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1 Profile of the Research Training Group
Thematic focus. The core of this Research Training Group is modern Fourier analysis and
spectral theory. These important classical disciplines in analysis provide powerful tools for
many other areas of mathematics. In this RTG, we focus on their use in topology and analytic
number theory. The applications include: the investigation of differential and pseudodifferential
operators on manifolds with special geometric structure using adapted pseudodifferential calculi;
in the spectral and index theory of sub-Laplacians and other hypoelliptic operators arising from
geometry; in the context of quantum field theory, where microlocal methods provide powerful
tools for renormalisation approaches; in the study of C*-algebras that may serve as observable
algebras in quantum field theory; as a vehicle to translate properties of groups into spectral
properties of their Cayley graphs, so that Fourier analytic methods apply; new criteria for and
applications of Kazhdan’s property, expander graphs, and expander complexes; arithmetically
enhanced versions of Fourier analysis, like arithmetic harmonic analysis for improvements of
the classical circle method.

The history of close and fruitful interactions between Fourier analysis and analytic number
theory dates back to the first proof of the prime number theorem, based on analytic properties
of the Riemann zeta function. Today, the power of Diophantine analysis is used in modern
applications of the circle method, and Fourier analysis is the key toolkit to obtain arithmetic
information such as local-to-global principles. Indeed, the investigation of symmetric spaces or
more general Riemannian manifolds is one of the most fascinating research topics at the interface
of spectral theory, geometry and – if the manifold carries additional arithmetic structure –
analytic number theory. This can be summarised in the famous quote “Can you hear the shape
of a drum?”. On a mathematical level, the relevant questions comprise the study of spectral
properties of operators such as the Laplacian and sub-Laplacians (or generalisations thereof)
in combination with geometric-topological invariants such as volume, the geometry at the
boundary in non-compact cases, or finer properties such as analytic L2-invariants. Mathematical
tools to establish this connection include, for instance, trace formulas and index theory, both of
which are featured prominently in several projects in Section 2.

Qualification concept. The RTG has established a vibrant school of early career researchers
at the forefront of current research which we hope and expect to continue. We combine
the expertise of PIs Bahns, Bauer, Meyer, and Witt on various facets of analysis and the
internationally strong group of analytic number theorists in Göttingen (Brüdern, Schindler)
with the geometric perspective of Schick, Vigolo, and Zhu. We will continue to guide our
doctoral researchers to conduct excellent research and to communicate their research interests
and results across the disciplines. The core idea of the qualification programme is to enrich the
training and research of our doctoral researchers by providing them with a broad perspective
beyond their thesis, which requires deep specialised expertise.

One of the cornerstones of our qualification concept continues to be a special advanced
course: the “RTG lecture”. We offered such a course during the first funding period and in
a previous RTG as well. This course covers a variety of fields that are particularly relevant
for the projects described in Section 2. Thus it provides a common knowledge base for all
doctoral researchers in the RTG. The “RTG colloquium” and topical summer and winter schools
give the doctoral researchers a hands-on experience with current research topics in the field.
The doctoral and post-doctoral researchers of the RTG are actively involved in choosing the
themes and speakers. This is discussed both during the weekly RTG tea meetings and during
dedicated sessions at the RTG retreats. We let our doctoral researchers participate in our
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extensive international collaborations. If appropriate for the individual situation, we implement
an extended stay of several months abroad to broaden their horizons both personally and
mathematically.

These core parts of the qualification programme are complemented by a variety of teaching
formats with a tradition in Göttingen, in particular, reading and study groups and research
seminars. All of these measures provide a unique environment for doctoral researchers. They
will acquire a strong scientific background and understanding of important parts of modern
mathematics, giving them excellent chances in the job market both inside and outside academia.
The work of each doctoral researcher is guided and monitored by an individual thesis committee.
The Georg-August University School of Science (GAUSS), the graduate school for mathematics
and natural sciences at the University of Göttingen, ensures a structured doctoral study
programme in mathematics.

Synergies. The scientific activities of the RTG provide the framework for the mathematical
synergies that can emerge in this RTG in the triangle of analysis, analytic number theory,
and analytic aspects of topology. While analytic number theory uses Fourier and harmonic
analysis as a key input, there is also a considerable flow of ideas in the other direction. For
instance, number theoretic methods can be used to explicitly analyse the (non-isometric) action
of Sln(Z) on the torus Tn, and all known methods to attack the quantum unique ergodicity
conjecture use some arithmetic input. Spectral theory of differential operators helps to analyse
resolvent algebras on different domains in Cn which are potential inputs for the construction and
understanding of quantum field theories. Topological arguments are intertwined with spectral
arguments in the quest to better understand the dynamics of discrete isometry group actions on
compact manifolds and expander complexes associated to them. We have designed the RTG to
shed light on such interdisciplinary features and to make our doctoral researchers fluent in the
respective theories and languages. All doctoral researchers of the RTG should become familiar
with the basic analytic techniques, in particular, spectral theory of (bounded and unbounded)
operators on Hilbert spaces, Fourier analysis in abelian and non-abelian situations, microlocal
techniques and the role of pseudodifferential calculi, analysis on Lie groups and symmetric
spaces, which in one way or another are common to all the projects described in Section 2.
Our idea is that the sophisticated specialised methods needed in these specific projects shall be
complemented and challenged by the input from adjacent fields.
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2 Research Programme
Modern Fourier analysis and spectral theory are used in a variety of contexts. The application
of tools from these areas in topology and analytic number theory is the common thread of our
research programme, both in the first and the second funding period. A number of important
ideas and tools—such as spectral decompositions, Fourier duality, microlocal analysis, and
analysis on Riemannian manifolds—are common to our entire research programme.

We start with a short synopsis of the research projects, along with their interrelations, and
put them into perspective. Along the way we will, in particular, demonstrate stable edges
between the vertices of the triangle of analysis – analytic number theory – topology. Complete
details will be given in the forthcoming subsections.

In the second funding period, a central role will be played by the spectral analysis of (slightly)
singular operators. These arise from several geometric situations. In particular, subriemannian
manifolds such as nilpotent Lie groups and nilmanifolds will be studied in project areas 2.3, 2.4,
2.7, and also 2.6. In 2.4, the focus is on the classical case of sub-Laplacians on functions, which
we are studying, e.g., using Fourier restriction methods. In 2.3, the focus is on developing a
theory of subelliptic differential complexes and drawing geometric/topological conclusions. In
2.7 and 2.6 the focus is the construction of C*-algebras out of these operators, leading the way
in 2.6 to index theoretic applications.

Project area 2.7 studies Fourier analysis in the more abstract form of representation theory.
Its starting point is Nelson’s Theorem, which describes what representations of a Lie algebra
integrate to representations of the corresponding Lie group. In 2.7, Lie algebra representations are
replaced by representations of algebras of differential operators or quantum group deformations
of compact groups, and positive energy representations of loop groups. In the latter case, the
focus is on finding extra algebraic structure on these representations that equips the resulting
C*-algebra with a representation of the string Lie 2-group. A representation of the latter
relating to positive energy representations is a prerequisite for certain physical applications and
also for index theory with the string 2-group. A common feature of the C*-algebras studied in
2.7 is that they may be interpreted as deformation quantisations of certain physical systems.
In project area 2.1, from the physical motivation of classification of the elementary fields of
a gauge theory on an asymptotically flat spacetime, the representation theory of the infinite
dimensional BMS group BMS4 = C∞(S2) ⋊ SL(2,C) (the group of asymptotic symmetries
of such a spacetime) is studied, with one of the goals to better understand the associated Weyl
algebras.

Project area 2.2 follows another ansatz to describe important physical systems by C*-algebras.
Namely, the unbounded self-adjoint operators that are initially given as input are replaced by
their resolvents or the unitary one-parameter groups that they generate. In turn, these are
then used to generate a C*-algebra. In finite-dimensional linear toy models, these C*-algebras
are contained in Toeplitz C*-algebras. We will explore how much remains of this structure in
nonlinear and infinite-dimensional models.

The methods we plan to employ in the project areas mentioned so far include a variety of
tools from harmonic analysis, such as microlocal constructions of appropriate pseudodifferential
calculi, explicit calculations of spectra and heat kernels using generalised Fourier decomposition,
and the spectral zeta functions and their analytic properties. Zeta functions and their relatives
are also a key tool to encode arithmetic information.

Fourier analysis in arithmetic situations comes up in the large project area 2.5. The power
of Fourier analytic techniques in Diophantine analysis is demonstrated in 2.5.3 and 2.5.4,
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featuring modern variants of the Hardy–Littlewood circle method. More geometric aspects
of harmonic analysis provide fine information on the distribution of solutions of Diophantine
equations in 2.5.1. It will also be relevant to access arithmetic information through a Fourier
transform in 2.6.3, in order to understand the Roe algebra of Sln(Z) acting on the torus. The
underlying principle of 2.6 that the geometry at infinity governs many of the relevant features
also comes up in 2.5.3, where equivariant partial compactifications are used together with
harmonic analysis and the circle method to control the asymptotics of the number of rational
points. The problems mentioned above are linked by the fact that Fourier analysis is enhanced
by number theory in the guise of lattice point problems and Diophantine considerations. Put
differently, Fourier and harmonic analysis are tailored to encode arithmetic phenomena.

Implicit (and explicit) in many of the projects just discussed – such as 2.3, 2.4 – is the
question of the connection between geometric properties of spaces acted on by groups and
spectral properties of certain invariant operators (such as the Laplacian). This theme features
prominently in 2.8, where we ask to what extent one may choose a metric to achieve a
determined band-gap structure of the spectrum of this operator. A key tool here is Fourier
analysis in the form of Bloch–Floquet theory.

We now turn to the detailed and explicit description of the research programme. The
following subsections, ordered alphabetically with respect to the first PIs name, describe specific
project areas and list a selection of 27 possible thesis projects. The work on some of these
projects has already begun with doctoral researchers of the second cohort, as will be detailed
below. All together, the suggested projects provide ample material for the final cohort of 11
doctoral researchers to be hired in the third funding period, and additional associated doctoral
researchers to be integrated along the way.

