Modulverzeichnis

für den Bachelor-Studiengang "Physik" (zur Pruefungs- und Studienordnung fuer den Bachelor-Studiengang "Physik" sowie den konsekutiven Master-Studiengang "Physik" in der Fassung der Bekanntmachung vom 05.04.2012 (Amtl. Mitt. I Nr. 13/2012 S. 453), zuletzt geaendert durch Bekanntmachung vom 22.04.2013 (Amtl. Mitt. I Nr. 19/2013 S. 541))

Module

B.Bio.112: Biochemie	. 1939
B.Bio.118: Mikrobiologie	.1940
B.Che.1302.1: Chemisches Gleichgewicht: Thermodynamik und Statistik (MaW)	.1941
B.Che.1401: Atombau und chemische Bindung	. 1942
B.Che.2301: Chemische Reaktionskinetik	. 1944
B.Che.9105: Allgemeine und Anorganische Chemie für Physiker	.1945
B.Mat.0011: Analysis I	. 1946
B.Mat.0012: Analytische Geometrie und Lineare Algebra I	.1948
B.Phy.101: Physik I	.1950
B.Phy.102: Physik II	.1951
B.Phy.103: Physik III	.1952
B.Phy.104: Physik IV	1953
B.Phy.201: Analytische Mechanik	.1954
B.Phy.202: Quantenmechanik I	. 1955
B.Phy.203: Statistische Physik	.1956
B.Phy.303: Mathematik für Physiker I	. 1957
B.Phy.304: Mathematik für Physiker II	. 1958
B.Phy.403: Spezialisierungspraktikum in Nanostrukturphysik	. 1959
B.Phy.404: Spezialisierungspraktikum Betreuung von Netzwerken und Netzwerknutzern	.1960
B.Phy.405: Spezialisierungspraktikum in Astro- und Geophysik	. 1961
B.Phy.406: Spezialisierungspraktikum in Biophysik und der Physik komplexer Systeme	. 1962
B.Phy.407: Spezialisierungspraktikum in Festkörper und Materialphysik	.1963
B.Phy.408: Spezialisierungspraktikum in Kern- und Teilchenphysik	. 1964
B.Phy.410: Physikalisches Grundpraktikum	1965
B.Phy.411: Physikalisches Fortgeschrittenenpraktikum	.1966
B.Phy.5001: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im Experimer	
B.Phy.5002: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im Experimer	
B.Phy.5003: Sammlung und Physikalisches Museum	.1969

B.Phy.501: Einführung in die Astro- und Geophysik	1970
B.Phy.502: Einführung in die Biophysik und Physik komplexer Systeme	1971
B.Phy.503: Einführung in die Festkörper- und Materialphysik	1972
B.Phy.504: Einführung in die Kern- und Teilchenphysik	1973
B.Phy.510: Mehrbenutzersysteme in der Praxis I	1974
B.Phy.511: Mehrbenutzersysteme in der Praxis II	1975
B.Phy.5501: Aerodynamik	1976
B.Phy.5502: Aktive Galaxien	1977
B.Phy.5503: Astrophysikalische Spektroskopie	1978
B.Phy.5504: Computational Physics	1979
B.Phy.5505: Data Analysis in Astrophysics	1980
B.Phy.5506: Einführung in die Strömungsmechanik	1981
B.Phy.5507: Elektromagnetische Tiefenforschung	1982
B.Phy.5508: Geophysikalische Strömungsmechanik	1983
B.Phy.5509: Einführung in die theoretische Astrophysik	1984
B.Phy.551: Spezielle Themen der Astro- und Geophysik I	1985
B.Phy.5510: Physics of the Interstellar Medium	1986
B.Phy.5511: Magnetohydrodynamik	1987
B.Phy.5512: Massearme Sterne, Braune Zwerge und Planeten	1988
B.Phy.5513: Numerische Strömungsmechanik	1989
B.Phy.5514: Physics of the Interior of the Sun and Stars	1990
B.Phy.5515: Transportmechanismen in heterogenen Medien	1991
B.Phy.5516: Physik der Galaxien	1992
B.Phy.5517: Physik der Sonne, Heliosphäre und des Weltraumwetters Schlüsselwissen	1993
B.Phy.5518: Physik der Sonne, Heliosphäre und des Weltraumwetters: Weltraumwetter Anwendungen	1994
B.Phy.5519: Plattentektonik und Geophysikalische Exploration	1995
B.Phy.552: Spezielle Themen der Astro- und Geophysik II	1996
B.Phy.5520: Seismology of the Sun and Stars	1997
B.Phy.5521: Seminar zu einem Thema der Geophysik	1998
B.Phy.5522: Solar Eclipses and Physics of the Corona	1999
B.Phy.5523: Allgemeine Relativitätstheorie	2000

Inhaltsverzeichnis

B.Phy.5524: Seminar über Fortgeschrittene Themen der ART	2001
B.Phy.5525: Seminar über Solitonen	2002
B.Phy.5527: Computational Cosmology	2003
B.Phy.5528: Black holes in Astrophysics and Cosmology	2004
B.Phy.5529: Galaxies and the Intergalactic Medium	2005
B.Phy.553: Spezielle Themen der Astro- und Geophysik III	2006
B.Phy.5530: Kosmologie	2007
B.Phy.5531: Entstehung von Sonnensystemen	2008
B.Phy.5532: Symmetrien und Nichtlineare Differenzialgleichungen in der Physik	2009
B.Phy.5533: Solar and Stellar Activity	2011
B.Phy.5535: Fluid dynamics, nonlinear dynamics and turbulence	2012
B.Phy.5601: Theoretical and Computational Neuroscience I	2013
B.Phy.5602: Theoretical and Computational Neuroscience II	2014
B.Phy.5603: Einführung in die Laserphysik	2015
B.Phy.5604: Foundations of Nonequilibrium Statistical Physics	2016
B.Phy.5605: Grundlagen Computational Neuroscience	2017
B.Phy.5606: Mechanik der Zelle	2018
B.Phy.5607: Mechanik und Dynamik des Zytoskeletts	2019
B.Phy.5608: Mikro- und Nanofluidik	2020
B.Phy.5609: Moderne Optik (Optik II)	2021
B.Phy.561: Spezielle Themen der Biophysik und Physik komplexer Systeme I	2022
B.Phy.5611: Optische Spektroskopie und Mikroskopie	2023
B.Phy.5612: Physics of Extreme Events	2024
B.Phy.5613: Physik der weichen kondensierten Materie	2025
B.Phy.5614: Proseminar Computational Neuroscience/Neuroinformatik	2026
B.Phy.5615: Biologie und Biochemie für Physiker	2027
B.Phy.5616: Biophysik der Zelle - Physik auf kleinen Skalen	2028
B.Phy.5617: Seminar zur Physik der weichen kondensierten Materie	2029
B.Phy.5618: Seminar zur Biophysik der Zelle	2030
B.Phy.5619: Seminar zur Mikro- und Nanofluidik	2031
B.Phy.562: Spezielle Themen der Biophysik und Physik komplexer Systeme II	2032

B.Phy.5620: Sportphysik	2033
B.Phy.5621: Stochastic Processes	
B.Phy.5622: Weiterführende Optik	
B.Phy.5623: Theoretische Biophysik	
B.Phy.5624: Introduction to Theoretical Neuroscience	2037
B.Phy.5625: Röntgenpyhsik	2038
B.Phy.5628: Pattern Formation	2040
B.Phy.5629: Nichtlineare Dynamik und Zeitreihenanalyse	2042
B.Phy.563: Spezielle Themen der Biophysik und Physik komplexer Systeme III	2043
B.Phy.5630: Nichtlineare Dynamik und Biokomplexität	2044
B.Phy.5631: Selbstorganisation in der Physik und der Biologie	2045
B.Phy.5632: Seminar über aktuelle Fragen zur Turbulenzforschung	2046
B.Phy.5633: Theoretische und computergestützte Biophysik: Einführung	2047
B.Phy.5634: Theoretische und computergestützte Biophysik: Konzepte und Methoden	2049
B.Phy.5635: Introduction to Chaotic Behavior I: Dissipative Systems	2050
B.Phy.5636: Introduction to Chaotic Behavior II: Hamiltionian Systems	2051
B.Phy.5637: Computer simulation methods in statistical physics	2052
B.Phy.5638: Atificial Intelligence Robotics: An Introduction	2053
B.Phy.5639: Optische Messtechnik	2055
B.Phy.5640: Principles of self-organization in biophysics	2056
B.Phy.5641: Theorie und Praxis der Mikroskopie	2058
B.Phy.5642: Experimentelle Methoden in der Biophysik	2059
B.Phy.5643: Seminar Experimentelle Methoden in der Biophysik	2060
B.Phy.5701: Weiche Materie: Flüssigkristalle	2061
B.Phy.5702: Dünne Schichten	2062
B.Phy.5703: Vorlesungszyklus: Eigenschaften fester Stoffe und grundlegende Phänomene	2063
B.Phy.5704: Magnetismus	2064
B.Phy.5705: Magnetismus Seminar	2065
B.Phy.5707: Nanoscience	2066
B.Phy.5708: Physik der Nanostrukturen	2067
B.Phy.5709: Seminar on Nanoscience	2068

B.Phy.571: Spezielle Themen der Festkörper- und Materialphysik I	2069
B.Phy.5710: Spintransport und Dynamik	2070
B.Phy.5711: Starkkorrelierte Elektronensysteme	2071
B.Phy.5712: Tieftemperaturphysik	2072
B.Phy.5713: Supraleitung	2073
B.Phy.5714: Introduction to Solid State Theory	2074
B.Phy.5715: Quantum Simulators	2075
B.Phy.572: Spezielle Themen der Festkörper- und Materialphysik II	2076
B.Phy.573: Spezielle Themen der Festkörper- und Materialphysik III	2077
B.Phy.5801: Classical field theory	2078
B.Phy.5803: Wechselwirkung zwischen Strahlung und Materie - Detektorphysik	2079
B.Phy.5804: Quantenmechanik II	2080
B.Phy.5805: Quantenfeldtheorie I	2081
B.Phy.5806: Spezielle Relativitätstheorie	2082
B.Phy.5807: Physik der Teilchenbeschleuniger	2083
B.Phy.5808: Wechselwirkung zwischen Strahlung und Materie - Detektorphysik	2084
B.Phy.5809: Hadron-Collider-Physik	2085
B.Phy.581: Spezielle Themen der Kern- und Teilchenphysik I	2086
B.Phy.5810: Physik des Higgs-Bosons	2087
B.Phy.5811: Statistische Methoden der Datenanalyse	2088
B.Phy.5812: Physik des Top-Quarks	2089
B.Phy.5813: Teilchenphysik 2 - von und mit Quarks	2090
B.Phy.5814: Particle Physics 3 - of and with leptons	2091
B.Phy.582: Spezielle Themen der Kern- und Teilchenphysik II	2092
B.Phy.583: Spezielle Themen der Kern- und Teilchenphysik III	2093
B.Phy.602: Professionalisierungsseminar	2094
B.Phy.604: Projektpraktikum	2095
B.Phy.605: Computergestütztes wissenschaftliches Rechnen	2096
B.Phy.606: Elektronikpraktikum für Naturwissenschaftler	2097
B.Phy.607: Akademisches Schreiben für Physiker/innen	2098
B.Phy.608: Scientific Literacy - Integration von Naturwissenschaften in die Gesellschaft und Politik	2099

B.WIWI-BWL.0002: Interne Unternehmensrechnung	2100
B.WIWI-BWL.0004: Produktion und Logistik	2101
B.WIWI-OPH.0005: Jahresabschluss	.2103
B.WIWI-WIN.0001: Management der Informationssysteme	2104
B.WIWI-WIN.0004: Informationsverarbeitung in Dienstleistungsbetrieben	2106
B.WIWI-WIN.0011: Programmiersprache C#	.2108

Übersicht nach Modulgruppen

1) Bachelor-Studiengang "Physik"

Es müssen nach Maßgabe der folgenden Bestimmungen wenigstens 180 C erworben werden.

a) Kerncurriculum

aa) Pflichtmodule

i) Pflichtmodule aus der experimentellen und theoretischen Physik
Es müssen folgende Pflichtmodule im Umfang von insgesamt 54 C erfolgreich absolviert werden:
B.Phy.101: Physik I (9 C, 8 SWS)
B.Phy.102: Physik II (9 C, 8 SWS)
B.Phy.103: Physik III (6 C, 6 SWS)1952
B.Phy.104: Physik IV (6 C, 6 SWS)
B.Phy.201: Analytische Mechanik (8 C, 6 SWS)
B.Phy.202: Quantenmechanik I (8 C, 6 SWS)1955
B.Phy.203: Statistische Physik (8 C, 6 SWS)
ii) Pflichtmodule aus dem Bereich der Grund- und Fortgeschrittenen-
Praktika
Praktika Es müssen folgende Pflichtmodule im Umfang von insgesamt 17 C erfolgreich absolviert werden:
Es müssen folgende Pflichtmodule im Umfang von insgesamt 17 C erfolgreich absolviert
Es müssen folgende Pflichtmodule im Umfang von insgesamt 17 C erfolgreich absolviert werden:
Es müssen folgende Pflichtmodule im Umfang von insgesamt 17 C erfolgreich absolviert werden: B.Phy.410: Physikalisches Grundpraktikum (12 C, 12 SWS)
Es müssen folgende Pflichtmodule im Umfang von insgesamt 17 C erfolgreich absolviert werden: B.Phy.410: Physikalisches Grundpraktikum (12 C, 12 SWS)
Es müssen folgende Pflichtmodule im Umfang von insgesamt 17 C erfolgreich absolviert werden: B.Phy.410: Physikalisches Grundpraktikum (12 C, 12 SWS)
Es müssen folgende Pflichtmodule im Umfang von insgesamt 17 C erfolgreich absolviert werden: B.Phy.410: Physikalisches Grundpraktikum (12 C, 12 SWS)
Es müssen folgende Pflichtmodule im Umfang von insgesamt 17 C erfolgreich absolviert werden: B.Phy.410: Physikalisches Grundpraktikum (12 C, 12 SWS)

b) Spezialisierungs- und Profilierungsbereiche ohne Studienschwerpunktbildung

aa) Wahlpflichtmodule

i) Wahlpflichtmodule aus dem Spezialisierungsbereich

Es müssen folgende Wahlpflichtmodule im Umfang von insgesamt mindestens 28 C erworben werden.

