, a):

i) If m € ©(3), then a;(m;, m_;) = a;,., Vi € I.

ii) If m is such that for only two types, (J, ¥'), the number of reported agents is
different from the number of agents according to the realized frequencies by one,
specifically Am (¢) = A(9) + 1, Am(¢') = A(¥) — 1, then:

o If a}y >y a}, , a} >y aj, then, for the agents who reported types ¥,19’, the
mechanism induces G(¢,9', A\(¥') x (a} — €), \(¥) x (a}, —¢€)).

o If aj >y aj,, then, for the agents who reported types ¥,1’, the mechanism
induces G(¢,9', A(¥) x a1(9,9"), A(¢¥') X az(¥,9")).
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o If a}, >y aj, agents who report type 9’ receive allocation aj, and agents who

report type 1 receive allocation %aj;.

e For all my, # {9,9'}, ap(my, m_;) = a, .

iii) For any other case, an allocation @, which satisfies Condition 2, is implemented.

The mechanism above is identical to the mechanism of Proposition 3, with the only
exception that, if more than one misreport is detected, then instead of inducing a game
without an equilibrium, the mechanism provides an allocation which is constructed
according to Condition 2. By construction of a, all types prefer to report truthfully if
they believe that many misreports will be detected.

Therefore, even if a rank(K)-agent believes that there will be several detections of
misreports, he still prefers to report truthfully. He also prefers to report truthfully than
reporting any other type, if he believes that there is only one misreport (say reporting
some type ¥ or ¥ when some ¥ misreports), because a1(9,v') =y aj =y agr. Since
his best-response remains the same for all other beliefs, this means that any agent of
rank(K) has a strictly dominant strategy to report truthfully. Therefore, by following
the same reasoning as in the proof of Proposition 3 and by iterated elimination of
strictly dominated strategies, we conclude that the mechanism has a unique Bayes-
Nash equilibrium, at which all agents report their type truthfully. B
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