2.1 Microlocal and representation theoretic methods in quantum field theory
(Bahns)

All interesting interacting quantum field theories involve terms which are ill-defined, and
physicists have developed elaborate tools to “renormalise” them, that is, to assign finite values.
In the first funding period, doctoral student Arne Hofmann studied the renormalisation
problem of QFT in the framework of Lagrangian distributions, that is, distributions which are
conormal with respect to a Lagrangian submanifold Λ of the cotangent bundle T ∗M . Locally, a
Lagrangian distribution is given as an oscillatory integral (ubiquitous also in the analytic theory
of automorphic forms). The challenge of the global theory is that it has to be set up in a
geometric, coordinate-independent way. Lagrangian distributions provide the natural framework
for the renormalisation problem as the (distinguished) fundamental solutions of the partial
differential operators in question are one-sided paired Lagrangian distributions [65,112]. For
such distributions, a symbolic calculus is available [93].

Regarding constructive aspects in QFT, a result by Bahns and Rejzner [11] shows that in the
framework of perturbative algebraic quantum field theory, the S-matrix of the Sine Gordon
model on 2-dimensional Minkowski space (hyperbolic signature) is constructible as a unitary
operator. Later, Bahns, Fredenhagen and Rejzner have shown that the Haag–Kastler net of
von Neumann algebras of local observables can be constructed explicitly [10] – and hence, the
framework indeed provides a completely new approach to constructive QFT. Until now, results
on exact models had mostly been restricted to the elliptic signature case, and a subsequent
Wick rotation was needed. In his ongoing thesis project, Fabrizio Zanello studies the conserved
currents of the model. Again, this construction is based on renormalisation techniques, which
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are tackled in the framework of microlocal analysis [45] .
In the second funding period, the focus will move towards gauge theory on asymptotically

flat Lorentzian spacetimes. The physical motivation is the idea that the representations of the
symmetry group should classify elementary fields in such spacetimes. The asymptotic symmetry
group of a four-dimensional asymptotically flat spacetime is the Bondi–Metzner–Sachs group
BMS4 = C∞(S2) ⋊ SL(2,C). Lennart Janshen, a doctoral researcher in the second cohort,
is working on understanding the irreducible unitary representations of BMS4, using the Mackey
machine of induced representation. Representations of groups like BMS4 and induction of
representations also play an important role in 2.7, where the aim is to construct C*-algebras.

Unlike the more classical Poincaré group, BMS4 is infinite-dimensional. In addition, its
representations depend on the choice of a topology on it. McCarthy [108–111] studied the
representations in an L2-topology, as well as in the nuclear C∞-topology on C∞(S2). He
generalised the Mackey theory of induced representations. A special spin-zero representation
associated to the stabiliser group ∆ ⊂ SL(2,C) (the double covering of the two dimensional
Euclidean group) is interpreted in [58] as a mass-less field theory supported at lightlike infinity.

Janshen aims at understanding the irreducible representations with positive squared mass
associated to the stabiliser group SU(2) ⊂ SL(2,C). We hope to construct a related field
theory on the asymptotically flat spacetime. Along the way, we hope to construct an injective
∗-homomorphism from the Weyl algebra associated to the conformally invariant Klein–Gordan
field theory on the spacetime into the Weyl algebra of the associated field theory, similar to [58].
Such constructions will be related to the study of resolvent algebras of 2.2.

Title of (ongoing) thesis project:

• Asymptotic symmetries in classical gauge theory.

2.2 Toeplitz quantisation, resolvent algebras and symmetric spaces (Bahns,
Bauer)

The study of canonical operators in quantum mechanics has a long standing history and
goes back to the fundamental ideas of Weyl and von Neumann. A mathematically rigorous
and classical approach is based on operator theoretical methods and encodes the canonical
commutation relation through a C*-algebra: the Weyl or CCR algebra. More precisely, let
(X,σ) be a symplectic vector space and consider a real linear map ϕ into a space of essentially
self-adjoint operators on a Hilbert space H with a common dense and invariant core, such that[

ϕ(f), ϕ(g)
]

= iσ(f, g)Id. (1)

The well-known Weyl algebra ∆(X,σ) is defined as the unital C*-algebra generated by the
unitary operators exp(iϕ(f)) for f ∈ X. Independently of a concrete representation in L(H),
the Weyl algebra can be characterised more abstractly by the Weyl relations.

More recently, Buchholz and Grundling have proposed the resolvent algebra R(X,σ) as
an alternative C*-algebraic model with the aim of circumventing some known weaknesses
of the Weyl algebra (see [46] for details). We recall that R(X,σ) is a C*-algebra defined
by abstract relations. In case of a concrete representation inside L(H) it can be identified
with the unital C*-algebra generated by (certain) resolvents of ϕ(f) for f ∈ X. On the one
hand, the resolvent algebra allows new physical applications such as the encoding of dynamics
in an operator-theoretic model. On the other hand, these algebras and their generalisations
described below have interesting algebraic-analytic structures, which even in the setting of a
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finite-dimensional symplectic space X are not yet fully understood. It remains an important
task to analyse resolvent algebras and their generalisations under mathematical aspects and
physical relevance.

If X is finite-dimensional, we may consider the model case X = Cn ∼= R2n equipped with
the standard symplectic form σ. Both the Weyl algebra and the resolvent algebra may be
studied in their Fock–Bargmann representation, that is, inside the space of bounded operators
on the Fock–Bargmann space H = F2(Cn) of Gaussian square-integrable entire functions
on Cn. As was observed in [56], the Weyl algebra ∆(Cn, σ) has a representation as a Toeplitz
C*-algebra inside L(H). More precisely, ∆(Cn, σ) is the C*-algebra generated by the Toeplitz
operators with almost periodic symbols. As a consequence, operators in the Weyl algebra
have strongly localised kernels and therefore are in various aspects well-behaved (see [173] for
details). More recently, it was observed in [19] that an analogous result holds for the resolvent
algebra R(X,σ). Based on the shift-invariance of R(X,σ), a convenient tool in the analysis
of Toeplitz operators is Quantum Harmonic Analysis (QHA) and the notion of corresponding
operator and symbol spaces as developed by Werner [169] (for the framework of Toeplitz
C*-algebras, compare its formulation in [74]).

In the present project, we propose to study C*-algebras generated by resolvents of essentially
self-adjoint operators extending the models described above.

The construction and study of C∗-algebras built from explicitly given operators links this
project to the study of explicit examples of Roe C*-algebras to be studied in project area 2.6.3,
such as Sln(Z) acting on the torus. Even closer is the construction of C*-algebras in project
area 2.7. The C*-algebras in 2.7 also provide deformation quantisations for certain physical
systems. They tend to have “too few” representations because extra conditions are imposed on
the representations of the given unbounded self-adjoint operators in order to get a C*-algebra
with exactly the same representation theory. In contrast, the Weyl and resolvent C*-algebras
studied in this project area have “too many” representations, namely, they have representations
where the original unbounded generators are mapped to ∞. These representations are related
to the boundary map in the Toeplitz C*-algebra extension.

The first extension we propose to study replaces (Cn, σ) by an infinite-dimensional separable
complex Hilbert space H equipped with a Gaussian measure and a symplectic form σ. Extending
the definition of the Fock–Bargmann space, we define F2(H) to be the L2-closure of complex
analytic polynomials on H. We propose to study representations of the resolvent algebra
R(H,σ) inside the Toeplitz C*-algebra over F2(H) (see [19] for some definitions and first
results).

We would like to understand whether R(H,σ) and ∆(H,σ) are still Toeplitz C*-algebras
and whether there are unique corresponding symbol spaces. To our best knowledge, no version
of QHA or a correspondence theorem is presently available in this situation and one may have to
extend the theory to the setting of functions in infinitely many variables. We expect to observe
new effects due to the lack of a translation-invariant measure and lack of the corresponding
L1-space on H, which are natural ingredients of QHA over Cn. Moreover, the theory of
Toeplitz operators and generated C*-algebras is not well-understood in this framework. The
peculiarities of infinite-dimensional measure theory and the topological properties of the space
of holomorphic functions on H (such as its non-nuclearity as a Fréchet space) require new
ideas and a systematic analysis of the quantisation model.

Secondly, we aim to generalise the resolvent algebra from the linear setting of symplectic
vector spaces (X,σ) to suitable classes of symplectic manifolds (M,ω). In order to develop
appropriate definitions, it will be useful to analyse concrete examples of how the symplectic
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structure of M can be encoded in the form of a C*-algebra generated by resolvents. We may
start from the observation that the canonical operators in the Fock–Bargmann representation
appear as generators of strongly continuous unitary one-parameter groups of weighted shift
operators on Cn (Weyl operators). Hence we will first consider symplectic manifolds with
complex structure and having a large group of symmetries. Starting with the complex one-
dimensional case, we plan to consider first the unit disc D with the Bergman metric and
corresponding symplectic form σB. Instead of the Fock–Bargmann space we consider the
Bergman space of holomorphic L2-functions on D. Replacing the shifts on Cn by the Möbius
transforms on D leads to two families of essentially self-adjoint operators, ϕ(y, z) parameterised
by the complexified tangent bundle (y, z) ∈ TD ∼= D × C and (Dy)y∈D parameterised by D,
respectively. These operators fulfil a variant of the canonical relations (1):[

ϕ(y, z), ϕ(y, u)
]

= iσB(z, u)Dy. (2)

We will analyse the structure of the C*-algebra generated by resolvents of ϕ(y, z) and its
intersection with the full Toeplitz algebra on the Bergman space. Which conclusions can
now be drawn from the invariance of the algebra under symmetries of the domain (that is,
conjugation by the unitary maps encoding the automorphisms)? Again, no analogues of QHA
and correspondence theory are known in this setup. We plan to investigate whether and how
one can develop such a theory, or whether there are natural obstructions along the way.

In a second step, we consider the family of standard weighted Bergman spaces on D with
weight parameter λ > −1. The above construction gives a family of resolvent algebras indexed
by λ. We study the deformation of these algebras and possible limit objects as λ → ∞.