A) Spezialisierungspraktikum

Es muss eines der folgenden Spezialisierungspraktika im Schwerpunkt der Bachelorarbeit im Umfang von 6 C erfolgreich absolviert werden:

im Umfang von 6 C erfolgreich absolviert werden:
B.Phy.403: Spezialisierungspraktikum in Nanostrukturphysik (6 C)
B.Phy.404: Spezialisierungspraktikum Betreuung von Netzwerken und Netzwerknutzern (6 C)
B.Phy.405: Spezialisierungspraktikum in Astro- und Geophysik (6 C)
B.Phy.406: Spezialisierungspraktikum in Biophysik und der Physik komplexer Systeme (6 C)
B.Phy.407: Spezialisierungspraktikum in Festkörper und Materialphysik (6 C)1963
B.Phy.408: Spezialisierungspraktikum in Kern- und Teilchenphysik (6 C)
->
B) Einführungen
Es müssen mindestens zwei der folgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden:
Es müssen mindestens zwei der folgenden Module im Umfang von insgesamt wenigstens 12
Es müssen mindestens zwei der folgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden:
Es müssen mindestens zwei der folgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden: B.Phy.501: Einführung in die Astro- und Geophysik (6 C, 6 SWS)
Es müssen mindestens zwei der folgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden: B.Phy.501: Einführung in die Astro- und Geophysik (6 C, 6 SWS)

Aus den folgenden Modulen oder den vorherig unter B) Einführungen genannten, aber dort nicht belegten, müssen Module im Umfang von insgesamt wenigstens 10 C erfolgreich absolviert werden:

B.Phy.5001: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im Experiment Teil I (6 C, 4 SWS)1967
B.Phy.5002: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im Experiment Teil II (6 C, 4 SWS)1968
B.Phy.5003: Sammlung und Physikalisches Museum (3 C, 2 SWS) 1969

B.Phy.5501: Aerodynamik (6 C, 4 SWS)	1976
B.Phy.5502: Aktive Galaxien (3 C, 2 SWS)	1977
B.Phy.5503: Astrophysikalische Spektroskopie (3 C, 2 SWS)	. 1978
B.Phy.5504: Computational Physics (6 C, 4 SWS)	1979
B.Phy.5505: Data Analysis in Astrophysics (3 C, 2 SWS)	. 1980
B.Phy.5506: Einführung in die Strömungsmechanik (6 C, 4 SWS)	. 1981
B.Phy.5507: Elektromagnetische Tiefenforschung (3 C, 2 SWS)	1982
B.Phy.5508: Geophysikalische Strömungsmechanik (3 C, 2 SWS)	. 1983
B.Phy.5509: Einführung in die theoretische Astrophysik (3 C, 2 SWS)	1984
B.Phy.551: Spezielle Themen der Astro- und Geophysik I (6 C, 6 SWS)	. 1985
B.Phy.5510: Physics of the Interstellar Medium (3 C, 2 SWS)	1986
B.Phy.5511: Magnetohydrodynamik (3 C, 2 SWS)	1987
B.Phy.5512: Massearme Sterne, Braune Zwerge und Planeten (3 C, 2 SWS)	. 1988
B.Phy.5513: Numerische Strömungsmechanik (6 C, 4 SWS)	1989
B.Phy.5514: Physics of the Interior of the Sun and Stars (3 C, 2 SWS)	. 1990
B.Phy.5515: Transportmechanismen in heterogenen Medien (3 C, 2 SWS)	1991
B.Phy.5516: Physik der Galaxien (3 C, 2 SWS)	1992
B.Phy.5517: Physik der Sonne, Heliosphäre und des Weltraumwetters Schlüsselwisser (3 C, 2 SWS)	
B.Phy.5518: Physik der Sonne, Heliosphäre und des Weltraumwetters: Weltraumwette Anwendungen (3 C, 2 SWS)	
B.Phy.5519: Plattentektonik und Geophysikalische Exploration (3 C, 2 SWS)	1995
B.Phy.552: Spezielle Themen der Astro- und Geophysik II (6 C, 6 SWS)	. 1996
B.Phy.5520: Seismology of the Sun and Stars (3 C, 2 SWS)	1997
B.Phy.5521: Seminar zu einem Thema der Geophysik (4 C, 2 SWS)	. 1998
B.Phy.5522: Solar Eclipses and Physics of the Corona (3 C, 2 SWS)	1999
B.Phy.5523: Allgemeine Relativitätstheorie (6 C, 6 SWS)	2000
B.Phy.5524: Seminar über Fortgeschrittene Themen der ART (4 C, 2 SWS)	2001
B.Phy.5525: Seminar über Solitonen (4 C, 2 SWS)	2002
B.Phy.5527: Computational Cosmology (6 C, 4 SWS)	2003
B.Phy.5528: Black holes in Astrophysics and Cosmology (4 C, 2 SWS)	. 2004
B.Phy.5529: Galaxies and the Intergalactic Medium (4 C, 2 SWS)	2005

B.Phy.553: Spezielle Themen der Astro- und Geophysik III (3 C, 3 SWS)	. 2006
B.Phy.5530: Kosmologie (3 C, 2 SWS)	2007
B.Phy.5531: Entstehung von Sonnensystemen (3 C, 2 SWS)	. 2008
B.Phy.5532: Symmetrien und Nichtlineare Differenzialgleichungen in der Physik (3 C, 4 SWS)	. 2009
B.Phy.5533: Solar and Stellar Activity (6 C, 4 SWS)	. 2011
B.Phy.5535: Fluid dynamics, nonlinear dynamics and turbulence (3 C, 2 SWS)	2012
B.Phy.5601: Theoretical and Computational Neuroscience I (3 C, 2 SWS)	. 2013
B.Phy.5602: Theoretical and Computational Neuroscience II (3 C, 2 SWS)	. 2014
B.Phy.5603: Einführung in die Laserphysik (3 C, 2 SWS)	. 2015
B.Phy.5604: Foundations of Nonequilibrium Statistical Physics (3 C, 2 SWS)	.2016
B.Phy.5605: Grundlagen Computational Neuroscience (3 C, 2 SWS)	. 2017
B.Phy.5606: Mechanik der Zelle (3 C, 2 SWS)	. 2018
B.Phy.5607: Mechanik und Dynamik des Zytoskeletts (4 C, 2 SWS)	2019
B.Phy.5608: Mikro- und Nanofluidik (3 C, 2 SWS)	2020
B.Phy.5609: Moderne Optik (Optik II) (6 C, 4 SWS)	. 2021
B.Phy.561: Spezielle Themen der Biophysik und Physik komplexer Systeme I (6 C, 6 SWS)	. 2022
B.Phy.5611: Optische Spektroskopie und Mikroskopie (3 C, 2 SWS)	.2023
B.Phy.5612: Physics of Extreme Events (3 C, 2 SWS)	2024
B.Phy.5613: Physik der weichen kondensierten Materie (6 C, 4 SWS)	. 2025
B.Phy.5614: Proseminar Computational Neuroscience/Neuroinformatik (5 C, 2 SWS)	.2026
B.Phy.5615: Biologie und Biochemie für Physiker (3 C, 2 SWS)	. 2027
B.Phy.5616: Biophysik der Zelle - Physik auf kleinen Skalen (6 C, 4 SWS)	. 2028
B.Phy.5617: Seminar zur Physik der weichen kondensierten Materie (4 C, 2 SWS)	2029
B.Phy.5618: Seminar zur Biophysik der Zelle (4 C, 2 SWS)	.2030
B.Phy.5619: Seminar zur Mikro- und Nanofluidik (4 C, 2 SWS)	2031
B.Phy.562: Spezielle Themen der Biophysik und Physik komplexer Systeme II (6 C, 6 SWS)	. 2032
B.Phy.5620: Sportphysik (3 C, 2 SWS)	2033
B.Phy.5621: Stochastic Processes (3 C, 2 SWS)	. 2034
B Phy 5622: Weiterführende Ontik (3 C 2 SWS)	2035

B.Phy.5623: Theoretische Biophysik (6 C, 4 SWS)	2036
B.Phy.5624: Introduction to Theoretical Neuroscience (3 C, 2 SWS)	. 2037
B.Phy.5625: Röntgenpyhsik (6 C, 4 SWS)	2038
B.Phy.5628: Pattern Formation (6 C, 4 SWS)	2040
B.Phy.5629: Nichtlineare Dynamik und Zeitreihenanalyse (6 C, 4 SWS)	2042
B.Phy.563: Spezielle Themen der Biophysik und Physik komplexer Systeme III (3 C, 3 SWS)	2043
B.Phy.5630: Nichtlineare Dynamik und Biokomplexität (4 C, 2 SWS)	2044
B.Phy.5631: Selbstorganisation in der Physik und der Biologie (4 C, 2 SWS)	2045
B.Phy.5632: Seminar über aktuelle Fragen zur Turbulenzforschung (4 C, 2 SWS)	. 2046
B.Phy.5633: Theoretische und computergestützte Biophysik: Einführung (3 C, 2 SWS)	2047
B.Phy.5634: Theoretische und computergestützte Biophysik: Konzepte und Methoden (2 SWS)	
B.Phy.5635: Introduction to Chaotic Behavior I: Dissipative Systems (3 C, 2 SWS)	. 2050
B.Phy.5636: Introduction to Chaotic Behavior II: Hamiltionian Systems (3 C, 2 SWS)	2051
B.Phy.5637: Computer simulation methods in statistical physics (3 C, 2 SWS)	2052
B.Phy.5638: Atificial Intelligence Robotics: An Introduction (3 C, 2 SWS)	. 2053
B.Phy.5639: Optische Messtechnik (3 C, 2 SWS)	2055
B.Phy.5640: Principles of self-organization in biophysics (6 C, 4 SWS)	. 2056
B.Phy.5641: Theorie und Praxis der Mikroskopie (4 C, 2 SWS)	2058
B.Phy.5642: Experimentelle Methoden in der Biophysik (3 C, 2 SWS)	2059
B.Phy.5643: Seminar Experimentelle Methoden in der Biophysik (3 C, 2 SWS)	2060
B.Phy.5701: Weiche Materie: Flüssigkristalle (3 C, 2 SWS)	. 2061
B.Phy.5702: Dünne Schichten (3 C, 2 SWS)	2062
B.Phy.5703: Vorlesungszyklus: Eigenschaften fester Stoffe und grundlegende Phänom (3 C, 2 SWS)	
B.Phy.5704: Magnetismus (6 C, 4 SWS)	. 2064
B.Phy.5705: Magnetismus Seminar (4 C, 2 SWS)	2065
B.Phy.5707: Nanoscience (3 C, 2 SWS)	2066
B.Phy.5708: Physik der Nanostrukturen (3 C, 2 SWS)	. 2067
B.Phy.5709: Seminar on Nanoscience (4 C, 2 SWS)	. 2068
B Phy 571: Spezielle Themen der Festkörper- und Materialphysik I (6 C. 6 SWS)	2069

B.Phy.5710: Spintransport und Dynamik (3 C, 2 SWS)	. 2070
B.Phy.5711: Starkkorrelierte Elektronensysteme (4 C, 2 SWS)	2071
B.Phy.5712: Tieftemperaturphysik (3 C, 2 SWS)	. 2072
B.Phy.5713: Supraleitung (3 C, 2 SWS)	2073
B.Phy.5714: Introduction to Solid State Theory (6 C, 6 SWS)	. 2074
B.Phy.5715: Quantum Simulators (3 C, 2 SWS)	2075
B.Phy.572: Spezielle Themen der Festkörper- und Materialphysik II (6 C, 6 SWS)	. 2076
B.Phy.573: Spezielle Themen der Festkörper- und Materialphysik III (3 C, 3 SWS)	. 2077
B.Phy.5801: Classical field theory (6 C, 6 SWS)	2078
B.Phy.5804: Quantenmechanik II (6 C, 6 SWS)	2080
B.Phy.5805: Quantenfeldtheorie I (6 C, 6 SWS)	2081
B.Phy.5806: Spezielle Relativitätstheorie (3 C, 2 SWS)	2082
B.Phy.5807: Physik der Teilchenbeschleuniger (3 C, 3 SWS)	2083
B.Phy.5808: Wechselwirkung zwischen Strahlung und Materie - Detektorphysik (3 C, 3 SWS)	2084
B.Phy.5809: Hadron-Collider-Physik (3 C, 3 SWS)	2085
B.Phy.581: Spezielle Themen der Kern- und Teilchenphysik I (6 C, 6 SWS)	2086
B.Phy.5810: Physik des Higgs-Bosons (3 C, 3 SWS)	2087
B.Phy.5811: Statistische Methoden der Datenanalyse (3 C, 3 SWS)	. 2088
B.Phy.5812: Physik des Top-Quarks (3 C, 3 SWS)	2089
B.Phy.5813: Teilchenphysik 2 - von und mit Quarks (6 C, 6 SWS)	. 2090
B.Phy.5814: Particle Physics 3 - of and with leptons (6 C, 6 SWS)	2091
B.Phy.582: Spezielle Themen der Kern- und Teilchenphysik II (6 C, 6 SWS)	2092
B.Phy.583: Spezielle Themen der Kern- und Teilchenphysik III (3 C, 3 SWS)	2093

ii) Wahlpflichtmodule aus dem Profilierungsbereich

Es müssen Wahlpflichtmodule im Umfang von mindestens 18 C nach folgenden Maßgaben erfolgreich absolviert werden:

A) Wahlpflichtmodule A

Es müssen aus dem Lehrangebot der mathematisch-naturwissenschaftlichen Fakultäten Module im Umfang von insgesamt wenigstens 6 C erfolgreich absolviert werden. Wählbar sind insbesondere die nachfolgenden Module; darüber hinaus wird ein Verzeichnis wählbarer Module durch die Fakultät für Physik in geeigneter Weise bekannt gemacht.

B.Bio.118: Mikrobiologie (10 C, 7 SWS)	1940
B.Che.1302.1: Chemisches Gleichgewicht: Thermodynamik und Statistik (MaW) (6 C, 4 SWS)	. 1941
B.Che.1401: Atombau und chemische Bindung (5 C, 4 SWS)	1942
B.Che.2301: Chemische Reaktionskinetik (6 C, 4 SWS)	. 1944
B.Che.9105: Allgemeine und Anorganische Chemie für Physiker (4 C, 4 SWS)	.1945
B.Phy.510: Mehrbenutzersysteme in der Praxis I (6 C, 5 SWS)	. 1974
B.Phy.511: Mehrbenutzersysteme in der Praxis II (6 C, 5 SWS)	. 1975
B.Phy.606: Elektronikpraktikum für Naturwissenschaftler (6 C, 6 SWS)	. 2097
B.Phy.607: Akademisches Schreiben für Physiker/innen (4 C, 2 SWS)	.2098
B.Phy.608: Scientific Literacy - Integration von Naturwissenschaften in die Gesellschaft Politik (4 C, 2 SWS)	

B) Wahlpflichtmodule B

Es müssen Module im Umfang von insgesamt wenigstens 12 C aus dem Lehrangebot der Universität außerhalb der Fakultät für Physik absolviert werden. Wählbar sind insbesondere die nachfolgenden Module sowie Angebote aufgrund der Prüfungsordnung für Studienangebote der Zentralen Einrichtung für Sprachen und Schlüsselqualifikationen (ZESS); darüber hinaus wird ein Verzeichnis wählbarer Module durch die Fakultät für Physik in geeigneter Weise bekannt gemacht.