More generally, we aim to extend the analysis of the resolvent algebra to the case of complex
domains of dimension n > 1 (see [68, 164] or other quantisation models with symmetries [20]).
We may choose M = Bn to be the open unit ball in complex n-space or, more generally, a
Hermitian symmetric manifold of non-compact type. Via the Harish-Chandra embedding, M is
realised as a bounded symmetric domain in Cn equipped with the Bergman metric. As before we
consider the weighted and unweighted Bergman spaces over M . generalising the case M = D,
we define the notion of a resolvent algebra over (M,σB) and we plan to analyse its C*-algebraic
properties. We expect new and interesting phenomena caused by the multi-dimensional setup
(such as families of commutative subalgebras, which can be studied via Gelfand theory) and
the higher complexity of the geometric structure.

We plan the following thesis projects:

• QHA, Toeplitz operators and resolvent algebras in the Fock–Bargmann representation
over infinite-dimensional symplectic spaces

• Resolvent algebras for symmetric manifolds: from unit disc model to bounded symmetric
domains.

2.3 L2-invariants and harmonic analysis (Bauer, Meyer, Schick)

The spectral theory of the Laplace-Beltrami operator provides powerful and interesting invariants
of manifolds that, despite being defined using a Riemannian metric, are actually of topological
nature. Our focus is on L2-invariants which use regularised (von Neumann) traces on non-
compact manifolds and questions derived from them. We aim to continue to investigate
Novikov-Shubin invariants and L2-torsion in geometric situations where tools from harmonic
analysis are available.
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In the first period, we focused on the explicit study of the Novikov-Shubin invariants of
non-linear semi-simple Lie groups—with special emphasis on the universal cover of SL(2,R) for
which the full spectrum of the form Laplacian and the Novikov-Shubin invariants are computed
in the PhD project of Zhicheng Han—and of certain classes of nilpotent Lie groups, with new
computations of Novikov-Shubin invariants in the PhD project of Tim Höpfner.

In the second funding period, we plan to deepen the analysis of nilpotent Lie groups, exploiting
in particular the underlying structure of subriemannian and filtered manifold. We will focus
on the spectral theory of the associated hypoelliptic operators and will develop the theory of
geometric operators of this type much beyond the model case of the hypoelliptic sub-Laplacian
on functions. Finally, we plan to investigate the index theory of hypoelliptic operators in the
context of suitable operator calculi.

2.3.1 Sub-Laplace operator on differential forms and applications

A subriemannian manifold is a triple (M,H, g) with M being a smooth manifold, H a bracket
generating distribution and g a family of inner products on H smoothly varying with the base
point. Under a regularity condition on the subriemannian structure, an intrinsic sub-Laplace
operator ∆sub on C∞(M) is defined [1]. This operator encodes the subriemannian geometric
structure on M and generalises the Laplace-Beltrami operator in Riemannian geometry. Based
on the bracket generating property (also known as the Hörmander condition) of the distribution,
∆sub is known to be hypoelliptic. The sub-Laplace operator acting on functions as well as the
induced heat or wave equation have been studied via analytic or probabilistic methods with
applications to the spectral theory of subriemannian manifolds, see [22,51,69,116,166].

Graded nilpotent Lie groups play the role of a local model for M and carry an induced
subriemannian structure themselves. An important example are the Heisenberg groups, which
appear as local linear model at each point of a contact manifold. The analysis of graded
nilpotent Lie groups G in the framework of subriemannian geometry therefore serves as a first
approximation for the general case. Based on the splitting of the corresponding Lie algebra

g =
r⊕

ℓ=1
gℓ where [g1, gℓ] ⊆ gℓ+1,

one obtains a family δλ of non-isotropic dilations on G as an extension of the map δλ(exp(Xℓ)) =
λℓ(exp(Xℓ)) for Xℓ ∈ gℓ and λ ∈ R. The sub-Laplace operator ∆sub on G is a left-invariant
second order differential operator which is homogeneous of order two with respect to δλ.

In this project we are planing to study a suitable extension of the sub-Laplace operator from
functions to differential p-forms on M . One first observes (see [141,143]) that the dilation can
be extended to the whole differential algebra. However, the de Rham differential d on p-forms
(p ≥ 1) is not homogeneous with respect to the weights and rather splits into homogeneous
parts. As a consequence, it was suggested by Rumin [141] to study suitable filtered complexes
based on the dilation properties of d. We expect to further develop the concept of hypoellipticity
for complexes and then prove hypoellipticity of such a complex by deriving suitable a priori
estimates. Preliminary work in this direction is carried out in [60]. A follow-up goal is then to
construct parametrices in an adapted pseudodifferential calculus. Similar questions will then be
studied in the case of compact nilmanifolds Γ\G where Γ is a lattice in G.

In many concrete cases (including all compact nilmanifolds [69]), it has been shown that the
spectral zeta function obtained from the sub-Laplacian acting on functions has a meromorphic
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extension that is analytic near zero. Then the regularised determinant of ∆sub on functions is
defined. It is natural to ask whether such results extend to the case of higher order differential
forms, in which case one can define and study a subriemannian version of the analytic torsion and
L2-analytic torsion as done in special cases in [3, 81], among others. Here, we will investigate
three problem areas: structural properties (vanishing results, variational formulae); explicit
computations for model spaces; relation to the Riemannian analogue.

The Novikov-Shubin invariants αp of nilpotent Lie groups (or a Riemannian manifold with
cocompact action by a discrete group) can be obtained from the asymptotic behaviour at large
times of the Riemannian heat kernel on differential p-forms.

In the second funding period, we will introduce subriemannian analogues of the Novikov-
Shubin invariants and will study them under suitable hypoellipticity assumption. A focus will
be their geometric significance, in particular their invariance properties in the framework of
subriemannian geometry, and also the relation to the classical Riemannian invariants. In fact, in
[142] and in case of a graded nilpotent group, Rumin proves Carnot-Carathéodory ellipticity of
the de Rham complex. This means that induced Laplacians are maximally hypoelliptic, which
is equivalent to the existence of a parametrix and extends the well-known hypoellipticity of the
sub-Laplace operator on G in the scalar case.

We propose to study these questions initially for nilpotent Lie groups with additional structure
coming from a Clifford module action. In such cases, additional algebraic tools are available
and can be applied in the analysis. More precisely, these are the H-type and pseudo-H-type
groups introduced by Kaplan and Ciatti [55], respectively.

2.3.2 Hypoelliptic index theory

The analysis that enters the study of hypoelliptic operators may also be used to describe
the K-homology class of an invariant differential operator of this type on a graded nilpotent
Lie group G. These differential operators are studied via their parametrices using adapted
pseudodifferential calculi for filtered manifolds. Such calculi are built and studied in [70], but
there is also the approach proposed in [67] to use suitable groupoids. In the first funding period,
it was shown that these calculi can be obtained by combining the groupoid approach with
Rieffel’s construction of generalised fixed point algebras. Moreover, an abstract reduction to
the Atiyah-Singer index theorem of the index problem for a Rockland operator was achieved.
We want to push this further and explicitly solve index problems on filtered manifolds. The PIs
have considerable expertise with this K-theoretic machinery and the groupoid approach to index
theory (compare, for instance, [25,66]). However, the general techniques alone cannot solve
the problem because their end result still involves a map that is only defined as the inverse of
a certain isomorphism. Namely, the principal symbol belongs to a certain non-commutative
C∗-algebra. Its K-theory is isomorphic to that of the unit co-sphere bundle S∗M in the
manifold M . It remains to solve the question which K-theory class on S∗M corresponds to
a given principal symbol. The Rockland condition, which is the analogue of ellipticity in this
context, demands that the symbol is invertible. The problem is to use this Rockland condition
to describe the class through finite-dimensional data extracted from the operator, in a way
that still works for bundles of graded nilpotent Lie groups. This is a key ingredient in the
hypoelliptic index theorem by Baum and van Erp [24]. Recent approaches also apply cyclic
homology techniques [77]. This is a promising route were we also have experience [133].

10



2.3.3 Heat kernel formulae and topological invariants

Above, we described how asymptotic analysis and dilation techniques allowed Rumin to compute
the Novikov–Shubin invariants of the Heisenberg groups in all dimensions. Instead of using
such asymptotic results, it is interesting to calculate the heat kernel of the form Laplacian on
nilpotent Lie groups explicitly. This is a daunting task and is expected to be possible only
in very special situations, but if achieved it will provide very detailed and deep information.
Indeed, in case of a step-2 nilpotent Lie group the heat kernel of the Laplacian on 0-forms has
a concrete integral representation involving hyperbolic functions (the Beals-Gaveau-Greiner
formula and its extension, [51]). So far, there are no precise formulae for the heat kernel of
the function Laplacian on groups of step three or larger. Hence in this project we are planing
to tackle the above problem initially for groups of step two. Preliminary results are already
available in [23], where the heat kernel of the Laplacian acting on one-forms in case of the
Heisenberg group was calculated in an explicit form as a concrete matrix with operator entries.
We will study approaches to generalise such formulae to higher order differential forms and
other step-2 nilpotent Lie groups. This might involve an integral decomposition into Grushin
type operators as studied in Project Area 2.4. Once established, we will investigate whether and
how such formulae serve as a starting point for an asymptotic heat kernel analysis which allows
to directly calculate the Novikov-Shubin invariants for certain groups like the Heisenberg group.
This should allow to confirm with a different method the results obtained via degeneration
analysis [141,143], and we hope to cover new cases as well. Explicit spectral calculations are
also relevant in parts of Project Area 2.6.

A bolder goal is then to apply the explicit spectral analysis in order to calculate L2-torsion.
In a first step we will consider groups in low dimensions and/or with additional structure, such
as the above mentioned H-type or pseudo-H-type groups.

The development of the above theory offers many attractive questions for several doctoral
researchers. Preliminary titles of thesis projects in this direction could be:

• Analysis of hypoelliptic subriemannian differential complexes

• Subriemannian analytic torsion

• Index theory for hypoelliptic invariant differential operators on (bundles of) graded
nilpotent Lie group.

• Explicit heat kernel formulae on nilpotent Lie groups and their geometric applications

2.4 Analysis on nilpotent Lie groups and nilmanifolds (Bauer, Witt)

Fourier restriction theorems play a central role in harmonic analysis and PDE. In particular, they
provide a classical tool in the proof of Strichartz estimates for various linear and quasi-linear
equations [13,161]. Generalisations from the Euclidean case to nilpotent Lie groups suggest the
use of the non-commutative Fourier transform, which increases the complexity of the analysis.
Graded nilpotent groups such as the Heisenberg group naturally appear as model spaces in
subriemannian geometry and carry an intrinsic hypoelliptic sub-Laplace operator ∆sub. During
the last years, various analytic and spectral theoretical aspects of the Schrödinger, heat and
wave equations induced by the sub-Laplacian have been studied [116, 166]. However, even
in the case of step-2 groups the analysis is far from being complete. In the setting of the
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Heisenberg group, the authors in [13] apply Fourier restriction estimates in order to prove
Strichartz estimates for the subriemannian Schrödinger and wave equations. Extensions of
these results can be considered for more general nilpotent Lie groups of step two.

In case of H-type groups Strichartz estimates are known in some cases: Bahouri, Gérard, and
Xu [17] proved that there are no global dispersive estimates on the Heisenberg group for the
Schrödinger equation. This result was generalised by Del Hierro [88] who showed that there
are dispersive estimates on H-type groups for the wave equation and also for the Schrödinger
equation, the latter if the dimension of the centre p is at least two. The latest result in this
direction was by Bahouri, Fermanian-Kammerer, and Gallagher [15] for 2-step stratified groups
who, under a maximal-rank condition, established, again for the Schrödinger equation and
now for spectrally localised data, a dispersive estimate with a decay rate of t−(p+k−1)/2 as
t → ∞, where k is the dimension of the radical of the canonical skew-symmetric form. In
addition, restriction theorems for the Heisenberg group and then for H-type groups were proven
in [13,104], while local dispersive estimates on the Heisenberg group can be found in [16].

2.4.1 Restriction operators

Starting from a positive self-adjoint differential operator D and based on the spectral theorem,
a family of restriction operators can be defined. In the classical case (Stein-Tomas restriction
theorem) D is chosen as the standard Laplacian on the Euclidean n-space. In [122] the author
considers restriction operators induced by the sub-Laplacian on the Heisenberg group Hn

and their mapping properties between mixed Lp spaces. The analysis is based on the more
elaborate representation theory of Hn. More recently, Liu and Wang in [104] have studied
similar questions for operators induced by sub-Laplacians of H-type groups.

In this project we consider the case of pseudo-H-type Lie groups G, which were introduced
by Ciatti [55]. These are step-2 nilpotent Lie groups generalising the class of H-type groups.
More precisely, the complement to the centre of the corresponding Lie algebra admits the
structure of a Clifford Cℓr,s-module. If G is not an H-type group, then G does not fall into the
class of Metivier groups. We expect interesting new effects in the analysis of associated PDEs
and restriction operators, originating from the degeneracy of the matrix of structure constants
and requiring new methods of investigation. We aim to analyse restriction operators for the
sub-Laplacian on G, their mapping properties and some applications.

In many examples, by descending the sub-Laplacian through a submersion (with additional
conditions) from a subriemannian manifold M to a base manifold B we obtain a positive
sum-of-squares operator G, which we call Grushin operator. This construction generalises the
classical case where M = H3 is the three dimensional Heisenberg group and B = H3/L ∼= R2

arises as a quotient of H3 by a one-dimensional subgroup. In model cases the Grushin operator
may be seen as the Laplace operator on B corresponding to a singular Riemannian metric
(e.g. Grushin plane, Grushin sphere, or Grushin cylinder) and is of lower complexity due to the
reduction of the space dimension. For such model operators G, which are degenerate along a
submanifold of B, we will also study restriction operators and their applications to associated
PDEs in singular Riemannian geometry.

2.4.2 Dispersive estimates on homogeneous groups

This part of the project aims at understanding the dispersive behaviour of waves on homogeneous
groups. It has already started to be taken up by doctoral researcher Marvin Schmidt from the
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second cohort. One of the goals is to establish Strichartz estimates, with possible applications
to nonlinear PDEs [84,85,145] (concerning global existence, minimal regularity, etc.). Indeed,
we aim at generalising the results [13, 15–17,88,104] mentioned above from the H-type group
case to the case of 2-step stratified groups (aka Carnot groups of step 2). A mathematical
tool to achieve this is a pseudodifferential calculus on those groups based on the group Fourier
transform. The construction of such a calculus still needs to be finalised. General references
are [70, 162]. Yang in his thesis [174] made an interesting suggestion of how to generalise
the constructions in [14] for the Heisenberg group to more general groups G. This uses
explicit knowledge of unitary irreducible representations of G and of the Plancherel measure on
the unitary dual Ĝ as well as the Hörmander-Weyl calculus for the growth estimation of the
amplitude functions, which are operator-valued function living on Ĝ. What is still missing is the
implementation of the correct degenerate behaviour of the amplitude functions at those points
of Ĝ which are not seen by the Plancherel measure. Here, a description of the group Fourier
transform in terms of the canonical skew-symmetric form and its matrix coefficients [100]
might prove to be helpful. Moreover, a list of all low-dimensional nilpotent Lie groups up to
dimension 6 is available in [125].

2.4.3 Spectral asymptotics of the sub-Laplacian on nilmanifolds

A third project concerns the spectral theory of the sub-Laplacian on compact quotients of
pseudo-H-type groups G by co-compact subgroups Γ ⊂ G. The left-coset space M = Γ\G
is called a compact pseudo H-type nilmanifold and we refer to Γ as a lattice in G. The
left-invariant sub-Laplacian descends from G to the sub-Laplacian ∆M

sub on M . Based on
subelliptic estimates it is known that ∆M

sub has discrete spectrum consisting of eigenvalues with
finite multiplicity. In recent years there have been advances in the spectral analysis of compact
nilmanifolds. Explicit heat trace formulae have been obtained and, as an application, finite
families of ∆M

sub-isospectral, but non-homeomorphic pseudo-H type nilmanifolds were detected,
[21,69].

We aim to further study the inverse spectral problem on M by analysing the spectral zeta
and eigenvalue counting function of the sub-Laplacian. A concrete question asks whether one
can read the topological dimension of M from the spectrum of ∆M

sub. As in the classical case
of the Laplacian on a Riemannian manifold the subriemannian analogue of the heat equation
and the wave propagator will be crucial. In [159] the author has determined the asymptotic
behaviour of the eigenvalue counting function in the special case of Heisenberg manifolds from
the explicitly known spectrum of ∆M

sub. Whereas the leading term in the asymptotic is known
in general, [159] interestingly observed that the error terms are better than for the standard
Laplacian on a torus.

The eigenvalue counting function shall be studied more generally for pseudo-H-type nilmani-
folds by abstract methods from harmonic and microlocal analysis. We hope to gain a better
understanding of bounds on the error term and possibly link Strichartz’ observation to the
structure of the spectral zeta function and its distribution of singularities. Further spectral
asymptotics appears by considering a tower of nilmanifolds Γn/G induced by a decreasing
tower of subgroups Γ1 ⊃ Γ2 ⊃ · · · with trivial intersection. We are planing to investigate the
asymptotic behaviour of the spectra of the sub-Laplacians on Γn/G as n → ∞, which should
be related to the sub-Laplacian on G itself. This analysis may link our project to the study of
L2-invariants in Project Area 2.3.

Topics for prospective/ongoing thesis projects:
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• Establish Fourier restriction theorems for the sub-Laplacian on pseudo-H-type groups
and applications.

• Further develop pseudodifferential calculi on homogeneous groups based on the group
Fourier transform.

• Establish dispersive estimates, Fourier restrictions theorems, etc. and derive corresponding
Strichartz estimates (this is already ongoing as project of Marvin Schmidt).

• Derive spectral asymptotics of the sub-Laplacian on step-2 compact nilmanifolds.

2.5 Fourier analysis and Diophantine Equations (Brüdern, Schindler)

The central objects in this part of the proposal are Diophantine problems that may be treated
with Fourier analytic methods. There are two lines of attack. On the one hand, Fourier analysis
is brought to bear on Diophantine problems. Here Fourier analysis is in the role of a catalytic
toolkit, and it yields arithmetic information such as local to global principles for classes of
equations, or finer information on the distribution of the solutions. On the other hand, we also
propose to refine the current Fourier analytic toolkit itself. The major instrument here is the
circle method in its classical and more recent versions. The goal then is to identify new classes
of problems accessible to Fourier analytic methods.

Doctoral researchers will require a very good understanding of techniques from analytic
number theory, and in particular of the circle method and its variants. Some of the problems
below are related to geometric ideas, which are guiding the projects from a technical point of
view as well as enable us to put the results into a more general framework. For others, a more
substantial background in harmonic analysis is helpful.

2.5.1 Dimension growth

Given a projective variety X over a number field k equipped with a height function H on its
k-rational points, the counting function

N(B) := ♯{x ∈ X(k) : H(x) ≤ B}, B ∈ R>0

is a central object of study, if one wants to understand the arithmetic of X. If X is a Fano
variety, then we have very precise expectations for N(B) given by versions of Manin’s conjecture.
If, however, we aim to assume as little as possible about X, a natural question is to obtain
upper bounds for N(B). This is closely related to the dimension growth conjecture, which has
seen steady progress in the past few decades mainly through techniques such as the determinant
method. In recent work of Huang [91] a very new approach has been introduced. Instead
of using the arithmetic information from the variety X, one basically forgets all Diophantine
structure and instead considers more generally manifolds in Rn. Using methods purely from
harmonic analysis, Huang managed to establish the weak dimension growth conjecture for
hypersurfaces in projective space with nowhere vanishing Gaussian curvature. Building on this
breakthrough, Schindler and Yamagishi [151] managed to adapt the methods to manifolds of
higher codimension under certain curvature conditions. A very interesting feature in [151] is
that for higher codimension one obtains in some cases even stronger results than had been
previously predicted by the (analogue) of the dimension growth conjecture. In the first part of
this RTG project, Florian Munkelt [120] has already successfully worked on relaxing some of
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the curvature conditions. The new approach using harmonic analysis opens a number of doors
which we further aim to explore in the second funding period. These include the following
questions:

1. count the number of rational points on submanifolds of Rn which are at the same time
constrained to lie on some algebraic variety, such as for example a quadric,

2. use these techniques to establish analogous results for affine problems,

3. allow for differing denominators of the rational points, with the goal of understanding
analogues of the dimension growth conjecture in more general toric varieties,

4. work on number field versions and compare the results with the ones obtained in the
higher codimension situation via taking Weil restrictions.