B.WIWI-BWL.0002: Interne Unternehmensrechnung (6 C, 4 SWS)21	00
B.WIWI-BWL.0004: Produktion und Logistik (6 C, 4 SWS)21	01
B.WIWI-OPH.0005: Jahresabschluss (6 C, 4 SWS)21	03
B.WIWI-WIN.0001: Management der Informationssysteme (6 C, 2 SWS)21	04
B.WIWI-WIN.0004: Informationsverarbeitung in Dienstleistungsbetrieben (6 C, 2 SWS)210)6
B.WIWI-WIN.0011: Programmiersprache C# (4 C, 2 SWS)21	08

C) Wahlpflichtmodule C

Anstelle der Module nach Buchstaben A) und B) können auf Antrag, der an die Studiendekanin oder den Studiendekan der Fakultät für Physik zu richten ist, andere Module (Alternativmodule) nach Maßgabe der nachfolgenden Bestimmungen absolviert werden. Dem Antrag ist die Zustimmung der Studiendekanin oder des Studiendekans der Fakultät oder Lehreinheit, die das Alternativmodul anbietet, beizufügen. Die Entscheidung trifft die Studiendekanin oder der Studiendekan der Fakultät für Physik. Der Antrag kann ohne Angabe von Gründen abgelehnt werden; ein Rechtsanspruch der Antragstellerin oder des Antragstellers auf Zulassung eines Alternativmoduls besteht nicht.

c) Spezialisierungs- und Profilierungsbereiche mit Studienschwerpunktbildung

Der Bachelor-Studiengang "Physik" kann mit einem der sechs Studienschwerpunkte Nanostrukturphysik, Physikinformatik, Astro- und Geophysik, Biophysik und Physik komplexer Systeme, Festkörper- und Materialphysik oder Kern- und Teilchenphysik studiert werden. Für die Zertifizierung eines Schwerpunkts müssen im Rahmen der Belegbedingungen nach Nrn. 1 und 2 jeweils mindestens 28 C der insgesamt zu erbringenden Leistungen im Umfang von 46 C nach Maßgabe der folgenden Bestimmungen im jeweiligen Schwerpunkt erfolgreich absolviert werden und die Bachelorarbeit im jeweiligen Schwerpunktbereich angefertigt werden.

aa) Studienschwerpunkt Nanostrukturphysik

i) Wahlpflichtmodule A
Es müssen folgende zwei Wahlpflichtmodule im Umfang von insgesamt 12 C erfolgreich absolviert werden:
B.Phy.403: Spezialisierungspraktikum in Nanostrukturphysik (6 C)
B.Phy.503: Einführung in die Festkörper- und Materialphysik (6 C, 6 SWS)1972
ii) Wahlpflichtmodule B
Es müssen wenigstens zwei der folgenden Wahlpflichtmodule im Umfang von insgesamt wenigstens 10 C erfolgreich absolviert werden:
B.Phy.5701: Weiche Materie: Flüssigkristalle (3 C, 2 SWS)
B.Phy.5702: Dünne Schichten (3 C, 2 SWS)
B.Phy.5703: Vorlesungszyklus: Eigenschaften fester Stoffe und grundlegende Phänomene (3 C, 2 SWS)
B.Phy.5704: Magnetismus (6 C, 4 SWS)2064
B.Phy.5705: Magnetismus Seminar (4 C, 2 SWS)
B.Phy.5707: Nanoscience (3 C, 2 SWS)
B.Phy.5708: Physik der Nanostrukturen (3 C, 2 SWS)
B.Phy.5709: Seminar on Nanoscience (4 C, 2 SWS)2068
B.Phy.571: Spezielle Themen der Festkörper- und Materialphysik I (6 C, 6 SWS)2069
B.Phy.5710: Spintransport und Dynamik (3 C, 2 SWS)
B.Phy.5711: Starkkorrelierte Elektronensysteme (4 C, 2 SWS)
B.Phy.5712: Tieftemperaturphysik (3 C, 2 SWS)
B.Phy.5713: Supraleitung (3 C, 2 SWS)
B.Phy.5714: Introduction to Solid State Theory (6 C, 6 SWS)
B.Phy.5715: Quantum Simulators (3 C, 2 SWS)
B.Phy.572: Spezielle Themen der Festkörper- und Materialphysik II (6 C, 6 SWS)2076
B.Phy.573: Spezielle Themen der Festkörper- und Materialphysik III (3 C, 3 SWS)2077
iii) Wahlpflichtmodule C

	Es muss eines der folgenden Wahlpflichtmodule im Umfang von 6 C erfolgreich absolviert werden:
	B.WIWI-BWL.0002: Interne Unternehmensrechnung (6 C, 4 SWS)2100
	B.WIWI-BWL.0004: Produktion und Logistik (6 C, 4 SWS)2101
	B.WIWI-OPH.0005: Jahresabschluss (6 C, 4 SWS)2103
b	b) Studienschwerpunkt Physikinformatik
	i) Wahlpflichtmodule A
	Es müssen folgende drei Wahlpflichtmodule im Umfang von insgesamt 18 C erfolgreich absolviert werden:
	B.Phy.404: Spezialisierungspraktikum Betreuung von Netzwerken und Netzwerknutzern (6 C)
	B.Phy.510: Mehrbenutzersysteme in der Praxis I (6 C, 5 SWS)
	B.Phy.511: Mehrbenutzersysteme in der Praxis II (6 C, 5 SWS)
	ii) Wahlpflichtmodule B
	Es smüssen zwei der folgenden Wahlpflichtmodule im Umfang von insgesamt 12 C erfolgreich absolviert werden:
	B.WIWI-WIN.0001: Management der Informationssysteme (6 C, 2 SWS)2104
	B.WIWI-WIN.0004: Informationsverarbeitung in Dienstleistungsbetrieben (6 C, 2 SWS)2106
	B.WIWI-WIN.0011: Programmiersprache C# (4 C, 2 SWS)2108
С	c) Studienschwerpunkt Astro- und Geophysik
	i) Wahlpflichtmodule A
	Es müssen folgende zwei Wahlpflichtmodule im Umfang von insgesamt 12 C erfolgreich absolviert werden:
	B.Phy.405: Spezialisierungspraktikum in Astro- und Geophysik (6 C)
	B.Phy.501: Einführung in die Astro- und Geophysik (6 C, 6 SWS)1970
	ii) Wahlpflichtmodule B
	Es müssen wenigstens zwei der folgenden Wahlpflichtmodule im Umfang von insgesamt wenigstens 10 C erfolgreich absolviert werden:
	B.Phy.5001: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im Experiment Teil I (6 C, 4 SWS)1967
	B.Phy.5002: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im Experiment Teil II (6 C, 4 SWS)1968

B.Phy.5003: Sammlung und Physikalisches Museum (3 C, 2 SWS)	. 1969
B.Phy.5501: Aerodynamik (6 C, 4 SWS)	1976
B.Phy.5502: Aktive Galaxien (3 C, 2 SWS)	1977
B.Phy.5503: Astrophysikalische Spektroskopie (3 C, 2 SWS)	1978
B.Phy.5504: Computational Physics (6 C, 4 SWS)	1979
B.Phy.5505: Data Analysis in Astrophysics (3 C, 2 SWS)	1980
B.Phy.5506: Einführung in die Strömungsmechanik (6 C, 4 SWS)	1981
B.Phy.5507: Elektromagnetische Tiefenforschung (3 C, 2 SWS)	1982
B.Phy.5508: Geophysikalische Strömungsmechanik (3 C, 2 SWS)	1983
B.Phy.5509: Einführung in die theoretische Astrophysik (3 C, 2 SWS)	1984
B.Phy.551: Spezielle Themen der Astro- und Geophysik I (6 C, 6 SWS)	1985
B.Phy.5510: Physics of the Interstellar Medium (3 C, 2 SWS)	1986
B.Phy.5511: Magnetohydrodynamik (3 C, 2 SWS)	1987
B.Phy.5512: Massearme Sterne, Braune Zwerge und Planeten (3 C, 2 SWS)	1988
B.Phy.5513: Numerische Strömungsmechanik (6 C, 4 SWS)	1989
B.Phy.5514: Physics of the Interior of the Sun and Stars (3 C, 2 SWS)	1990
B.Phy.5515: Transportmechanismen in heterogenen Medien (3 C, 2 SWS)	1991
B.Phy.5516: Physik der Galaxien (3 C, 2 SWS)	1992
B.Phy.5517: Physik der Sonne, Heliosphäre und des Weltraumwetters Schlüsselwissen (3 2 SWS)	
B.Phy.5518: Physik der Sonne, Heliosphäre und des Weltraumwetters: Weltraumwetter Anwendungen (3 C, 2 SWS)	1994
B.Phy.5519: Plattentektonik und Geophysikalische Exploration (3 C, 2 SWS)	1995
B.Phy.552: Spezielle Themen der Astro- und Geophysik II (6 C, 6 SWS)	1996
B.Phy.5520: Seismology of the Sun and Stars (3 C, 2 SWS)	1997
B.Phy.5521: Seminar zu einem Thema der Geophysik (4 C, 2 SWS)	. 1998
B.Phy.5522: Solar Eclipses and Physics of the Corona (3 C, 2 SWS)	1999
B.Phy.5523: Allgemeine Relativitätstheorie (6 C, 6 SWS)	2000
B.Phy.5524: Seminar über Fortgeschrittene Themen der ART (4 C, 2 SWS)	2001
B.Phy.5525: Seminar über Solitonen (4 C, 2 SWS)	2002
B.Phy.5527: Computational Cosmology (6 C, 4 SWS)	2003
B.Phy.5528: Black holes in Astrophysics and Cosmology (4 C, 2 SWS)	2004

	B.Phy.5529: Galaxies and the Intergalactic Medium (4 C, 2 SWS)	.2005
	B.Phy.553: Spezielle Themen der Astro- und Geophysik III (3 C, 3 SWS)	2006
	B.Phy.5530: Kosmologie (3 C, 2 SWS)	. 2007
	B.Phy.5531: Entstehung von Sonnensystemen (3 C, 2 SWS)	. 2008
	B.Phy.5532: Symmetrien und Nichtlineare Differenzialgleichungen in der Physik (3 C, 4 SWS)	. 2009
	B.Phy.5533: Solar and Stellar Activity (6 C, 4 SWS)	2011
	B.Phy.5535: Fluid dynamics, nonlinear dynamics and turbulence (3 C, 2 SWS)	2012
	B.Phy.5609: Moderne Optik (Optik II) (6 C, 4 SWS)	. 2021
	B.Phy.5625: Röntgenpyhsik (6 C, 4 SWS)	. 2038
	B.Phy.5628: Pattern Formation (6 C, 4 SWS)	.2040
	B.Phy.5804: Quantenmechanik II (6 C, 6 SWS)	2080
	B.Phy.5805: Quantenfeldtheorie I (6 C, 6 SWS)	. 2081
	B.Phy.5806: Spezielle Relativitätstheorie (3 C, 2 SWS)	.2082
d	Es muss eines der folgenden Wahlpflichtmodule im Umfang von 6 C erfolgreich absolviert werden: B.Phy.502: Einführung in die Biophysik und Physik komplexer Systeme (6 C, 6 SWS) B.Phy.503: Einführung in die Festkörper- und Materialphysik (6 C, 6 SWS) B.Phy.504: Einführung in die Kern- und Teilchenphysik (6 C, 6 SWS)	.1972
	i) Wahlpflichtmodule A	
	Es müssen folgende zwei Wahlpflichtmodule im Umfang von insgesamt 12 C erfolgreich absolviert werden:	
	B.Phy.406: Spezialisierungspraktikum in Biophysik und der Physik komplexer Systeme (6 C)	. 1962
	B.Phy.502: Einführung in die Biophysik und Physik komplexer Systeme (6 C, 6 SWS)	. 1971
	ii) Wahlpflichtmodule B	
	Es müssen wenigstens zwei der folgenden Wahlpflichtmodule im Umfang von insgesamt wenigstens 10 C erfolgreich absolviert werden:	
	B.Phy.5001: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen Experiment Teil I (6 C, 4 SWS)	

B.Phy.5002: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen Experiment Teil II (6 C, 4 SWS)	
B.Phy.5003: Sammlung und Physikalisches Museum (3 C, 2 SWS)	1969
B.Phy.5501: Aerodynamik (6 C, 4 SWS)	1976
B.Phy.5504: Computational Physics (6 C, 4 SWS)	1979
B.Phy.5506: Einführung in die Strömungsmechanik (6 C, 4 SWS)	1981
B.Phy.5525: Seminar über Solitonen (4 C, 2 SWS)	2002
B.Phy.5601: Theoretical and Computational Neuroscience I (3 C, 2 SWS)	2013
B.Phy.5602: Theoretical and Computational Neuroscience II (3 C, 2 SWS)	2014
B.Phy.5603: Einführung in die Laserphysik (3 C, 2 SWS)	2015
B.Phy.5604: Foundations of Nonequilibrium Statistical Physics (3 C, 2 SWS)	2016
B.Phy.5605: Grundlagen Computational Neuroscience (3 C, 2 SWS)	2017
B.Phy.5606: Mechanik der Zelle (3 C, 2 SWS)	2018
B.Phy.5607: Mechanik und Dynamik des Zytoskeletts (4 C, 2 SWS)	2019
B.Phy.5608: Mikro- und Nanofluidik (3 C, 2 SWS)	2020
B.Phy.5609: Moderne Optik (Optik II) (6 C, 4 SWS)	2021
B.Phy.561: Spezielle Themen der Biophysik und Physik komplexer Systeme I (6 C, 6 SWS)	2022
B.Phy.5611: Optische Spektroskopie und Mikroskopie (3 C, 2 SWS)	2023
B.Phy.5612: Physics of Extreme Events (3 C, 2 SWS)	2024
B.Phy.5613: Physik der weichen kondensierten Materie (6 C, 4 SWS)	2025
B.Phy.5614: Proseminar Computational Neuroscience/Neuroinformatik (5 C, 2 SWS)	2026
B.Phy.5615: Biologie und Biochemie für Physiker (3 C, 2 SWS)	2027
B.Phy.5616: Biophysik der Zelle - Physik auf kleinen Skalen (6 C, 4 SWS)	2028
B.Phy.5617: Seminar zur Physik der weichen kondensierten Materie (4 C, 2 SWS)	. 2029
B.Phy.5618: Seminar zur Biophysik der Zelle (4 C, 2 SWS)	2030
B.Phy.5619: Seminar zur Mikro- und Nanofluidik (4 C, 2 SWS)	2031
B.Phy.562: Spezielle Themen der Biophysik und Physik komplexer Systeme II (6 C, 6 SWS)	2032
B.Phy.5620: Sportphysik (3 C, 2 SWS)	2033
B.Phy.5621: Stochastic Processes (3 C, 2 SWS)	2034
B Phy 5622: Weiterführende Ontik (3 C 2 SWS)	2035