2.5.2 The distribution of rational points

In another direction we aim to study situations where we restrict to certain classes of projective
varieties and aim to establish the Hasse principle as well as asymptotics for the counting
function N(B). If one considers a smooth complete intersection in Pn

Q of sufficiently large
dimension depending on its degree, then work of Birch [28] and Browning and Heath-Brown
[43] establishes the local-global principle. These results do not have a particularly natural or
good dependence on the codimension. In his breakthrough work [144] Myerson managed to
get a linear dependence of the number of variables in terms of the codimension. For example,
his work [144] shows that the Hasse principle holds for smooth complete intersections of R
quadratic forms in n variables as soon as n ≥ 9R. This is a big step ahead but there are still
certain systems of quadrics for which we have already stronger results available. For example
consider a single non-degenerate quadratic form over a number field of degree R in at least 5
variables. Then number field versions of the delta method [86] can be used to establish the
Hasse principle as well as asymptotics for the number of rational points of bounded height.
This is equivalent to studying the arithmetic of its Weil restriction over the field of rational
numbers and in particular establishes here the Hasse principle for the corresponding system
of R quadratic forms in at least 5R variables. One can now ask if there is a way to extend
these ideas to other systems of quadratic forms (those coming from a Weil restriction forming
a small Zariski closed subset in the naive moduli space). In recent work [44], Browning, Pierce
and Schindler have taken up this idea in introducing a concept of generalised quadratic forms
over number fields. Moreover number field applications of the delta method are then used to
enlarge the class of systems of quadratic forms for which we can establish the Hasse principle.
This idea of transferring systems of forms of same degree to number fields objects, is a very
flexible one. As a second line of research we propose for this RTG project the following project:

Use the classical circle method to establish the Hasse principle for certain systems of equations
of same degree using generalised forms over number fields.

As a third line of research we aim to specialise even further to families of Fano varieties where
one already is able to establish the Hasse principle as well as understand the density of rational
points. Consider for example a hypersurface X ⊂ Pn

Q and a height function H on its Q-rational
points. Then a first indication for the distribution of its rational points is the counting function
N(B) as above. Though, this does not tell us much about the local distribution of points.
For example, one could fix a real point ξ on X and ask for the number of Q-rational points
that are of bounded height and close to the point ξ. Peyre in [131] has suggested a research
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program in order to understand this local distribution, see for example also work of Sardari
[147] who managed to get nearly sharp answers for some analogous situations of affine quadrics.
In work in progress, the PI Schindler together with Zhizhong Huang, Miriam Kaesberg, and
Alec Shute is currently exploring those questions in the setting of projective quadrics. One may
also ask about other statistics, as for example motivated in work of Bourgain, Rudnick and
Sarnak [40,41], who study those questions for lattice points on the sphere. For example one
may ask for point pair statistics and asymptotically evaluate the sum

S1(B) :=
∑

x,y∈X(Q)
H(x),H(y)≤B,x ̸=y

dist(x,y)≤r

1.

for a certain distance function dist(x, y) and two parameters r,B > 0. Or consider a statistic
related to the electrostatic energy of points of height bounded by B, given by

S2(B) :=
∑

x,y∈X(Q)
H(x),H(y)≤B,x ̸=y

1
dist(x, y) .

This third line of research has the following aim:
Consider a smooth hypersurface of large dimension and low degree and use Fourier analytic

methods to study fine scale distributions of rational points, such as the local distribution of
points and point pair statistics.

The projects above are in the intersection of the research interests of PIs Schindler and
Brüdern, and we expect fruitful interactions between these research groups as well as possibilities
for co-supervised projects. Possible thesis topics in this project are:

• establishing the Hasse principle for systems of equations of same degree using generalised
forms,

• local distribution of rational points and point pair statistics.

The doctoral researcher Mieke Wessel from the second cohort has already started with an
ongoing project in the direction of the last question.

2.5.3 Integral points on log Fano varieties

The projects in Section 2.5.2 have the goal to deepen our understanding of the arithmetic of
projective varieties. In the setting of affine varieties, the natural analogue is to study the set of
integral points. This sub-project has the goal of understanding the density of integral points on
certain log Fano varieties. More precisely, consider a smooth projective variety X over a number
field k with a strict normal crossing divisor D such that the associated log-anticanonical bundle
is ample. Then consider a flat integral model U of X \D over the ring of integers OK of K
and study the counting function

R(B) = ♯{x ∈ U(OK), H(x) ≤ B}, B ∈ R>0,

for a suitable height function H. If one allows the removal of accumulating subsets, there
are predictions for the growth of this counting function by Chambert-Loir and Tschinkel [52]
providing an analogue to Manin’s conjecture in the setting of rational points. Similarly as in the
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setting of rational points, a large variety of techniques has been used to establish asymptotics
for R(B) for certain cases, including the circle method and harmonic analysis methods in the
case of partial equivariant compactifications. Recently, Wilsch [171] has for the first time
applied the universal torsor method to a certain log Fano threefold, given by the blow-up of
P3 along a smooth conic with a rational point, with different choices for D. After using the
universal torsor method, Wilsch reduces to a counting problem on a Diophantine equation,
which he can solve by elementary methods in summing over each variable one after another.
This is a strategy which works beautifully for his example and leads to a great result in his
case, but easily breaks down if one looks at slightly different situations. For example if one
considers the problem of the blow-up of P3 along a smooth conic without a rational point, then
it is not clear how his method could generalise. The goal of this sub-project is to combine the
use of a torsor approach with the circle method for the actual counting problem. There is one
additional problem to be overcome, namely, the height function typically leads to a region of
counting to which the circle method cannot directly be applied. For this, Blomer and Brüdern
[33] have introduced the concept of a flexible form of hyperbola method, which has already
been used a number of times in the setting of rational points, see for example [32,117,150].
Their method has been further generalised by Pieropan and Schindler [134] to allow for even
more general height functions, which is exactly what will be needed in this project. A concrete
goal for the ongoing project of doctoral researcher Anouk Greven of the second cohort in this
project is the following:

Apply a strategy consisting of a torsor approach, the circle method and the hyperbola method
to establish an asymptotic formula for the counting function R(B) in new cases of log Fano
varieties.

The project starts with the case of a blow-up of P3 along a smooth conic without a rational
point with suitable divisors D to familiarise themselves with the techniques and then later
move on to exploring to which other cases these techniques can be applied, guided by the
classification of Fano threefolds in [92,118].

2.5.4 Fourier coefficients of arithmetic origin

This sub-project develops ideas of PI Brüdern proposed for the first funding period under the
heading Arithmetic Fourier Analysis. The motivation was to develop a linear algebra for d-th
powers. Here, one is interested in the distribution of integral solutions of the homogeneous
system

ai1x
d
1 + ai2x

d
2 + . . .+ aisx

d
s = 0 (1 ≤ i ≤ r) (3)

with integer coefficients aij . The ongoing thesis project of Tammo Dede of the second cohort
goes along this way already with d = 1, using techniques from the geometry of numbers and
Hasse principles inspired by [42]. Beyond this, since the equations arise from a linear system,
forcing the solutions to be d-th powers, there is a simple but rich structure underneath that also
shows on the dual, Fourier analytic side. Brüdern and Wooley [BW07, BW16] dealt with the
cubic case d = 3 for s > 6r, thus touching the limit of what linear Fourier analysis can achieve.
In a more experimental direction, these authors [BW15,BW18] noticed that the truth of the
Hasse principle for the system (3) can be made to depend on moments of Fourier coefficients
“of arithmetic origin”. One starts with a suitable, fairly dense set A ⊂ Z and sets

f(α) =
∑

|x|≤B
x∈A

e2πiαxd
.
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For positive real t, and integral h one considers

ψ(h) =
∫ 1

0
|f(α)|te−2πiαh dα.

If t is an even natural number then, by orthogonality, ψ(h) is the number of solutions of
t∑

j=1
(−1)jxd

j = n

with xj ∈ A, |xj | ≤ B. For other values of t no such interpretation seems possible, but the
Fourier coefficients ψ(h) still remember their arithmetic origin encoded on f . In [BW15,BW18]
the moments ∑

h

|ψ(h)|ν (4)

with ν = 3 and 4 and “exotic” values of t have been explored to obtain the Hasse principle
for the equations (3) with d = 4, r = 2 and 3 and surprisingly small values of s. In these
applications one has ν = r + 1 but other relations are possible. In a very natural way, one may
view the moments sum (4) as an object dual to a Diophantine system with ν − 1 equations
and νt variables, and we are no longer required to have ν or t integral. This points towards a
complex interplay between systems (3) as r and s vary. Very recently this has been explored in
[BW22a, BW22b,BW23], and it is now also possible to combine the combinatorial methods
of [BW16] with the moment method of [BW15] (see [BW23]). A brave doctoral researcher
may try to develop a systematic theory to obtain new instances for the Hasse principle for
small degree and rather small dimension. This should then incorporate recent progress on
moment estimates [BWta1, BWta2]. A more down-to-earth project would be an analysis of the
“rounded” analogue, in the sense of Mazur [107], of the system (3). This should be a fairly
accessible project. Since this is a largely unexplored set of ideas, there are many possibilities
for further thesis projects that concern additive problems with powers. New to this circle of
ideas is Tanja Küfner of the second cohort, with a project concerning the additive theory of
powers that aims to establish an effective version of Freiman’s theorem.

2.6 Large scale geometry and harmonic analysis (Meyer, Schick, Vigolo)

“Large scale geometry” is the paradigm of studying non-compact metric spaces from “far away”,
neglecting all the local information and just focusing on the features of the space at infinity.

This is a powerful paradigm for two essential reasons:

1. there are cases where the structure of an object of study is not sufficient to fully determine
a geometry, but it does suffice to define a large scale geometry. Much of geometric group
theory builds on this principle: there one wishes to assign to a finitely generated discrete
group its Cayley graph as a geometric object, but this assignment depends on the choice
of a finite generating set. On the other hand, the large scale geometry of the Cayley
graph does not depend on it, and it is hence a well-defined invariant of the group.

2. In other circumstances, the study of the large scale geometry allows to focus on the most
relevant features. These then become manageable and computable, while studying the
full space would be too unwieldy and overwhelming. This strategy has been implemented
successfully in large scale index theory, for instance, in Roe’s partitioned manifold index
theorem.
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Large scale geometry has been developed with its own tools and approaches. One such tool
is the use of certain C∗-algebras – in particular Roe algebras – and their K-theory. Along the
way come index theoretic and spectral properties in the form of large scale index theory and its
application to spectral properties, in particular, to invertibility and non-invertibility of geometric
operators. In this way, the study of large scale geometry has strong connections to questions of
spectral engineering as discussed in Project Area 2.8, where a large scale index can provide
obstructions to the construction of geometric operators (Laplacians, Dirac operators) with
predetermined spectral properties.

Very important are also constructive methods, among them cones and warped cones. These
are used to form bridges between large scale geometry and the usual small scale geometry of
compact manifolds, foliations on them, and the dynamics of group actions. Specifically, to
define a (dynamical) warped cone one starts with a discrete group Γ generated by a finite
generating set S and acting by isometries on a compact Riemannian manifold M . To this action
one associates a large scale geometry OΓ(M) defined as the disjoint union (M × {k})k∈N of
copies of M , but equipped with a warped scaled metric dk: by definition, dk is the largest metric
such that d(x, y) ≤ kdk(x, y) and dk(x, sx) ≤ 1 for all generators s ∈ S. We also demand
that (x, k) and (x, k + 1) have distance ≤ 1 for each x ∈ M and k ∈ N. This construction
(and its foliated counterpart) play an important role in the sequel.

2.6.1 High dimensional expansion

One of the research foci will be on the phenomenon of “high-dimensional expansion” and
“higher Kazhdan properties”.

Loosely speaking, expander graphs are sequences of graphs of increasing size which are very
highly connected. They can be spectrally defined as a sequence of finite connected graphs (Xn)
of bounded vertex degree such that the spectra of the graph Laplacians for the graphs Xn have
a uniform gap at zero. It is quite hard to concretely construct expander graphs. Most of the
known explicit constructions have a group theoretic or arithmetic origin.

One specific way to obtain interesting expanders is through the construction of warped cones.
One starting point of our investigations is the following result [168]: (the level sets of) a warped
cone are coarsely equivalent to a sequence of expander graphs if and only if the Laplacian on
the Cayley graph of Γ twisted by the unitary action on L2(M) has a spectral gap. Importantly,
this holds automatically if Γ has Kazhdan’s property (T). This and related work have given
rise to a host of expanders with interesting properties. One such property is that they are
counterexamples to the coarse Baum–Connes conjecture [64, 149], which we will discuss below.

In recent years, one focus of interest shifted to high-dimensional variants of expanders. It turns
out that there are different notions of high-dimensional expansion, generalising the different
aspects of the classical concept. A sequence of k-dimensional spectral expanders is then a
sequence (Xn) of k-dimensional simplicial complexes (finite and connected and of uniformly
bounded vertex degree) and such that in all degrees 0 ≤ j < k the cohomology vanishes and
the combinatorial Laplacians have a uniform spectral gap around zero. A weakening of this
notion allows for cohomology groups of bounded dimension.

As already mentioned, the group theoretic property which is fundamental to construct
expander graphs is Kazhdan’s property (T). One of several definitions says that a discrete
group Γ has property (T) if the group cohomology with coefficients twisted by any unitary
representation with no non-zero invariant vectors vanishes in degree 0 and 1. As suggested
by Bader and Sauer, its k-dimensional strengthening, higher Kazhdan’s property (Tk), is then
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defined by requiring the same up to degree k (related notions have been explored in [7] and
[54]). In the previous funding period, we had in mind to address property (T) for Aut(F4), a
problem which has been solved in the meantime outside of the RTG by PI Schick’s former
doctoral student Nitsche [124].

The specific goal of our research programme is to relate higher expansion properties of the
warped cone to higher spectral gap properties of the action of Γ on M . Here, in joint work with
de la Cruz Mengual, Vigolo has almost proved that the warped cone OΓ(M) is a k-dimensional
expander if and only if the degree p combinatorial Laplacian computing the cohomology of
Γ with coefficients in an appropriate Hilbert completion of Ωq(M) has a spectral gap for all
p+ q < k. In particular, if the group Γ has higher Kazhdan property (Tk) then warped cones
arising from isometric Γ-actions would automatically be k-dimensional expanders. This would
generalise the construction of higher expanders via groups with higher Kazhdan property (T)
of [115]. Examples can be constructed using a recently announced result of Bader and Sauer,
showing that if Γ is a lattice in a simple Lie group of rank (k + 1), then Γ has property (Tk).

The above result requires that the action of Γ on M is isometric to obtain a unitary
representation on Ω∗(M). One specific task of our project is to go beyond this case. A
tantalising example is the standard action of SLn(Z) on Tn. We conjecture that its warped
cone is an (n − 1)-dimensional expander. Here we expect that explicit computations using
Fourier analysis in the spirit of [75] will provide the tools to attack this specific problem.

In a different direction, we suggest to investigate results of Künneth type for higher spectral
gaps. A goal is then to construct continua of non-coarsely equivalent higher expanders. For
classical expanders, this is achieved in [71] using related techniques. Note that for such results
it is crucial to go beyond higher Kazhdan groups; in the specific case, by taking the product of
a higher rank lattice with a free group. This is because the known examples of groups with
higher property (T) are too rigid to give rise to a continuum of inequivalent isometric actions.

2.6.2 Laplacians and sub-Laplacians on foliations

Given a foliated compact Riemannian manifold (M,F), the foliated warped cone construction
OFM is analogous to the dynamical warped cone, where the constraint that dk(x, sx) ≤ 1 is
replaced by the requirement that the leaves of the foliation are not stretched. Equivalently,
the foliated warped metric dk can also be described as the Riemannian metric dF + k2dN
obtained by stretching the directions orthogonal to the leaves. The analogy between the foliated
and dynamical warped cone becomes evident when Γ is the fundamental group of a compact
aspherical manifold N : then the dynamical warped cone OΓM is large-scale equivalent to the
foliated warped cone OF(M ×Γ Ñ), where M ×Γ Ñ denotes the quotient by the diagonal
action and the foliation is induced by the product structure and has leaves homeomorphic to Ñ .

The goal is now to study the spectral properties of the Laplacians on higher degree differential
forms of foliated warped cones. More specifically, we aim to understand situations where these
Laplacians have uniform spectral gap. This investigation is very much related to the problem
of constructing higher dimensional expanders, as there are discretisation techniques that can
be used to move from a smooth to a simplicial setting and vice versa. However, this geometric
setting has it own idiosyncrasies. For one, studying higher degree Laplacians on a Riemannian
manifold is an interesting and delicate problem in its own right. For another, these questions
also connect with the study of hypoelliptic operators as in sub-projects 2.3 and 2.4.
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2.6.3 Roe algebras and Baum–Connes

As already mentioned, one of the applications of expander graphs is that they provide coun-
terexamples to the coarse Baum–Connes conjecture [64,89]. This conjecture says that for a
large scale geometry like OΓ(M) an index map α : K lf

∗ (EOΓ(M)) → K∗(C∗OΓ(M)) is an
isomorphism. On the left hand side, EOΓ(M) is a uniformly contractible topological space
which is coarsely equivalent to M (that is, it has uniformly no interesting local topology) and
K lf

∗ is the locally finite K-homology. On the right hand side features the Roe C∗-algebra of
the large scale geometric space: a certain C∗-algebra of bounded operators on L2(OΓ(M))
satisfying local compactness and propagation conditions.

The expander property now allows in suitable situations to construct “ghost projections”:
projection operators which belong to the Roe algebra and represent non-trivial elements in its
K-theory, but which are too non-local to lie in the image of the coarse assembly map α.

All the counterexamples to the coarse Baum-Connes conjecture obtained so far show that
the surjectivity of the coarse assembly map is violated. This leaves open the intriguing question
whether injectivity of the assembly map may also fail. We expect this is the case. As an
approach to proving it, we propose to construct ghost relations instead of ghost projections.
Ghost relations are unitaries which conjugate two otherwise distinct projections and that can
only be defined in the Roe algebra because of (higher) expansion properties of the spaces.
Here, explicit examples might be studied using harmonic analysis. First results which use higher
Kazhdan properties to obtain new results about the coarse Baum–Connes conjecture are given
in [101].

A very much related problem is to investigate Roe algebras and their K-theory for special
examples of warped cones. Two important such examples are the natural action of SLn(Z) on
the n-dimensional torus and the action of a free subgroup of SU(2) with two generators by
left multiplication on SU(2). The warped cones given by these examples are of great interest,
for instance, because they naturally contain expander graphs [168]. At the same time, they
are concrete enough that an explicit study of their Roe algebra seems within reach. The
explicit construction and study of resolvent C*-algebras from properties of the underlying
operators in project area 2.2 offers related questions. One special feature of the SLn(Z)-action
on the torus is that it interacts particularly nicely with techniques of Fourier analysis. This
involves to understand the spectral theory of geometric operators in the picture, which also
come up in Project Area 2.3. The advantage of the SU(2)-action on itself is that it is a
free isometric action and it is more suited to using tools of representation theory. Explicit
K-theoretic computations would greatly help to illuminate the nature of (the failure of) the
coarse Baum–Connes conjecture. A PhD project in this area has, focusing on the warped cone
for the action of the free group on SU(2) by left multiplication and the K-theory of its Roe
algebra has just been started by Christos Kitsios as one of the doctoral researchers of the
second cohort.

The development of the above theory offers many attractive questions for several doctoral
researchers. Preliminary titles of thesis projects in this direction are:

• Higher expansion of the warped cone of SLn(Z) acting on Tn

• Higher expanders and Künneth theorems

• Ghost relations in the Roe algebra of higher expanders
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• Computations of K-theories of warped cones with applications to the coarse Baum–Connes
conjecture.