	B.Phy.5623: Theoretische Biophysik (6 C, 4 SWS)	2036
	B.Phy.5624: Introduction to Theoretical Neuroscience (3 C, 2 SWS)	. 2037
	B.Phy.5625: Röntgenpyhsik (6 C, 4 SWS)	. 2038
	B.Phy.5628: Pattern Formation (6 C, 4 SWS)	2040
	B.Phy.5629: Nichtlineare Dynamik und Zeitreihenanalyse (6 C, 4 SWS)	2042
	B.Phy.563: Spezielle Themen der Biophysik und Physik komplexer Systeme III (3 C, 3 SWS)	2043
	B.Phy.5630: Nichtlineare Dynamik und Biokomplexität (4 C, 2 SWS)	2044
	B.Phy.5631: Selbstorganisation in der Physik und der Biologie (4 C, 2 SWS)	.2045
	B.Phy.5632: Seminar über aktuelle Fragen zur Turbulenzforschung (4 C, 2 SWS)	. 2046
	B.Phy.5633: Theoretische und computergestützte Biophysik: Einführung (3 C, 2 SWS)	. 2047
	B.Phy.5634: Theoretische und computergestützte Biophysik: Konzepte und Methoden (3 C SWS)	
	B.Phy.5635: Introduction to Chaotic Behavior I: Dissipative Systems (3 C, 2 SWS)	. 2050
	B.Phy.5636: Introduction to Chaotic Behavior II: Hamiltionian Systems (3 C, 2 SWS)	.2051
	B.Phy.5637: Computer simulation methods in statistical physics (3 C, 2 SWS)	.2052
	B.Phy.5638: Atificial Intelligence Robotics: An Introduction (3 C, 2 SWS)	. 2053
	B.Phy.5639: Optische Messtechnik (3 C, 2 SWS)	2055
	B.Phy.5640: Principles of self-organization in biophysics (6 C, 4 SWS)	. 2056
	B.Phy.5641: Theorie und Praxis der Mikroskopie (4 C, 2 SWS)	. 2058
	B.Phy.5642: Experimentelle Methoden in der Biophysik (3 C, 2 SWS)	2059
	B.Phy.5643: Seminar Experimentelle Methoden in der Biophysik (3 C, 2 SWS)	2060
	B.Phy.5707: Nanoscience (3 C, 2 SWS)	2066
	B.Phy.5709: Seminar on Nanoscience (4 C, 2 SWS)	2068
	iii) Wahlpflichtmodule C	
	Es muss eines der folgenden Wahlpflichtmodule im Umfang von 6 C erfolgreich absolviert werden:	
	B.Phy.501: Einführung in die Astro- und Geophysik (6 C, 6 SWS)	. 1970
	B.Phy.503: Einführung in die Festkörper- und Materialphysik (6 C, 6 SWS)	1972
	B.Phy.504: Einführung in die Kern- und Teilchenphysik (6 C, 6 SWS)	. 1973
e	e) Studienschwerpunkt Festkörper- und Materialphysik	

i) Wahlpflichtmodule A Es müssen folgende zwei Wahlpflichtmodule im Umfang von insgesamt 12 C erfolgreich

absolviert werden:	
B.Phy.407: Spezialisierungspraktikum in Festkörper und Materialphysik (6 C)	1963
B.Phy.503: Einführung in die Festkörper- und Materialphysik (6 C, 6 SWS)	1972
ii) Wahlpflichtmodule B	
Es müssen wenigstens zwei der folgenden Wahlpflichtmodule im Umfang von insgesamt wenigstens 10 C erfolgreich absolviert werden:	
B.Phy.5001: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im Experiment Teil I (6 C, 4 SWS)	
B.Phy.5002: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im Experiment Teil II (6 C, 4 SWS)	
B.Phy.5003: Sammlung und Physikalisches Museum (3 C, 2 SWS)	1969
B.Phy.5504: Computational Physics (6 C, 4 SWS)	1979
B.Phy.5605: Grundlagen Computational Neuroscience (3 C, 2 SWS)	2017
B.Phy.5606: Mechanik der Zelle (3 C, 2 SWS)	2018
B.Phy.5607: Mechanik und Dynamik des Zytoskeletts (4 C, 2 SWS)	2019
B.Phy.5609: Moderne Optik (Optik II) (6 C, 4 SWS)	2021
B.Phy.5613: Physik der weichen kondensierten Materie (6 C, 4 SWS)	2025
B.Phy.5616: Biophysik der Zelle - Physik auf kleinen Skalen (6 C, 4 SWS)	2028
B.Phy.5617: Seminar zur Physik der weichen kondensierten Materie (4 C, 2 SWS)	2029
B.Phy.5618: Seminar zur Biophysik der Zelle (4 C, 2 SWS)	2030
B.Phy.5625: Röntgenpyhsik (6 C, 4 SWS)	2038
B.Phy.5628: Pattern Formation (6 C, 4 SWS)	2040
B.Phy.5637: Computer simulation methods in statistical physics (3 C, 2 SWS)	2052
B.Phy.5701: Weiche Materie: Flüssigkristalle (3 C, 2 SWS)	2061
B.Phy.5702: Dünne Schichten (3 C, 2 SWS)	2062
B.Phy.5703: Vorlesungszyklus: Eigenschaften fester Stoffe und grundlegende Phänomene (3 C, 2 SWS)	2063
B.Phy.5704: Magnetismus (6 C, 4 SWS)	2064
B.Phy.5705: Magnetismus Seminar (4 C, 2 SWS)	2065
B.Phy.5707: Nanoscience (3 C, 2 SWS)	2066

	B.Phy.5708: Physik der Nanostrukturen (3 C, 2 SWS)	2067
	B.Phy.5709: Seminar on Nanoscience (4 C, 2 SWS)	.2068
	B.Phy.571: Spezielle Themen der Festkörper- und Materialphysik I (6 C, 6 SWS)	2069
	B.Phy.5710: Spintransport und Dynamik (3 C, 2 SWS)	2070
	B.Phy.5711: Starkkorrelierte Elektronensysteme (4 C, 2 SWS)	. 2071
	B.Phy.5712: Tieftemperaturphysik (3 C, 2 SWS)	2072
	B.Phy.5713: Supraleitung (3 C, 2 SWS)	.2073
	B.Phy.5714: Introduction to Solid State Theory (6 C, 6 SWS)	2074
	B.Phy.5715: Quantum Simulators (3 C, 2 SWS)	. 2075
	B.Phy.572: Spezielle Themen der Festkörper- und Materialphysik II (6 C, 6 SWS)	2076
	B.Phy.573: Spezielle Themen der Festkörper- und Materialphysik III (3 C, 3 SWS)	2077
	B.Phy.5804: Quantenmechanik II (6 C, 6 SWS)	.2080
	B.Phy.5805: Quantenfeldtheorie I (6 C, 6 SWS)	. 2081
	iii) Wahlpflichtmodule C	
	Es muss eines der folgenden Wahlpflichtmodule im Umfang von 6 C erfolgreich absolviert werden:	
	B.Phy.501: Einführung in die Astro- und Geophysik (6 C, 6 SWS)	. 1970
	B.Phy.502: Einführung in die Biophysik und Physik komplexer Systeme (6 C, 6 SWS)	.1971
	B.Phy.504: Einführung in die Kern- und Teilchenphysik (6 C, 6 SWS)	1973
ff) Studienschwerpunkt Kern- und Teilchenphysik	
	i) Wahlpflichtmodule A	
	Es müssen folgende zwei Wahlpflichtmodule im Umfang von insgesamt 12 C erfolgreich absolviert werden:	
	B.Phy.408: Spezialisierungspraktikum in Kern- und Teilchenphysik (6 C)	1964
	B.Phy.504: Einführung in die Kern- und Teilchenphysik (6 C, 6 SWS)	1973
	ii) Wahlpflichtmodule B	
	Es müssen wenigstens zwei der folgenden Wahlpflichtmodule im Umfang von insgesamt wenigstens 10 C erfolgreich absolviert werden:	
	P. Dhy 5001: Die Vermittlung und Unterguehung von etrömungenhyeikelischen Vergöngen i	m
	B.Phy.5001: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen in Experiment Teil I (6 C, 4 SWS)	

B.Phy.5003: Sammlung und Physikalisches Museum (3 C, 2 SWS)	. 1969
B.Phy.5504: Computational Physics (6 C, 4 SWS)	. 1979
B.Phy.5523: Allgemeine Relativitätstheorie (6 C, 6 SWS)	2000
B.Phy.5524: Seminar über Fortgeschrittene Themen der ART (4 C, 2 SWS)	. 2001
B.Phy.5530: Kosmologie (3 C, 2 SWS)	2007
B.Phy.5609: Moderne Optik (Optik II) (6 C, 4 SWS)	2021
B.Phy.5625: Röntgenpyhsik (6 C, 4 SWS)	2038
B.Phy.5628: Pattern Formation (6 C, 4 SWS)	2040
B.Phy.5801: Classical field theory (6 C, 6 SWS)	2078
B.Phy.5803: Wechselwirkung zwischen Strahlung und Materie - Detektorphysik (3 C, 3 SWS)	2079
B.Phy.5804: Quantenmechanik II (6 C, 6 SWS)	2080
B.Phy.5805: Quantenfeldtheorie I (6 C, 6 SWS)	2081
B.Phy.5806: Spezielle Relativitätstheorie (3 C, 2 SWS)	2082
B.Phy.5807: Physik der Teilchenbeschleuniger (3 C, 3 SWS)	. 2083
B.Phy.5808: Wechselwirkung zwischen Strahlung und Materie - Detektorphysik (3 C, 3 SWS)	2084
B.Phy.5809: Hadron-Collider-Physik (3 C, 3 SWS)	2085
B.Phy.581: Spezielle Themen der Kern- und Teilchenphysik I (6 C, 6 SWS)	. 2086
B.Phy.5810: Physik des Higgs-Bosons (3 C, 3 SWS)	2087
B.Phy.5811: Statistische Methoden der Datenanalyse (3 C, 3 SWS)	. 2088
B.Phy.5812: Physik des Top-Quarks (3 C, 3 SWS)	. 2089
B.Phy.5813: Teilchenphysik 2 - von und mit Quarks (6 C, 6 SWS)	. 2090
B.Phy.5814: Particle Physics 3 - of and with leptons (6 C, 6 SWS)	2091
B.Phy.582: Spezielle Themen der Kern- und Teilchenphysik II (6 C, 6 SWS)	2092
B.Phy.583: Spezielle Themen der Kern- und Teilchenphysik III (3 C, 3 SWS)	2093
iii) Wahlpflichtmodule C Es muss eines der folgenden Wahlpflichtmodule im Umfang von 6 C erfolgreich absolviert	
werden:	
B.Phy.501: Einführung in die Astro- und Geophysik (6 C, 6 SWS)	. 1970
B.Phy.502: Einführung in die Biophysik und Physik komplexer Systeme (6 C, 6 SWS)	. 1971
B.Phy.503: Einführung in die Festkörper- und Materialphysik (6 C, 6 SWS)	1972

d) Schlüsselkompetenzen

e) Bachelorarbeit

Durch die erfolgreiche Anfertigung der Bachelorarbeit werden 12 C erworben. Die Bachelorarbeit ist im Spezialisierungsbereich anzufertigen.

Georg-August-Universität Göttingen	10 C	
Modul B.Bio.112: Biochemie	7 SWS	
Lernziele/Kompetenzen: Die Studierenden erwerben Grundlegende Stoffkenntnisse und einen Überblick über Grundprinzipien biochemischer Reaktionen sowie die Anwendung biochemischer Methoden. Sie erhalten Einsicht in die Grundlagen der Proteinchemie und der Genetik: DNA, RNA, Enzyme, Kohlenhydrate, Lipide und Zellmembranen, Grundlagen des Metabolismus und Signal Transduktion.		Arbeitsaufwand: Präsenzzeit: 100 Stunden Selbststudium: 200 Stunden
Lehrveranstaltungen: 1. Grundlagen der Biochemie (Vorlesung) 2. Biochemisches Grundpraktikum (Praktikum)	4 SWS 3 SWS	
Prüfungs Klausur (90 Minuten) Prüfungsvorleistungen: Teilnahme am Praktikum und testierte Protokolle Prüfungsanforderungen: Anabolismus und Katabolismus von Aminosäuren, Kohlenhydraten, Lipiden und Nukleinsäuren; Synthese, Struktur und Funktion von Makromolekülen; Erzeugung und Speicherung von Stoffwechselenergie Biochemische Fragestellungen im Experiment, Durchführung, Dokumentation, Auswertung und Bewertung von Experimenten, Teamarbeit zur Lösung experimenteller Aufgaben		
Zugangsvoraussetzungen: Für BSc Bio: mindestens 40 C aus dem ersten Studienabschnitt Für 2-F-BA: mindestens 22 C aus den Orientierungsmodulen		
Sprache: Modulverantwortliche[r]: Deutsch Dr. Ellen Hornung		
Angebotshäufigkeit: jedes Wintersemester		
Wiederholbarkeit: Empfohlenes Fachsemester: zweimalig 3 - 5		

Maximale Studierendenzahl:

160

Georg-August-Universität Göttingen Modul B.Bio.118: Mikrobiologie English title: Microbiology

Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden erwerben ein solides Grundlagenwissen über Systematik, Zellbiologie, Präsenzzeit: Wachstum und Vermehrung, Stoffwechselvielfalt und die ökologische, medizinische und 100 Stunden biotechnologische Bedeutung von Mikroorganismen. Selbststudium: 200 Stunden Im Praktikum erwerben die Studierenden Grundkenntnisse über Techniken des Umgangs mit Mikroorganismen (Mikroskopische Methoden, steriles Arbeiten, Kultivierung, Anreicherung, Vereinzelung, Differenzierung, Identifizierung, Genübertragung und Stoffwechselanalyse von Mikroorganismen). Nach erfolgreichem Abschluss des Moduls sind die Studierenden in der Lage, Mikroorganismen zu identifizieren, und sie kennen wesentliche biotechnologische Prozesse und Mechanismen, mit denen pathogene Keime den Wirt angreifen.

Lehrveranstaltungen:	
1. Allgemeine Mikrobiologie (Vorlesung)	4 SWS
2. Mikrobiologisches Grundpraktikum (Praktikum)	3 SWS
Prüfung: Klausur (120 Minuten)	
Prüfungsanforderungen:	
In der Prüfung, bestehend aus einem Teil A zur Vorlesung (60%) und einem Teil	
B zum Praktikum (40%), werden die Grundlagen der Mikrobiologie bezüglich der	
systematischen Einordnung, verschiedener Stoffwechselwege, Zellbiologie, der	
Bedeutung von Mikroorganismen für Industrie, Umwelt und Medizin sowie ihre	
praktische Umsetzung addressiert. Die Studierenden sollen tagesaktuelle Ereignisse mit	
Bezug zur Mikrobiologie einordnen können.	

Zugangsvoraussetzungen: Für BSc Bio: mindestens 40 C aus dem ersten Studienabschnitt Für 2-F-BA: mindestens 22 C aus den Orientierungsmodulen	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Jörg Stülke
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6
Maximale Studierendenzahl: 100	

Georg-August-Universität Göttingen Modul B.Che.1302.1: Chemisches Gleichgewicht: Thermodynamik und Statistik (MaW)

Lernziele/Kompetenzen:

Nach erfolgreichem Abschluss des Moduls kann der Studierende ...

- die physikalische Bedeutung grundlegender Größen und Gesetze der Thermodynamik sowie ihre statistisch-mechanischen Grundlagen verstehen und mit ihrer mathematischen Formulierung umgehen;
- diese Gesetze auf reversible und irreversible Zustandsänderungen von 1-Stoff-Systemen und Mischungen anwenden;
- Phasen- und Reaktionsgleichgewichte berechnen;
- elektrochemische Potentiale auf der Basis von Elektrolyteigenschaften quantitativ bestimmen;
- thermodynamische Zustandsgrößen auf der Basis molekularer Eigenschaften berechnen;

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltungen: 1. Vorlesung Chemisches Gleichgewicht 2. Proseminar Chemisches Gleichgewicht 3. Übungen zur Vorlesung Chemisches Gleichgewicht 1 SWS

Prüfung: Klausur (180 Minuten) Prüfungsvorleistungen:

12 Hausaufgaben (HA) sowie 12 Kurztests (KT) werden zur Bearbeitung angeboten; das mit 1/3 gewichtete Ergebnis der HA und das mit 2/3 gewichtete Ergebnis der KT muss insges. mind. 65% der erreichbaren Punkte ergeben. Details siehe Skript o. UniVz

	· · · · · · · · · · · · · · · · · · ·
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Jörg Schroeder
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

Georg-August-Universität Göttingen Modul B.Che.1401: Atombau und chemische Bindung English title: Atomic Structure and Chemical Bonds

Lernziele/Kompetenzen:

Nach erfolgreicher Absolvierung des Moduls sollte der Studierende

- die Postulate der Wellenmechanik anwenden k\u00f6nnen und wichtige daraus abgeleitete S\u00e4tze beherrschen
- mit den analytischen Lösungen der zeitunabhängigen Schrödinger-gleichung für einfache Systeme (Teilchen im ein- und mehrdimensionalen Kasten, Teilchen auf einer Kugeloberfläche, Einelektronenatom) operieren können
- Hamiltonoperatoren für atomare und molekulare Systeme angeben und analysieren können
- die Bedeutung des Elektronenspins verstehen und seine mathematische Beschreibung durchführen können
- das verallgemeinerte Pauli-Prinzip und seine Konsequenzen für die Wellenfunktion eines Mehrelektronensystems (Slater-Determinante) kennen
- die Elektronenstruktur eines Atoms in der Orbitalnäherung beschreiben können
- den qualitativen Umgang mit Molekülorbitalen beherrschen, insbesondere auch hinsichtlich ihrer Symmetrie
- Näherungsverfahren zur Beschreibung des molekularen Zwei-elektronenproblems anwenden können
- Elektronendichten für einfache Systeme berechnen können
- · das Konzept der Hybridisierung anwenden können

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium:

94 Stunden

Lehrveranstaltungen:	
1. Atombau und chemische Bindung (Vorlesung)	2 SWS
2. Atombau und chemische Bindung (Übung)	2 SWS
Prüfung: Klausur (180 Minuten)	
Prüfungsanforderungen:	
Grundlagen und einfache Modelle der Wellenmechanik, Bahndrehimpuls und	
Spin, Variations- und Störungsrechnung, Elektronenstruktur von Atomen,	
Molekülorbitaltheorie mit Anwendung auf kleine Moleküle, Hybridisierung.	

Zugangsvoraussetzungen: B.Che.1902 und B.Che.1903	Empfohlene Vorkenntnisse: B.Che.1002, B.Che.1003
Sprache: Deutsch	Modulverantwortliche[r]: Alle
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 3
Maximale Studierendenzahl: 120	

В	e	m	e	rk	۲u	n	a	e	n	:
_	•		•		·	ш	м	·		

Wiederholbarkeit für BSc Biochemie: zweimalig

Georg-August-Universität Göttingen	6 C	
Modul B.Che.2301: Chemische Reaktions English title: Kinetics of Chemical Reactions	4 SWS	
Lernziele/Kompetenzen:		Arbeitsaufwand:
Die Studierenden können chemische Elementarreakti	onen, Transportvorgänge und	Präsenzzeit:
Reaktionsmechanismen in verschiedenen Aggregatzu	uständen analysieren bzw. auf	56 Stunden
molekularer Basis verstehen. Sie sind mit Anwendung	gen der Reaktionskinetik in	Selbststudium:
Gebieten wie der Photochemie, Atmosphärenchemie	und Umweltchemie vertraut.	124 Stunden
Lehrveranstaltungen:		
1. Vorlesung: Chemische Reaktionskinetik		2 SWS
2. Proseminar: Chemische Reaktionskinetik	1 SWS	
3. Übung zu: Chemische Reaktionskinetik	1 SWS	
Prüfung: Klausur (180 Minuten)		
Prüfungsanforderungen: Formale Reaktionskinetik, experimentelle Methoden der Reaktionskinetik, theoretische Beschreibung von Elementarreaktionen und Transportvorgängen, Anwendungen der Reaktionskinetik		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine keine		
Sprache:	Modulverantwortliche[r]:	
Deutsch	sch Prof. Dr. Alec Wodtke	
Angebotshäufigkeit:	Dauer:	
jedes Wintersemester	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
dreimalig		
Maximale Studierendenzahl:		
100		

Georg-August-Universität Göttingen Modul B.Che.9105: Allgemeine und Anorganische Chemie für Physiker

Lernziele/Kompetenzen:

Verstehen der allgemeinen Prinzipien und Gesetzmäßigkeiten der allgemeinen und anorganischen Chemie, sicherer Umgang mit deren Begriffen, Erwerb erster Kenntnisse der anorganischen Stoffchemie, Prüfungsanforderungen: Atombau und Periodensystem, Grundbegriffe, Elemente und Verbindungen, Aufbau der Materie, einfache Bindungskonzep-te, Chemische Gleichungen und Stöchiometrie, Chemische Gleichgewichte, einfache Thermodynamik und Kinetik, Säure-Base-Reaktionen inklusive Puffer, Redoxreaktionen, Löslichkeit, einfache Elektrochemie; Vorkommen, Darstellung und Eigenschaften der Elemente und ihrer wichtigsten Verbindungen; Einführung in spektroskopische Methoden.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 64 Stunden

Lehrveranstaltung: Experimentalchemie I (Allgemeine und Anorganische Chemie) 4 SWS (Vorlesung)

Prüfung: Klausur (120 Minuten)

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: PD Dr. Thomas Klingebiel
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 1 - 6; Master: 1 - 4
Maximale Studierendenzahl: 60	

9 C Georg-August-Universität Göttingen 6 SWS Modul B.Mat.0011: Analysis I English title: Analysis I

Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 84 Stunden Erwerb von mathematischem Grundwissen über Mengen, Logik, Beweistechniken, Selbststudium: reelle und komplexe Zahlen, Ungleichungen, Folgen und Reihen, Stetigkeit, Differenzial-186 Stunden und Integralrechnung in einer Veränderlichen Kompetenzen: Beherrschung mathematischer Sprache, insbesondere Fähigkeit der Darstellung von mathematischen Sachverhalten in schriftlicher und mündlicher Form in analytischen Bereichen Problemlösen anhand von Fragestellungen der rellen, eindimensionalen Analysis • funktionales Denken anhand klassischer Funktionen und ihrer Eigenschaften • Erassen grundlegender Eigenschaften von Zahlenfolgen und Funktionen • Darstellung der Entwicklung eines mathematischen Gebietes aus einem Axiomensystem Lehrveranstaltungen: 1. Differenzial- und Integralrechnung I 4 SWS 2. Differenzial- und Integralrechnung I - Übung 2 SWS 3. Differenzial- und Integralrechnung I - Praktikum Das Praktikum ist ein optionales Angebot zum Training des Problemlösens. Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorstellen von Lösungen in den Übungen

Prüfungsanforderungen: Grundkenntnisse der Analysis, Verständnis des Grenzwertbegriffs, Beherrschen von Beweistechniken

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache:	Modulverantwortliche[r]:
Deutsch	N.N.
	Studiendekan/in
Angebotshäufigkeit:	Dauer:
jedes Wintersemester	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	1 - 3
Maximale Studierendenzahl:	

nicht begrenzt

Bemerkungen:

- Pflichtmodul in den Bachelor-Studiengängen Mathematik und Physik sowie im Zwei-Fächer-Bachelorstudiengang mit Fach Mathematik
- Im Bachelor-Studiengang Angewandte Informatik kann dieses Modul zusammen mit B.Mat.0012 die Module B.Mat.0801 und B.Mat.0802 ersetzen.

9 C Georg-August-Universität Göttingen 6 SWS Modul B.Mat.0012: Analytische Geometrie und Lineare Algebra I English title: Analytic Geometry and Linear Algebra I Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 84 Stunden Erwerb von mathematischem Grundwissen über Vektorräume. Matrizen und lineare Selbststudium: Abbildungen, lineare Gleichungssysteme, Determinanten, Eigenwertprobleme, 186 Stunden Vektorräume mit geometrischer Struktur Kompetenzen: Beherrschung mathematischer Sprache, insbesondere Fähigkeit der Darstellung von mathematischen Sachverhalten in schriftlicher und mündlicher Form im Bereich der linearen Algebra Problemlösen anhand von Fragestellungen der linearen Algebra • Erfassen des Konzeptes der Linearität bei unterschiedlichen mathematischen Objekten • Nutzung lineareer Strukturen, insbesondere des Isomorphiebegriffes, für die Formulierung mathematischer Beziehungen · Dasstellung der Entwicklung eines mathematischen Gebietes aus einem Axiomensystem Lehrveranstaltungen: 1. Analytische Geometrie und Lineare Algebra I 4 SWS 2. Analytische Geometrie und Lineare Algebra I - Übung 2 SWS 3. Analytische Geometrie und Lineare Algebra I - Praktikum Das Praktikum ist ein optionales Angebot zum Training des Problemlösens. Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: Erreichen von mindestens 50 % der Übungspunkte und zweimaliges Vorstellen von Lösungen in den Übungen Prüfung: Klausur (90 Minuten) Prüfungsvorleistungen: Erreichen von mindestens 50 % der Übungspunkte und zweimaliges Vorstellen von Lösungen in den Übungen Prüfungsanforderungen: Grundkenntnisse der linearen Algebra, insbesondere über Lösbarkeit und Lösungen linearer Gleichungsysteme **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine keine Sprache: Modulverantwortliche[r]: Deutsch N.N.

	Studiendekan/in
Angebotshäufigkeit:	Dauer:
jedes Wintersemester	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	1
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

- Pflichtmodul in den Bachelor-Studiengängen Mathematik und Physik sowie im Zwei-Fächer-Bachelorstudiengang mit Fach Mathematk
- Im Bachelor-Studiengang Angewandte Informatik kann dieses Modul zusammen mit B.Mat.011 die Module B.Mat.801 und B.Mat.802 ersetzen

Georg-August-Universität Göttingen Modul B.Phy.101: Physik I

Lernziele/Kompetenzen:

Lernziele: Rechentechniken der Differential- und Integralrechnung einer und mehrerer Veränderlicher, einfacher gewöhnlicher Differentialgleichungen, Vektoren und Matrizen. Physikalische Größen (Dimensionen, Messfehler). Kinematik (Bezugsysteme, Bahnkurve). Dynamik (Newton'sche Gesetze, Bewegungsgleichungen, schwere und träge Masse). Erhaltungssätze für Energie, Impuls, und Drehimpuls. Stöße. Zentralkraftproblem. Schwingungen und Wellen (harmonischer Oszillator, Resonanz, Polarisation, stehende Wellen, Interferenz, Doppler-Effekt). Beschleunigte Bezugsysteme und Trägheitskräfte. Starre Körper (Drehmoment, Trägheitsmoment, Steinersche Satz).

Die drei Hauptsätze der Thermodynamik. Wärme, Energie, Entropie, Temperatur, und Druck. Zustandsgleichungen. Thermodynamische Gleichgewichte und Phasenübergänge. Kreisprozess. Ideale und reale Gase.

Kompetenzen: Die Studierenden sollen die grundlegenden Begriffe und Methoden der klassischen Mechanik und Thermodynamik anwenden können. Sie sollen einfache physikalische Systeme modellieren und mit den erlernten mathematischen Techniken behandeln können.

Arbeitsaufwand:

Präsenzzeit: 112 Stunden Selbststudium: 158 Stunden

Lehrveranstaltung: Vorlesung mit Übungen	8 SWS
Prüfung: Klausur (180 Minuten)	
Prüfungsvorleistungen:	
mindestens 50 % der in den Hausaufgaben zu erreichenden Punkte sowie Anwesenheit	
bei mindestens der Hälfte der Übungstermine	

Prüfungsanforderungen:

Beherrschung und Anwendung der Grundbegriffe und Methoden der klassischen Mechanik und Thermodynamik

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan der Fakultät für Physik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 210	

Georg-August-Universität Göttingen 9 C 8 SWS Modul B.Phy.102: Physik II Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Kontinuumsmechanik (Hooke'sches Gesetz, hydrostatisches Gleichgewicht, Präsenzzeit: Bernoulli). Elektro- und Magnetostatik. Elektrisches Feld, Potential und Spannung. 112 Stunden Selbststudium: Vektoranalysis, Sätze von Gauß und Stokes. Elektrischer Strom und Widerstand, Stromkreise. Randwertprobleme und Multipolentwicklung. Biot-Savart'sches Gesetz. 158 Stunden Dielektrische Polarisation und Magnetisierung. Induktion. Schwingkreise. Maxwell-Gleichungen. Elektromagnetische Potentiale. Teilchen in Feldern, Energie und Impuls. Elektromagnetische Wellen, beschleunigte Ladungen. Relativitätstheorie (relativistische Mechanik, Lorentzinvarianz der Elektrodynamik). Kompetenzen: Die Studierenden sollen die grundlegenden Begriffe und Methoden der Elektrostatik und -dynamik anwenden können. Sie sollen einfache Feldverteilungen modellieren und mit den erlernten mathematischen Techniken behandeln können. 8 SWS Lehrveranstaltung: Vorlesung mit Übungen Prüfung: Klausur (180 Minuten) Prüfungsvorleistungen: mindestens 50 % der in den Hausaufgaben zu erreichenden Punkte sowie Anwesenheit bei mindestens der Hälfte der Übungstermine Prüfungsanforderungen: Beherrschung und Anwendung der Grundbegriffe und Methoden der Elektrodynamik, insbesondere des Feldkonzeptes. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine B.Phy.101 Sprache: Modulverantwortliche[r]: Studiendekan der Fakultät für Physik Deutsch Angebotshäufigkeit: Dauer: jedes Sommersemester 1 Semester

Wiederholbarkeit:

Maximale Studierendenzahl:

dreimalig

210

Empfohlenes Fachsemester:

Wellen und Optik.