2.7 Representations of Lie algebroids and higher Lie groups (Meyer, Zhu)

For various algebraic objects, it is interesting to look at their representations on Hilbert spaces.
These may be studied by finding a C*-algebra that has naturally equivalent Hilbert space
representations. This C*-algebra may be used to study the original representation theory. In
some contexts such as deformation quantisation, finding a C*-algebra with suitable properties
is the actual goal, and the category of Hilbert space representations is a tool to define it.
This project studies several problems of this kind. The resulting C*-algebras are deformation
quantisations of more geometric classical systems, and our approach is to pin them down by
specifying their representation theory. The C*-algebras studied in project area 2.2 serve the
same purpose. They are, however, defined rather differently, by replacing unbounded operators
by their resolvents or unitaries and taking the C*-algebra generated by the latter.

The work in this project area during the first funding period concentrated on C*-algebras
associated to Lie algebroids and quantum group deformations of compact Lie groups. There
remain interesting open questions in this direction, so that they are still discussed below. In
addition, we added a third direction that focuses on C*-algebras associated to positive energy
representations of certain loop groups, which should carry extra structure that makes them a
representation of the string Lie 2-group.

To extract a unique C*-algebra from its representations, we actually need a bit more than
Hilbert space representations, namely, representations on Hilbert modules. This is made precise
in the concept of a C*-hull for a given class of representations of a *-algebra on Hilbert modules,
which is developed by the PI Meyer in [113]. Here, however, we will neglect the need to take
into account representations on Hilbert modules to simplify the exposition. A prototypical
result for the concept of a C*-hull is Nelson’s Theorem. It compares representations of a simply
connected Lie group G with representations of its Lie algebra g. Any representation of G may
be differentiated to a representation of g by unbounded operators, which is defined on the
subspace of smooth vectors. A Lie algebra representation of g, however, need not come from a
representation of G. A necessary and sufficient condition for this is that a certain Laplacian
element in the universal enveloping algebra of g acts by an essentially self-adjoint operator. We
call a representation of g integrable if this is the case. And the group C*-algebra of G turns
out to be a C*-hull for the integrable representations of g.

A recurring theme in all examples of C*-hulls studied in this project is that the integrable
representations are characterised as those in which a certain Laplacian-like element of a *-algebra
acts by an essentially self-adjoint operator. This element satisfies a form of ellipticity in that
its smooth vectors are already smooth vectors for the whole representation.

2.7.1 Lie algebroids

One goal in the first funding period was a variant of Nelson’s Theorem for Lie groupoids and
Lie algebroids. An important special case is the *-algebra Diff(M) of differential operators on
a smooth manifold M . This is the enveloping algebra of the tangent Lie algebroid of M . The
corresponding groupoid is the fundamental groupoid Π1(M) of M . The doctoral researcher
Geoffrey-Desmond Busche is about to prove that a representation of Diff(M) comes from a
representation of Π1(M) if and only if a certain Laplace-like element in Diff(M) acts by an
essentially self-adjoint operator. His thesis should be finished in the first half of 2023.
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More generally, let G be a Lie groupoid with simply connected source fibres and let A(G) be
its Lie algebroid. Let DiffG(G) be the algebra of left-invariant differential operators on G. This
specialises to U(g) if G is a Lie group and to the algebra Diff(M) if G = Π1(M). There is an
element L ∈ DiffG(G) of order 2 that is elliptic along the range fibres of G. We conjecture
that C∗(G) is a C∗-hull for the class of representations of DiffG(G) in which L acts by an
essentially self-adjoint operator. Roughly speaking, this says that a representation of A(G) on
a Hilbert space integrates to a representation of C∗(G) if and only if L acts by an essentially
self-adjoint operator.

While the thesis work of Busche contains many results that will help to prove this more general
conjecture, some technical issues will probably remain. One of them is that Nelson’s Theorem
works with analytic vectors, while bump functions on smooth manifolds tend to produce smooth
and not analytic vectors. A second is to understand which “Laplacians” L may be used in the
theorem. The more flexible techniques in [138] should help to get around these difficulties.
Right now, it seems more appropriate for the PIs Meyer and Zhu to work on these issues, to
provide a basis for a doctoral researcher during the third funding period to work on the more
general case of a Lie algebroid that fails to integrate to a Lie groupoid. Then the integrating
object is a Lie 2-groupoid. This so called Weinstein groupoid was built by PI Zhu in [163]. It
seems plausible that a representation of the Lie algebroid integrates to a representation of this
Lie 2-groupoid if and only if a suitable Laplacian acts by a self-adjoint operator. To get a C*-hull
from this, we first have to define the C*-algebra of a Weinstein groupoid. This goes slightly
beyond the existing constructions of C*-algebras from crossed modules of groupoids in [49].
Then the representations of this C*-algebra must be described by an analogue of Renault’s
Disintegration Theorem for representations of locally compact groupoids. It seems plausible
that the integration and disintegration of Lie algebroid representations will work similarly to
the case of integrable Lie algebroids. A positive answer to this conjecture would give geometric
quantisations for those situations where the integrability of the relevant Lie groupoid obstructs
the construction by Hawkins [83].

The Weinstein groupoids mentioned above are among the simplest examples of higher Lie
groupoids. It is still straightforward to “differentiate” them, and this gives an ordinary Lie
algebroid and not yet a higher Lie algebroid. In general, the integration and differentiation
processes between higher Lie groupoids and higher Lie algebroids are still active areas of research.
The differentiation of a higher Lie groupoid should produce its tangent complex, a replacement
for the tangent space of a Lie group, equipped with suitable extra structure that describes its
higher Lie algebroid structure. A construction by Severa for doing this may continue to work
for simplicial manifolds that lack the extra conditions that make them higher Lie groupoids.
A typical example of such a simplicial manifold is the nerve of a neighbourhood of the unit
element in a Lie group, equipped with its partially defined multiplication. This extra generality
is relevant because the integration of a higher Lie algebroid often proceeds in two steps, where
the first one produces only such a simplicial manifold. The ongoing thesis project of Florian
Dorsch of the second cohort examines Severa’s differentiate method in greater generality. The
idea is that “local” versions of the Kan conditions that are required for higher Lie groupoids
suffice to perform the construction.

2.7.2 Nelson’s Theorem for compact groups and quantum groups

Compact Lie groups such as SU(n) may be deformed to compact quantum groups SUq(n).
These compact quantum groups may be described by a C*-algebraic compact quantum group
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due to Woronowicz, which deforms the group C*-algebra of the underlying Lie group, or by
a Hopf *-algebra due to Drinfeld–Jimbo, which deforms the universal enveloping algebra of
the corresponding Lie algebra. Does Nelson’s Theorem have an analogue for these deformed
*-algebras? This should characterise when a representation of the Hopf *-algebra integrates to
a representation of the quantum group C*-algebra. Instead of characterising this by the action
of a “Laplacian”, we propose to look at the representation of the centre instead, and develop a
version of the Induction Theorem of Savchuk–Schmüdgen that applies in this situation.

For K = SU(2) and its deformation quantisations, such results are worked out in [63,160].
A key ingredient there is that the action of the subgroup T of diagonal matrices in SU(2)
on the universal enveloping algebra of k or deformations of it has a commutative fixed-point
subalgebra. This circle action allows to define a Fourier decomposition of elements of the
enveloping algebra into elements that are homogeneous for the T-action. In this situation, the
Induction Theorem produces a C*-hull for the whole *-algebra from one for the (commutative)
fixed-point *-subalgebra; this theorem goes back to [160] and is generalised considerably
in [113]. An interesting aspect here is that most representations of the fixed-point algebra
cannot be induced to a representation of the whole algebra. In many cases, this is where a
quantisation happens in the sense that the spectrum of the commutative fixed-point subalgebra
is connected, but only a discrete set of characters can be induced. This has to happen for all
compact (quantum) groups because we know that they have only countably many irreducible
representations. The Induction Theorem in its current form is most useful if a *-algebra admits
an action of a torus with commutative fixed-point algebra. But for (quantised) enveloping
algebras, this only seems to happen in rank one. To treat higher-rank compact (quantum)
groups, we need a generalisation of the Induction Theorem to actions of compact (quantum)
groups. The doctoral researcher Michelle Göbel of the second cohort is currently working
on such a generalisation and further applications of the Induction Theorem for C*-hulls. This
should lead to a variant of Nelson’s Theorem for compact (quantum) groups that says that
a representation of the universal enveloping algebra is integrable if and only if the centre
acts by essentially self-adjoint operators. In addition, it is interesting to work out how the
inducibility requirement in the induction theorem gives the subset of characters on the centre
that correspond to representations of the compact (quantum) group.

While the description through the Induction Theorem that we aim for does not mention
a “Laplacian” explicitly, it nevertheless occurs because a representation of the commutative
subalgebra is integrable if and only if a strictly positive element of it acts by an essentially
self-adjoint operator.

2.7.3 Representations of the string group

The C∗-hull construction may also help to build a representation of the string group that
contains the correct analysis to link it to index theory. Index theory is analysed in concrete
examples in project area 2.6. The string group is not a compact Lie group, but is best
understood as a Lie 2-group. A quick way to define a 2-group is as a tensor category in which
all arrows are isomorphisms and all objects have an inverse for the tensor product. The group
of objects of the string group is the spin group Spin(n) covering SO(n); all its arrows are
automorphisms and the automorphism group of each object is a copy of the circle group T.
A representation of the string Lie 2-group String(G) that involves loop group positive energy
representations may be used to quantise the classifying space BG equipped with a 2-shifted
symplectic structure (see [128]). Such quantisations are then related to the three-dimensional
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Chern–Simons theory ([73,87]).
The 2-shifted symplectic form is described by Segal’s 2-form ω on the based loop group ΩG

(see [57]). By passing to a central extension of ΩG, it also gives rise to the string 2-group
String(G). Thus the latter is interpreted as an analogue of a “prequantisation” for BG in
the geometric quantisation scheme. It is expected by physicists that an extended topological
quantum field theory for three-dimensional Chern–Simons theory should map the point to the
category of positive energy representations of the free loop group [87], equipped with a suitable
extra structure.