Georg-August-Universität Göttingen 6 C 6 SWS Modul B.Phy.103: Physik III Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Wellengleichungen (elektromagnetische, akustische und Präsenzzeit: mechanische Wellen), Superpositionsprinzip, Dispersionsrelation, Phasen- und 84 Stunden Selbststudium: Gruppengeschwindigkeit. Fourier-Transformation. Wellenleiter, Impedanz, Reflexion und Transmission. Brechung und Brewster-Winkel. Geometrische Optik (Auflösungsgrenze, 96 Stunden Linsen, optische Instrumente). Anisotrope Medien und Kristalloptik. Absorption und Streuung (Rayleigh, Mie). Interferenz und Beugung (Integrale von Kirchhoff, Fresnel und Fraunhofer, Huygen'sches Prinzip). Kohärenz. Eikonalgleichung und Fermat'sches Prinzip. Kompetenzen: Die Studierenden sollen die grundlegenden Begriffe und Methoden der Optik, Akustik und Wellenausbreitung anwenden können. Sie sollen einfache schwingende Systeme (elektromagnetische Wellen, elastische Medien, ...) modellieren und mit den erlernten mathematischen Techniken behandeln können. Lehrveranstaltung: Vorlesung mit Übung Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: mindestens 50% der Hausaufgaben in den Übungen müssen bestanden worden sein Prüfungsanforderungen:

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan der Fakultät für Physik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 180	

Beherrschung der grundlegenden Begriffe, Fakten und Methoden aus dem Bereich

6 C Georg-August-Universität Göttingen 6 SWS Modul B.Phy.104: Physik IV Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Das Photon (thermische Strahlung, Photoeffekt, Compton-Effekt). Präsenzzeit: Materiewellen, Schlüsselexperimente zur Quantentheorie und ihre Interpretation. 84 Stunden Selbststudium: Heisenberg'sche Unbestimmtheitsrelation. Wasserstoffatom (Bahn- und Spinmagnetismus, Feinstruktur und L-S Kopplung, Lamb Shift). Atome in elektrischen 96 Stunden und magnetischen Feldern (Zeeman-, Paschen-Back-, und Stark-Effekt). Emission und Absorption. Spektren und Linienbreiten. Mehrelektronenatome. Grundlagen der

Kompetenzen: Die Studierenden sollen die grundlegenden Begriffe und Methoden der Quantenphysik anwenden können. Sie sollen einfache quantenmechanische Systeme (Atome, Moleküle, ...) modellieren und behandeln können.

chemischen Bindung. Molekülspektren (Rotations- und Vibrationsmoden). Laser.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Alle
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 180	

180

8 C Georg-August-Universität Göttingen 6 SWS Modul B.Phy.201: Analytische Mechanik Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Newton'sche Mechanik (Zentralkraftproblem, Streuquerschnitte). Präsenzzeit: Lagrange-Formalismus (Variationsprinzipien, Nebenbedingungen und Zwangskräfte, 84 Stunden Selbststudium: Symmetrien und Erhaltungssätze). Starre Körper (Euler-Winkel, Trägheitstensor und Hauptachsentransformation, Euler-Gleichungen). Kleine Schwingungen. Hamilton-156 Stunden Formalismus (Legendre-Transformation, Phasenraum, Liouville'scher Satz, Poisson-Klammern). Kompetenzen: Die Studierenden sollen die Begriffe und Methoden der klassischen theoretischen Mechanik anwenden können. Sie sollen komplexe mechanische Systeme modellieren und mit den erlernten formalen Techniken behandeln können. Lehrveranstaltung: Vorlesung mit Übung Prüfung: Klausur (180 Minuten) Prüfungsvorleistungen: 50% der Hausaufgaben in den Übungen müssen bestanden worden sein **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine keine Sprache: Modulverantwortliche[r]: Deutsch Alle Dauer: Angebotshäufigkeit: iedes Wintersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalig Maximale Studierendenzahl:

Georg-August-Universität Göttingen	8 C	
Modul B.Phy.202: Quantenmechanik I		6 SWS
Lernziele/Kompetenzen:	Arbeitsaufwand:	
Lernziele: Wellenmechanik und Schrödinger-Gleichu	ng. Statistische Interpretation	Präsenzzeit:
· · · · · · · · · · · · · · · · · · ·		84 Stunden
und Streuzustände. Formulierung der Quantenmecha	nik (Hilbertraum, lineare	Selbststudium:
Operatoren, unitäre Transformationen, Operatoren un	d Messgrößen, Symmetrie	156 Stunden
und Erhaltungsgrößen). Heisenberg-Bild. Quantisieru	und Erhaltungsgrößen). Heisenberg-Bild. Quantisierung des Drehimpulses und Spin.	
Wasserstoffatom. Näherungsverfahren (Störungsrech	nnung, Variationsverfahren).	
Mehrteilchensysteme.		
Kompetenzen: Die Studierenden sollen die Begriffe,	Interpretation und mathematischen	
Methoden der Quantentheorie anwenden können. Sie	sollen einfache Potentialprobleme	
mit den erlernten mathematischen Techniken behandeln können.		
Lehrveranstaltung: Vorlesung mit Übung		
Prüfung: Klausur (180 Minuten)		
Prüfungsvorleistungen:		
mindestens 50% der Hausaufgaben in den Übungen i		
Prüfungsanforderungen:		
Kenntnis des konzeptionellen Rahmens, der Prinzipie	n und Methoden der	
Quantenmechanik.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
keine	keine	
Sprache:	prache: Modulverantwortliche[r]:	
Deutsch Studiendekan der Fakultät für Phys		sik
Angebotshäufigkeit: Dauer:		
jedes Sommersemester 1 Semester		
Wiederholbarkeit: Empfohlenes Fachsemester:		
dreimalig		
Maximale Studierendenzahl:		
180		

Maximale Studierendenzahl:

Georg-August-Universität Göttingen		8 C
Modul B.Phy.203: Statistische Physik		6 SWS
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Thermodynamik (Hauptsätze, Potentia		Präsenzzeit:
Phasenübergänge). Statistik (Wahrscheinlichkeits	•	84 Stunden
Statistische Ensembles. Ergodenhypothese. Statis	stische Deutung der Thermodynamik.	Selbststudium:
Zustandssumme. Theorie der Phasenübergänge.	Quantenstatistik	156 Stunden
Kompetenzen: Die Studierenden sollen die Konze	epte und Methoden der statistischen	
Physik anwenden können. Sie sollen einfache the	rmodynamische Systeme modellieren	
und mit den erlernten mathematischen Techniken behandeln können.		
Lehrveranstaltung: Vorlesung mit Übung		
Prüfung: Klausur (180 Minuten)		
Prüfungsvorleistungen:		
50% der Hausaufgaben in den Übungen müssen bestanden worden sein		
Zugangsvoraussetzungen:	Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:	
keine	keine	
Sprache:	Modulverantwortliche[r]:	
Deutsch Studiendekan/in der Fakultät für Physik		hysik
Angebotshäufigkeit:	Dauer:	
jedes Wintersemester	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
dreimalig		

Georg-August-Universität Göttingen		9 C
Modul B.Phy.303: Mathematik für Physiker I		6 SWS
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Erwerb von Grundwissen über Differenzial- und Integralrechnung in mehreren Veränderlichen, Volumen-, Oberflächen- und Linienintegrale, implizite Funktionen, Extremalisierung unter Nebenbedingungen, Elemente der Vektoranalysis, gewöhnliche Differenzialgleichungen		Präsenzzeit: 84 Stunden Selbststudium: 186 Stunden
Kompetenzen: Die Studierenden sollen die mathematische Sprache beherrschen, insbesondere die Darstellung von mathematischen Sachverhalten in der mehrdimensionalen Analysis.		
Lehrveranstaltung: Mathematik für Physiker I		
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: 50% der Hausaufgaben in den Übungen müssen bestanden worden sein		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in der Fakultät für Physik	
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: nicht begrenzt		

5
saufwand:
nzzeit:
nden
studium:
nden
ו

Inhalte: Vorlesung und Übung		
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: 50% der Hausaufgaben in den Übungen müssen bestanden worden sein		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in der Fakultät für Physik	
Angebotshäufigkeit:	Dauer:	

Sprache:	Modulverantwortliche[r]:
Deutsch	Studiendekan/in der Fakultät für Physik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl:	

Georg-August-Universität Götting	gen	6 C
Modul B.Phy.403: Spezialisierungspraktikum in Nanostrukturphysik		
Lernziele/Kompetenzen: Lernziele: Grundlagen des Umgangs mit Literatursuchsystemen, selbstständiges Einarbeiten in ein begrenztes wissenschaftliches Themengebiet, Umgang mit einem modernen Textverarbeitungsystem, Form und Inhalt einer wissenschaftlichen Arbeit Kompetenzen: Die Studierenden sollen einfache Projekten im Bereich der Nanostrukturphysik vorbereiten, durchführen und schriftlich darstellen können.		Arbeitsaufwand: Präsenzzeit: 0 Stunden Selbststudium: 180 Stunden
Lehrveranstaltung: Spezialisierungspra	aktikum in Nanostrukturphysik	
Prüfung: Schriftlicher Bericht (max. 10 S.), unbenotet Prüfungsvorleistungen: Sicherheitsbelehrung		
Prüfungsanforderungen: Elementare Kenntnisse in der Vorbereitung von Forschungsprojekten, ihrer Durchführung und schriftlichen Darstellung im Bereich der Nanostrukturphysik.		
Zugangsvoraussetzungen: B.Phy.503	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Karsten Bahr Studiendekan/in der Fakultät für	Physik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 180		
Bemerkungen: Block		

Georg-August-Universität Göttinge	en	6 C
Modul B.Phy.404: Spezialisierungspraktikum Betreuung von Netzwerken und Netzwerknutzern		
Lernziele/Kompetenzen: Lernziele: Umsetzung und Kontrolle von Sicherheitsaspekten, Beratung von Benutzern, praktische Hilfestellung für Benutzer im täglichen Betrieb. Kompetenzen: Die Studierenden sollen Netzwerke administrieren und Benutzer kompetent beraten können.		Arbeitsaufwand: Präsenzzeit: 0 Stunden Selbststudium: 180 Stunden
Lehrveranstaltung: Spezialisierungspraktikum Betreuung von Netzwerken und Netzwerknutzern (Praktikum)		
Prüfung: Schriftlicher Bericht (max. 10 S.), unbenotet Prüfungsvorleistungen: Sicherheitsbelehrung		
Prüfungsanforderungen: Administration von Netzwerken, Beratung von Benutzern		
Zugangsvoraussetzungen: B.Phy.700 B.Phy.601 oder B.Phy.605	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Karsten Bahr Studiendekan/in der Fakultät für P	hysik
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		
Bemerkungen: Block		

Georg-August-Universität Göttingen		6 C
Modul B.Phy.405: Spezialisierungspr sik	raktikum in Astro- und Geophy-	
Lernziele/Kompetenzen: Lernziele: Grundlagen des Umgangs mit Literatursuchsystemen, selbstständiges Einarbeiten in ein begrenztes wissenschaftliches Themengebiet, Umgang mit einem modernen Datenanalysesystem, Form und Inhalt einer wissenschaftlichen Arbeit Kompetenzen: Die Studierenden sollen einfache Projekten im Bereich der Astro- und Geophysik vorbereiten, durchführen und schriftlich darstellen können.		Arbeitsaufwand: Präsenzzeit: 0 Stunden Selbststudium: 180 Stunden
Lehrveranstaltung: Spezialisierungspraktikum in Astro- und Geophysik (Praktikum) Block		
Prüfung: Schriftlicher Bericht (max. 10 S.), unbenotet Prüfungsvorleistungen: Sicherheitsbelehrung		
Prüfungsanforderungen: Elementare Kenntnisse in der Vorbereitung wissenschaftlicher Forschungsprojekte, ihrer Durchführung und schriftlichen Darstellung im Bereich der Astro- und Geophysik.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse:	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Karsten Bahr Studiendekan/in der Fakultät für P	hysik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 180		
Bemerkungen: Block		

Maximale Studierendenzahl:

180

6 C Georg-August-Universität Göttingen Modul B.Phy.406: Spezialisierungspraktikum in Biophysik und der Physik komplexer Systeme English title: Laboratory Course for Specialization in Biophysics and Physics of Complex Systems Lernziele/Kompetenzen: Arbeitsaufwand: Präsenzzeit: Lernziele: Grundlagen des Umgangs mit Literatursuchsystemen, selbstständiges Einarbeiten in ein begrenztes wissenschaftliches Themengebiet, Umgang mit einem 0 Stunden modernen Textverarbeitungssystem, Form und Inhalt einer wissenschaftlichen Arbeit Selbststudium: 180 Stunden Kompetenzen: Die Studierenden sollen einfache Projekten im Bereich der Biophysik und Physik komplexer Systeme vorbereiten, durchführen und schriftlich darstellen können. Lehrveranstaltung: Spezialisierungspraktikum in Biophysik und der Physik komplexer Systeme Prüfung: Schriftlicher Bericht (max. 10 S.), unbenotet Prüfungsvorleistungen: Sicherheitsbelehrung **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine keine Sprache: Modulverantwortliche[r]: Deutsch Alle Angebotshäufigkeit: Dauer: jedes Wintersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalig

6 C Georg-August-Universität Göttingen Modul B.Phy.407: Spezialisierungspraktikum in Festkörper und Materialphysik Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Grundlagen des Umgangs mit Literatursuchsystemen, selbstständiges Präsenzzeit: Einarbeiten in ein begrenztes wissenschaftliches Themengebiet, Umgang mit einem 0 Stunden modernen Textverarbeitungssystem, Form und Inhalt einer wissenschaftlichen Arbeit Selbststudium: 180 Stunden Kompetenzen: Die Studierenden sollen einfache Projekten im Bereich der Festkörperund Materialphysik vorbereiten, durchführen und schriftlich darstellen können. Lehrveranstaltung: Spezialisierungspraktikum in Festkörper und Materialphysik (Praktikum) **Block** Prüfung: Schriftlicher Bericht (max. 10 S.), unbenotet Prüfungsvorleistungen: Sicherheitsbelehrung Prüfungsanforderungen: Elementare Kenntnisse in der Vorbereitung wissenschaftlicher Forschungsprojekte, ihrer Durchführung und schriftlichen Darstellung im Bereich Festkörper- und Materialphysik. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Karsten Bahr Studiendekan/in der Fakultät für Physik Dauer: Angebotshäufigkeit: iedes Wintersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalig Maximale Studierendenzahl: 180 Bemerkungen:

Block

Coord Armust Universität Cättingen		6 C
Georg-August-Universität Göttingen		6 C
Modul B.Phy.408: Spezialisierungspraktik physik	rum in Kern- und Teilchen-	
Lernziele/Kompetenzen:		Arbeitsaufwand: Präsenzzeit:
Lernziele: Grundlagen des Umgangs mit Literatursuchsystemen, selbstständiges Einarbeiten in ein begrenztes wissenschaftliches Themengebiet, Umgang mit einem modernen Textverarbeitungssystem, Form und Inhalt einer wissenschaftlichen Arbeit		0 Stunden Selbststudium: 180 Stunden
Kompetenzen: Die Studierenden sollen einfache Projekten im Bereich der Kern- und Teilchenphysik vorbereiten, durchführen und schriftlich darstellen können.		
Lehrveranstaltung: Spezialisierungspraktikum in (Praktikum) Block	Kern- und Teilchenphysik	
Prüfung: Schriftlicher Bericht (max. 10 S.), unbene Prüfungsvorleistungen: Sicherheitsbelehrung	otet	
Prüfungsanforderungen: Elementare Kenntnisse in der Vorbereitung wissensc Durchführung und schriftlichen Darstellung im Bereich	- · ·	
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Karsten Bahr Studiendekan/in der Fakultät für P	hysik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		
Bemerkungen: Block		

Georg-August-Universität Göttingen		12 C
Modul B.Phy.410: Physikalisches Grundpraktikum		12 SWS
Widdul B.Fily.410. Filysikansches Grundpraktikum		
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Kenntnis physikalischer Zusammenhänge	-	Präsenzzeit:
Experiment. Teamarbeit zur Lösung experimenteller wissenschaftlichen Praxis.	Aufgaben, Grundlagen der guten	168 Stunden Selbststudium:
Kompetenzen: Die Studierenden sollen elementare Experimente zu Fragestellungen aus verschiedenen Bereichen der Physik durchführen, auswerten und kritisch interpretieren können. Sie sollen die Grundlagen der guten wissenschaftlichen Praxis anwenden können.		192 Stunden
Lehrveranstaltung: Grundlagen des Experimentie	erens (Übung, Vorlesung)	2 SWS
Prüfung: Klausur (60 Minuten), unbenotet		2 C
Lehrveranstaltung: Physikalisches Grundpraktikum		10 SWS
Prüfung: 3 Versuchsprotokolle (jeweils max. 15 S.) Prüfungsvorleistungen: 25 testierte schriftliche Versuchsprotokolle		10 C
Prüfungsanforderungen: Kenntnisse in Auswertung und Bewertung von physikalischen Experimenten sowie Interpretation der durchgeführten Experimente		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Alle Studiendekan	
Angebotshäufigkeit: Dauer:		
jedes Wintersemester 1 Semester		
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		
210		

Georg-August-Universität Göttingen		5 C
Modul B.Phy.411: Physikalisches Fortgeschrittenenpraktikum English title:		4 SWS
Lernziele/Kompetenzen: Lernziele: Anhand ausgewählter Versuche sollen die Studierenden lernen, sich selbständig in komplexe Themen einzuarbeiten und unter Anleitung fortgeschrittenere Experimente durchzuführen. Kompetenzen: Die Studierenden sollen fortgeschrittene experimentelle Methoden einsetzen und in Team¬arbeit experimentelle Aufgaben lösen sowie wissen¬schaftliche Protokolle anfertigen können.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 94 Stunden
Lehrveranstaltung: Physikalisches Fortgeschrittenenpraktikum (Praktikum) Angebotshäufigkeit: jedes Sommersemester		10 SWS
Prüfung: 5 testierte Protokolle (max. 25 Seiten) Prüfungsvorleistungen: Sicherheitsbelehrung; Erfolgreiche Durchführung von 5 Versuchen Prüfungsanforderungen: Vorlage von 5 testierten Protokollen (max. 25 S.)		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Modulverantwortliche[r]: Deutsch Dr. Bernd Damaschke		
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

6 C Georg-August-Universität Göttingen 4 SWS Modul B.Phy.5001: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im Experiment Teil I English title: Teaching and analysis of flow dynamic processes in physical experiments Part I Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Auftrieb, Bernoulli-Gleichung, Energiebetrachtung von Präsenzzeit: Strömungsvorgängen, Wirbelablösung, Kontinuitätsgleichung, 56 Stunden Wirbelbildung/Entstehung in Abhängigkeit von der Reynoldszahl, Selbststudium: 124 Stunden Messverfahren zur Visualisierung Kompetenzen: Die Studenten sollen die strömungsphysikalische Grundlagen beherrschen und Messverfahren zur Strömungsvisualisierung an Beispielen anwenden können. Weiterhin sollen sie die Strömungsphysikalischen Phänomene anhand von Experimenten vorstellen und erklären können. Lehrveranstaltungen: 1. Vorlesung 2 SWS 2. Übung 2 SWS Prüfung: 80 % mündliche Prüfung (ca. 30 Min.) + 20 % Praktische Prüfung (Experiment) (ca. 30 Min.) Prüfungsvorleistungen: eigenständige Durchführung eines Experiments in der Übung Prüfungsanforderungen: Umsetzung strömungsphysikalischer Grundlagen in Experimenten mittels Visualisierungsverfahren **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine keine Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Andreas Tilgner Angebotshäufigkeit: Dauer: jedes Sommersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalig Bachelor: 3 - 6; Master: 1 Maximale Studierendenzahl: 20

6 C Georg-August-Universität Göttingen 4 SWS Modul B.Phy.5002: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im Experiment Teil II English title: Teaching and analysis of flow dynamic processes in physical experiments Part II Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Wirbelbildung/Entstehung in Abhängigkeit von der Reynoldszahl, Präsenzzeit: Schwingungs- und Flatteranalyse, Schallentstehung, Ausbreitung, Quellenund 56 Stunden Entfernungsabhängigkeiten, Strömungsvorgänge unter Selbststudium: Schwerelosigkeit, Strahlungsinduzierte Strömungsvorgänge, Einfluss der 124 Stunden Corioliskraft auf großräumige Strömungen Kompetenzen: Die Studenten sollen die theoretischen Grundlagen praxisbezogen anwenden können und strömungsphysikalische Gesetzmäßigkeiten in Experimenten verifizieren. Weiterhin sollen sie die Strömungsphysikalischen Phänomene anhand von Experimenten vorstellen und erklären können. Lehrveranstaltungen: 1. Vorlesung 2 SWS 2. Übung 2 SWS Prüfung: mündliche Prüfung (ca. 30 Min.) + Praktische Prüfung (Experiment) (ca. 30 Min.) Prüfungsvorleistungen: eigenständige Durchführung eines Experiments in der Übung Prüfungsanforderungen: Umsetzung theoretischer Grundlagen und Verifizierung in Experimenten Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Andreas Tilgner Angebotshäufigkeit: Dauer: iedes Wintersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** Bachelor: 3 - 6; Master: 1 dreimalig

Maximale Studierendenzahl:

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5003: Sammlung und Physikalisches Museum		2 SWS
Lernziele/Kompetenzen: Lernziele: Darstellung der Funktion, Entwicklungsgeschichte und pädagog. Präsentation dieses Inhaltes eines Gerätes der historischen Sammlung. Kompetenzen: Die Studenten sollen eigenständig Inhalte erarbeiten und als Ziel diese Inhalte publikumswirksam im Museum im Rahmen der laufenden Ausstellung präsentieren.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Hausarbeit und Poster (max. 15 S.)		
Prüfungsanforderungen: Aufarbeitung und Darstellung eines Gerätes der historischen Sammlung.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
ngebotshäufigkeit: edes Semester Dauer: 1 Semester		
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 6; Master: 1 - 2	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		6 C
Modul B.Phy.501: Einführung in die Astro- und Geophysik		6 SWS
Lernziele/Kompetenzen: Lernziele: Beobachtungstechniken, Aufbau und Entwicklung des Universums, Galaxien, die Milchstraße, Sternaufbau und Entwicklung, die Sonne, Planeten, Plattentektonik, Erdbeben. Kompetenzen: Die Studierenden sollen mit den grundlegenden Begriffen und Modellen der Astro- und Geophysik umgehen können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: Einführung in die Astro- und G	Geophysik	
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.) Prüfungsvorleistungen: mindestens 50% der Hausaufgaben in den Übungen erfolgreich bearbeitet		
Prüfungsanforderungen: Grundlegende Methoden der Astro- und Geophysik.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan der Fakultät für Physik	
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 120		

6 C Georg-August-Universität Göttingen 6 SWS Modul B.Phy.502: Einführung in die Biophysik und Physik komplexer Systeme Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Aufbau, Struktur und Dynamik biologischer Makromoleküle, Struktur Präsenzzeit: und Aufbau der Zelle, Molekulare Wechselwirkungskräfte, Proteine, Proteinfaltung, 84 Stunden Molekulare Motoren, Brown'sche Bewegung und Diffusion, dynamische Systeme, Selbststudium: Bifurkationstheorie, deterministisches Chaos, Zeit-reihenanalyse, komplexe Netzwerke, 96 Stunden nichtlineare Wellenausbreitung und Solitonen. Kompetenzen: Die Studierenden sollen mit den grundlegenden Begriffen und Modellen der Biophysik und der Physik komplexer Systeme umgehen können. Lehrveranstaltung: Einführung in die Biophysik und die Physik komplexer **Systeme** Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) Prüfungsvorleistungen: mindestens 50% der Hausaufgaben in den Übungen erfolgreich bearbeitet Prüfungsanforderungen: Kenntnis der grundlegenden Prinzipien und Methoden der nichtlinearen Physik und der Biophysik Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Sprache: Modulverantwortliche[r]: Deutsch Alle Studiendekan Angebotshäufigkeit: Dauer: jedes Sommersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalig Maximale Studierendenzahl:

Georg-August-Universität Göttingen Modul B.Phy.503: Einführung in die Festkörper- und Materialphysik Lernziele/Kompetenzen: Lernziele: Chemische Bindung in Festkörpern, Struktur von Festkörpern, Beugung an periodischen Strukturen, einfache Kristallstrukturen, Dynamik von Atomen in Kristallen, 6 C 6 SWS Arbeitsaufwand: Präsenzzeit: 84 Stunden

Kompetenzen: Die Studierenden sollen mit den grundlegenden Begriffen und Modellen der Festkörper- und Materialphysik umgehen können.

thermische Eigenschaften, Thermodynamik und Kinetik von Legierungen, Mikrostruktur

und Defekte in Festkörpern, Elektronen im Festkörper.

Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden

Lehrveranstaltung: Einführung in die Festkörper- und Materialphysik

Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.)

Prüfungsvorleistungen:

mindestens 50% der Hausaufgaben in den Übungen erfolgreich bearbeitet

Prüfungsanforderungen:

Grundlagen und Modellvorstellungen über den Aufbau und die Struktur von Festkörpern.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan der Fakultät für Physik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 120	

Georg-August-Universität Göttingen		6 C 6 SWS
Modul B.Phy.504: Einführung in die Kern-		
Lernziele/Kompetenzen: Lernziele: Eigenschaften und Spektroskopie von stabilen und instabilen Atomkernen; Eigenschaften von Elementarteilchen und Experimente der Hochenergiephysik; Grundlagen der Teilchenbeschleunigerphysik. Kompetenzen: Die Studierende sollen mit den grundlegenden Begriffen und Modellen der Kern- und Teilchenphysik umgehen können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: Einführung in die Kern- und Teilchenphysik Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.) Prüfungsvorleistungen: mindestens 50% der Hausaufgaben in den Übungen erfolgreich bearbeitet		
Prüfungsanforderungen: Kenntnis physikalischer Fakten und Modellvorstellungen über den Aufbau der Atomkerne und die Eigenschaften von Elementarteilchen.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan der Fakultät für Physik	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 120		

Georg-August-Universität Göttingen		6 C
Modul B.Phy.510: Mehrbenutzersysteme in der Praxis I		5 SWS
Lernziele/Kompetenzen: 1. Teilmodul:		Arbeitsaufwand: Präsenzzeit:
Lernziele: Grundlegende Kenntnisse im Umgang mit Unix, Erstellung von Batchskripten, Einrichten der Benutzerschnittstelle und –oberfläche.		70 Stunden Selbststudium: 110 Stunden
Kompetenzen: Die Studierenden sollen in einer Ur Administratoraufgaben durchführen können.	nixumgebung fundamentale	110 Sturiden
2. Teilmodul:		
Lernziele: Grundlagen der Administration von Unix Sicherheitsaspekte.	rechnern, Anlegen von Benutzern,	
Kompetenzen: Die Studierenden sollen unixbasierte Multiusersysteme eigenständig administrieren und Benutzer verwalten können		
Lehrveranstaltung: Linux Grundlagen (Übung, V	Lehrveranstaltung: Linux Grundlagen (Übung, Vorlesung)	
Prüfung: Klausur (120 Minuten)		4 C
Lehrveranstaltung: Administration von Linux (Praktikum) Blockpraktikum		
Prüfung: Schriftlicher Bericht (max. 10 S.), unbenotet		2 C
Prüfungsanforderungen: 1. Teilmodul: Grundlegende Kenntnisse im Umgang mit Unix, Erstellung von Batchskripten, Einrichten der Benutzerschnittstelle und -oberfläche 2. Teilmodul: Grundlagen der Administration von Unixrechnern, Anlegen von Benutzern, Sicherheitsaspekte.		
Zugangsvoraussetzungen: B.Phy.601 oder B.Phy.605	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Oswald Haan Studiendekan/in der Fakultät für Physik	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		6 C
Modul B.Phy.511: Mehrbenutzersysteme in der Praxis II		5 SWS
Lernziele/Kompetenzen: 1. Teilmodul:		Arbeitsaufwand: Präsenzzeit:
Lernziele: Umgang mit Linux in Netzwerken		70 Stunden
Kompetenzen: Die Studierenden sollen Unix-ähnlich Netzwerkumgebung integrieren und administrieren kö	•	Selbststudium: 110 Stunden
2. Teilmodul:		
Lernziele: Grundlagen der Administration von MS-Wi Benutzern, Sicherheitsaspekte	ndowsrechnern, Anlegen von	
Kompetenzen: Die Studierenden sollen Rechnersyst administrieren und Benutzer verwalten können.	eme unter MS-Windows	
Lehrveranstaltung: Linux im Netzwerk (Übung, Vorlesung)		4 SWS
Prüfung: Klausur (120 Minuten)		4 C
Lehrveranstaltung: Administration MS-Windows (Praktikum) Blockpraktikum		
Prüfung: Schriftlicher Bericht (max. 10 S.), unbenotet		2 C
Prüfungsanforderungen: 1. Teilmodul: Integration und Administration Unix-ähnlicher Systeme in einer Netzwerkumgebung		
2. Teilmodul: Grundlagen der Administration von MS-Windowsrechnern, Anlegen von Benutzern, Sicherheitsaspekte		
Zugangsvoraussetzungen: B.Phy.510	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Oswald Haan Studiendekan/in der Fakultät für Physik	
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 10		