To perform a geometric quantisation as in [83], we need a higher analogue of a line bundle
in the new setting. This should be a bundle of “2-lines” in the world of “2-vector spaces”, and
these “2-vector spaces” should be what the string 2-group is represented on. Representations of
2-groups take place on objects in a bicategory. Therefore, our geometric quantisation requires
a suitable bicategory of “2-vector spaces” and then a line bundle of such objects. Several
representations of the string 2-group involving different bicategories of “2-vector spaces” have
already been constructed.

Recently, Kristel, Ludewig, and Waldorf have first defined a bicategory of von Neumann
algebras, bimodules, and their intertwiners (see [96]) to be their 2-vector spaces, as suggested
by Stolz and Teichner in [158]. Then they proceeded in [97] to define a representation of the
string 2-group in this bicategory. This representation, however, is not related to positive energy
representations of the loop group. Another recent construction in [90] has such a link. It
builds on a construction proposed in [121, 156]. It takes place, however, in the purely algebraic
bicategory of k-linear categories. Thus the bundle constructed therein does not have a “smooth”
or “continuous” structure as geometers and topologists wish.

We propose to add more analysis to the construction by building on recent work by Neeb,
Salmasian, and Zellner [123]. They have found a very general method to attach C*-algebras
to loop groups and more general infinite-dimensional Lie groups. In particular, they build
a “host algebra” for the positive energy representations of a loop group. One of their key
results says that the smooth vectors for the “energy operator” are already smooth for the entire
infinite-dimensional Lie group. This is again an abstract version of ellipticity.

Since group representations involve only unitaries and thus bounded operators, the host
algebras found in [123] are also C*-hulls as defined in [113], which gives them some extra
uniqueness and functoriality properties. This should make it possible to build a representation
of the string 2-group on the host algebra for the positive energy representations of the loop
group. The 2-vector spaces in [96] are a von Neumann algebraic version of the correspondence
bicategory of C*-algebras, which has been used as a framework to study various generalisations
of group actions on C*-algebras by PIs Meyer and Zhu (see, for instance, [2, 5, 48]).

A group representation in the correspondence bicategory is the same as a Fell bundle over
that group. The induction theorem in [113] builds such Fell bundles over a discrete group Γ
out of a Γ-graded algebra. This is not yet sufficient because we need to take into account
the topology on the string 2-group. Nevertheless, the special case of discrete groups suggests
that a string 2-group representation on the host C*-algebra should be related rather directly to
suitable operations on the category of positive energy representations.

The development of the different aspects of the above theory offers several attractive questions
for doctoral researchers, such as

• Nelson’s Theorem for Weinstein groupoids and their Lie algebroids,

• Generalisations and applications of the induction theorem for C*-hulls,
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• Representations of the string Lie 2-group via C*-algebras.

2.8 Spectral engineering (Schick, Witt)

In this project, aspects of which are already being pursued by doctoral researcher Erik
Babuschkin from the second cohort, we are interested in spectral properties of geomet-
ric differential operators that are invariant under a cocompact discrete group action. The
original example, motivated by solid state physics, is the Laplacian on Euclidean space with a
Zn-invariant potential. The question is: can we achieve a determined band-gap structure of
the spectrum of this operator?

Very similar operators occur when introducing and studying analytic L2-invariants as defined
by Atiyah (see 2.3). The starting point is a normal covering M̄ → M of a compact Riemannian
manifold M with an action of the group of deck transformations Γ. The relevant operator now
is the differential form Laplacian on M̄ or, more generally, the lift D̄ of an elliptic differential
operator D on M . We would like to understand more about the full spectrum of D̄. In
particular, to what extent can we arrange for a lower bound on the number of gaps (within a
spectral range)? For this spectral engineering problem, the role of the potential of the classical
problem is now played by the metric (and, in addition, also the topology of M): can we
choose the metric so as to achieve a given band-gap structure of the spectrum of D̄? Or are
there obstructions, forcing the spectrum, say, to be the full line or a half-line? For the scalar
Laplacian, this problem goes back at least to [152, Chapter IX, Problem 37].

When the group Γ is Zn with n ̸= 0, Post in [135, 136] solves the problem positively for the
scalar Laplacian. Using Fourier analysis in the form of Bloch–Floquet theory, for a given finite
energy range Λ, he constructs on arbitrary smooth manifolds M Riemannian metrics g with
Zn-covering M̄ and such that the spectrum of the scalar Laplacian on M̄ has a prescribed
number (and approximate location) of gaps in the interval [0,Λ]. For a very specific type of
manifold, this is refined by Khrabustovskyi, who completely prescribes the band-structure of
the spectrum in any finite energy range [95]. Again, this relies heavily on Fourier analysis. This
is a periodic analogue of a celebrated result of Colin de Verdière: given n increasing positive
numbers, there is a Riemannian metric with precisely these numbers as the first eigenvalues of
its scalar Laplacian.

Follow-up work covers more general fundamental groups, culminating in [153] who construct,
for an arbitrary covering M̄ → M of a compact manifold and an arbitrary L, a metric on M
such that the scalar Laplacian on L2(M̄) for the lifted metric on M̄ has at least L gaps in its
essential spectrum. Remarkably, there is no condition whatsoever on the covering group.

Despite all this progress, there are quite a number of important open questions. The most
intriguing probably is the lack of any example where we can establish an infinite number of
bands and gaps in the spectrum if Γ is infinite and therefore the manifold is non-compact. This
has been achieved for a very concrete non-compact surface by Lott in [105], but this is an
example of finite volume, and not with an infinite cocompact isometry group Γ. The key point
is that the essential spectrum is the same as that of a one-dimensional Schrödinger operator,
which one can choose conveniently by conformally changing the metric. Lott relies on the
classical literature about the spectrum of Schrödinger operators. It is a challenging task to
search for a similar explicit construction for cocompact Riemannian metrics.

The scalar Laplacian is only the first in the list of important geometric differential operators.
The differential form Laplace–Beltrami operators and the spin Dirac operator of a spin structure
offer the next generation of examples. The spectrum of these basic geometric operators should
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depend strongly on the metric. Only very little is known, however, about spectral engineering
for these operators. Recently, Egidi and Post produced metrics on compact manifolds with
large gaps in the spectrum of the Hodge Laplacian (a weak analogue for differential forms
of Colin de Verdière’s result mentioned above), but only on quite special types of manifolds.
Metrics with an arbitrary number of gaps in the spectrum of differential form Laplacians and
Dirac operators are constructed in [4], but only for Z-symmetry. The construction requires
certain topological conditions on a separating hypersurface. It should also be noted here that
index theory gives topological obstructions to the existence of gaps in the spectrum of the
Dirac operator. The PIs have contributed such obstructions via index theory (for example,
in [82, 98, 132]) with a particular emphasis on spectral methods and Fourier decomposition.
Therefore, the constructions for general operators need to be more sophisticated than for the
scalar Laplacian, where the previous work shows that no such obstructions exist.

Thesis projects will study Dirac and differential form Laplacians with more general symmetry
group Γ to identify, on the one hand, obstructions to band-gap structure and, on the other hand,
construct examples with many gaps in the spectrum when the obstructions vanish (spectral
engineering). The precise results of [95] rely on the full power of Bloch–Floquet theory. In
a second line of projects, we will refine these techniques in two directions: to more general
symmetry groups Γ (for instance, nilpotent groups as coming up in 2.4 and 2.3) on the one
hand, to more general operators (differential form Laplacian, Dirac operator) on the other hand,
and construct metrics with prescribed band-gap structure of these operators on Γ-coverings. In
all cases, the construction part will involve a family of metrics which degenerates in certain
parts of the manifold and such that the spectrum of the operator in question (differential form
Laplacian, Dirac operator, . . . ) converges to the spectrum of a model operator which can be
computed explicitly. For abelian groups, Fourier analysis allows to carry out these delicate
computations on compact manifolds, which simplifies the situation and therefore will be the
first case to be studied. The second cohort doctoral researcher Babuschkin just started a first
thesis project on these questions. The presence of obstructions to the existence of gaps is
somewhat hard to pin down and will force us to start with special cases, like the n-torus, where
we expect that specific constructions like Khrabustovskyi’s will allow to control the spectrum
of the differential form Laplacians.

A complementary approach to the analysis of spectral properties of Laplacians (and more
general operators) is provided by discrete approximations. It is quite subtle to find discretisation
techniques that give good approximation results for large parts of the spectrum of the differential
operator by the discrete analogues.

Dodziuk and Patodi [61,62] obtained a refined spectral approximation result for compact
manifolds: given any compact Riemannian manifold and finer and finer triangulations which
are sufficiently regular, for each k, the kth eigenvalue of the combinatorial Laplacian converges
to the kth eigenvalue of the Hodge Laplacian, and this with precise error bounds. In particular,
the convergence is uniform on any finite part of the spectrum. This spectral computation uses
Rayleigh quotient computations and the precise analysis of the de Rham map and its explicit
homotopy inverse constructed by Whitney.

Obviously it does not make sense to aim for a similarly formulated spectral approximation
result for the operators on coverings, as they have continuous spectrum in general. A substitute
is the spectral density function and, for Zn-symmetry, the individual terms in the Bloch–Floquet
decomposition. Still, one has to formulate the spectral convergence statement carefully. The
Rayleigh quotient considerations of the compact case are appropriate for eigenvalue estimates,
but again have to be replaced by a more functional analytic treatment for operators with
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continuous spectrum. We are optimistic that these difficulties can be overcome and propose
this as a further thesis topic. One also has to develop the appropriate discrete version of the
twisting with a flat representation, which is another subject interesting in its own right.

Some potential doctoral thesis topics in this area are:

• Fine spectral engineering for Zn-invariant differential form Laplacians using Bloch–Floquet
theory, in particular, on Rn, and for differential form Laplacians on coverings with arbitrary
deck transformation group,

• Spectral engineering for Dirac operators: index obstructions versus constructions for
abelian and non-abelian coverings,

• Spectral approximation via triangulations of manifolds for covering spaces.
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