Georg-August-Universität Göttingen		6 C
Modul B.Phy.5501: Aerodynamik		4 SWS
Lernziele/Kompetenzen: Lernziele: Physikalische Grundlagen der Aerodynamik Kompetenzen: Kontinuumsphysikalische Grundlagen, Grundgleichungen der reibungsfreien und reibungsbehafteteten Strömung, Theorie des Auftriebs, induzierter Widerstand, Kompressibilitäts- und Reibungseffekte und ihre Einordnung über entsprechende Kennzahlen (Machzahl, Reynoldszahl), Grundzüge der Flugmechanik		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltungen: 1. Vorlesung Aerodynamik I 2. Vorlesung Aerodynamik II		2 SWS 2 SWS
Prüfung: Klausur (120min.) oder mündliche Prüfung (ca. 30min)		
Prüfungsanforderungen: Anwendung der Grundlagen der Aerodynamik auf elementare aerodynamische Zusammenhänge		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1 - 2	
Maximale Studierendenzahl: 30		
Bemerkungen: Schwerpunkt: AG, BK		

Georg-August-Universität Göttingen Modul B.Phy.5502: Aktive Galaxien		3 C	
		2 SWS	
Lernziele/Kompetenzen:		Arbeitsaufwand:	
Lernziele: Klassifizierung Aktiver Galaxien(kern	ne), spektrale und	Präsenzzeit:	
Kontinuums-Emission, vereinheitlichte Modelle,	Ursache der Aktivität,	28 Stunden	
Struktur der Kernregion, Massenbestimmung vo	on Schwarzen Löchern	Selbststudium:	
Kompetenzen: Die Studenten sollen die spektralen Eigenschaften und die grundlegende Physik der Aktiven Galaxien verstehen.		62 Stunden	
granalogonae i nyok asi / kkiron ediazion role			
Lehrveranstaltung: Vorlesung		2 SWS	
Prüfung: Mündlich (ca. 30 Minuten)			
Prüfungsanforderungen: Beobachtung, Struktur, Kinematik und Physik Aktiver Galaxien, Schwarze Löcher.			
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:			
keine	Grundvorlesung zur Astronom	ie	
Sprache:	Modulverantwortliche[r]:		
Deutsch	Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit:	Dauer:		
jedes Sommersemester	1 Semester		
Wiederholbarkeit:	Empfohlenes Fachsemester	Empfohlenes Fachsemester:	
dreimalig	Bachelor: 4 - 6; Master: 1		
Maximale Studierendenzahl:			
40			

Georg-August-Universität Göttingen		3 C 2 SWS
Modul B.Phy.5503: Astrophysikalische Spektroskopie		2 3003
Lernziele/Kompetenzen: Lernziele: Grundlagen astronomischer Spektroskopie, Teleskope, Abbildungsfehler, Instrumentierung; Aufnahme, Reduktion und Analyse spektroskopischer Daten Kompetenzen: Verstaendnis spektroskopischer Beobachtungstechniken, Interpretation astronomischer Daten; Aufbau von und Anforderungen an moderne astronomische Instrumentierung		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung Inhalte: Astrophysikalische Spektroskopie		2 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Kenntnis astronomischer Teleskope und Messverfahr Prinzipien und Aufbau von Spektrographen; Verständ astronomischer Beobachtungen, Datenaufbereitung u		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.501	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 6; Master: 1 - 2	
Maximale Studierendenzahl: 40		

Georg-August-Universität Göttingen Modul B.Phy.5504: Computational Physics		6 C 4 SWS
Lernziele/Kompetenzen: Lernziele: Fortgeschrittene Verfahren der Computerphysik, insbesondere Lösen nichtlinearer algebraischer Gleichungssysteme, Diagonalisierung von Matrizen (Eigenwert-Problem), Fast Fourier Transforms sowie Methoden zur Lösung von gewöhnlichen und partiellen Differentialgleichungen. Kompetenzen: Die Studenten sollen fortgeschrittene Methoden aus der Computerphysik kennen- und anwenden lernen.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltung: Vorlesung + Übung		4 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.) oder Hausarbeit (max. 15 S.)		t
Prüfungsanforderungen: Anwendung fortgeschrittener numerischer Verfahren aus der Computerphysik zur Lösung physikalischer Probleme; Beschreiben der Methoden und Auswahl geeigneter Methoden für ein gegebenes Problem.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.605 Programmierkenntnisse, einfach	e numerische
Sprache: Deutsch	Modulverantwortliche[r]: PD Dr. Wolfram Schmidt Prof. Dominik Schleicher	
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig Maximale Studierendenzahl:	Empfohlenes Fachsemester: Bachelor: 3 - 6; Master: 1	
40		
Bemerkungen: Schwerpunkt alle		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5505: Data Analysis in Astrophysics		2 SWS
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Introduction to methods of data analysis in	n astrophysics: Random signal	Präsenzzeit:
and noise; correlation analysis; model fitting by least	squares and maximum likelihood;	28 Stunden
Monte Carlo simulations; Fourier analysis; filtering; s	gnal and image processing; Hilbert	Selbststudium:
transform; mapping; applications to problems of astro	physical relevance.	62 Stunden
Kompetenzen: Ability to model noise and signal.		
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündlich (ca. 30 Minuten)		
Prüfungsanforderungen:		
Demonstrate an understanding of concepts developed in lecture		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	keine	
Sprache:	Modulverantwortliche[r]:	
Englisch	Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit:	Dauer:	
jedes Sommersemester	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
dreimalig	Bachelor: 6; Master: 1	
Maximale Studierendenzahl:		
40		

Georg-August-Universität Göttingen		6 C
Modul B.Phy.5506: Einführung in die Strömungsmechanik		4 SWS
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: theoretische und experimentelle Grundlage	en der Strömungsmechanik	Präsenzzeit:
tropfbarer Flüssigkeiten und Gase: Kontinuumshypothese; Statik, Kinematik		56 Stunden
und Dynamik von Fluiden; Kontinuitätsgleichung; Bew		Selbststudium:
Dimensionsanalyse; reibungsbehaftete Strömungen, s	•	124 Stunden
Grenzschichten, Turbulenz; Potentialströmungen; Wir Impulsmomentengleichungen; Energiegleichung; Stro	•	
Kompetenzen: Studierende sollen die grundlegender	•	
auf entsprechende Fragestellungen aus den Bereiche der Biophysik und der Physik komplexer	en der Geo- und Astrophysik bzw.	
Systeme anwenden können.		
5,5555		
Lehrveranstaltung: Vorlesung		4 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen:		
Anwendung der Grundlagen der Strömungsmechanik		
strömungsmechanische Vorgänge		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	keine	
Sprache:	Modulverantwortliche[r]:	
Deutsch	Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit:	Dauer:	
jedes Sommersemester	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
dreimalig	Bachelor: 4 - 6; Master: 1 - 3	
Maximale Studierendenzahl:		
30		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5507: Elektromagnetische Tiefenforschung		2 SWS
Lernziele/Kompetenzen: Lernziele: Elektromagnetische Induktion, Schätzung der Übertragungsfunktionen und ihrer Vertrauensbereiche, Dimensionalität und Verzerrung, Inversion elektromagnetischer Sondierungskurven, Leitungsmechanismen und Zusammenhänge mit Geodynamik Kompetenzen: Die Studenten sollen die grundlegenden Begriffe der Elektromagnetischen Tiefenforschung kennen lernen und danach gemessene elektromagnetische Daten selbstständig auswerten können.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (60 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Die wichtigsten Parameter und Algorithmen der Elektromagnetischen Tiefenforschung		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse:	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1	
Maximale Studierendenzahl: 20		

Georg-August-Universität Götting	en	3 C
Modul B.Phy.5508: Geophysikalische Strömungsmechanik English title: Geophysical fluid mechanics		2 SWS
Lernziele/Kompetenzen: Lernziele: Bewegungsformen der flüssigen Bestandteile der Erde (Atmosphäre, Ozeane, Kern) oder anderer Planeten. Thermodynamik, insbesondere der Atmosphäre. Kompetenzen: Aufbau der Erdatmosphäre, adiabatischer Gradient und Temperaturschichtung, Corioliskraft und Besonderheiten rotierender Strömungen (geostrophisches Gleichgewicht, Inertial- und Rossbywellen, Ekmanschichten), Strahlungshaushalt, globale Zirkulation der Atmosphäre und Ozeane, Wettersysteme der mittleren Breiten, Schwerewellen, Konvektion, Instabilität und Turbulenz.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: mündliche Prüfung (ca. 30 Min. Prüfungsanforderungen: Mechanik, Thermodynamik, Mathematik		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse:	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3	
Maximale Studierendenzahl: nicht begrenzt		
Bemerkungen:		

Schwerpunkt Astro-/Geophysik

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5509: Einführung in die theoretische Astrophysik English title: Introduction to theoretical astrophysics		2 SWS
Lernziele/Kompetenzen: Lernziele: Grundlagen der theoretischen Astrophysik, von N-Körper- Problemen, Hydrodynamik, Magneto- Hydrodynamik bis zu ISM-Chemie und Strahlungstransport. Kompetenzen: Die Studenten lernen, wissenschaftliche Vorträge über Themen der		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
theoretischen Astrophysik vorzubereiten und zu halten. Lehrveranstaltung: Seminar		2 SWS
Prüfung: Vortrag (ca. 45 Min.)		
Prüfungsanforderungen: Angemessene Aufbereitung und Präsentation eines Themas der theoretischen Astrophysik		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.501	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3	
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen Modul B.Phy.551: Spezielle Themen der Astro- und Geophysik I		6 C 6 SWS
Lernziele/Kompetenzen: Lernziele: Inhalte aktueller Forschung in der Astro- und Geophysik, Vertiefung des im Wahlpflichtbereich angeeigneten Verständnisses von Methoden und Modellen. Kompetenzen: Die Studierenden sollen aktuelle Forschungsthemen verstehen und bewerten können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: Veranstaltung aus dem Lehrangebot der Astro- und Geophysik		6 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		
Prüfungsanforderungen: Vertiefung der im Wahlpflichtbereich angeeigneten Kenntnisse in Astro- bzw. Geophysik.		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 90		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5510: Physics of the Interstellar Medium		2 SWS
Lernziele/Kompetenzen: Lernziele: Components of the interstellar medium (ISM), cooling and heating processes, thermal equilibrium and instabilities, magnetic fields in the ISM, shock waves, turbulence, virial theorem, gravitational fragmentation and collapse, molecular clouds, star formation, HII regions, supernovae Kompetenzen: Knowing and understanding the physical processes in the interstellar medium.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündlich (ca. 30 Minuten)		
Prüfungsanforderungen: Describing particular physical processes in the ISM and explaining the physical principles (cooling and heating, hydrogen chemistry, radiation, magnetohydrodynamics, shocks, turbulence, and gravity)		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: B.Phy.501		
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Sommersemester Dauer: 1 Semester		
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 4 - 6; Master: 1		
Maximale Studierendenzahl: nicht begrenzt		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5511: Magnetohydrodynamik		2 SWS
Lernziele/Kompetenzen: Lernziele: Induktionsgleichung, Alfvén-Theorem, Dyn Magnetfeldentstehung, Alfvén-Wellen.	Lernziele: Induktionsgleichung, Alfvén-Theorem, Dynamotheorie und	
Kompetenzen: Die Studenten sollen die grundlegenden Begriffe der Magnetohydrodynamik auf geo- und astrophysikalische Fragestellungen anwenden können.		Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Induktionsgleichung, Alfvén-Theorem, Dynamotheorie und Magnetfeldentstehung, Alfvén-Wellen.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5512: Massearme Sterne, Br. English title: Low-mass stars, brown dwarfs, and plant	2 SWS	
Lernziele/Kompetenzen: Lernziele: Aufbau, Entstehung und Entwicklung sowie Atmosphären massearmer Sterne und sub-stellarer Objekte, Nachweis und Suchmethoden sowie Charakterisierung massearmer Sterne und sub-stellarer Objekte. Kompetenzen: Anwendung physikalische Konzepte in astrophysikalischem Kontext. Kenntnis von aktuellen Fragestellungen in der stellaren Astrophysik.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung	2 SWS	
Prüfung: Klausur (120 Min.) oder mündliche Prüfu		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: B.Phy.501		
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Sommersemester Dauer: 1 Semester		
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 6; Master: 1 - 3	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		6 C
Modul B.Phy.5513: Numerische Strömungsmechanik		4 SWS
Lernziele/Kompetenzen: Lernziele: Klassifizierung partieller Differentialgleichungen. Zeitschrittverfahren. Finite Differenzen, finite Volumen, finite Elemente und spektrale Methoden. Konsistenz, Stabilität, und Konvergenz. Spezielle Verfahren zur Lösung der Navier-Stokes Gleichung. Kompetenzen: Die Studenten sollen die grundlegenden Verfahren zur numerischen Lösung partieller Differentialgleichungen beherrschen.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltung: Vorlesung mit Übung		4 SWS
Prüfung: Hausarbeit (max. 15 S.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Programmierung und Analyse numerischer Verfahren zur Lösung partieller Differentialgleichungen		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig Dauer: 1 Semester		
Wiederholbarkeit: Empfohlenes Fachsemester: dreimalig		
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5514: Physics of the In	2 SWS	
Lernziele/Kompetenzen: Lernziele: introduction to stellar structure, evolution, and dynamics; rotation; convection; dynamos; observations of solar and stellar oscillations; introduction to stellar pulsations; normal modes; weak perturbation theory; numerical forward modeling Kompetenzen: The students should be able to understand the equations of stellar structure, to understand current questions about the physics of solar/stellar interiors and magnetism, to understand the physics of solar/stellar oscillations and their diagnostic potential.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung	2 SWS	
Prüfung: Mündlich (ca. 30 Minuten)		
Prüfungsanforderungen: Demonstrate an understanding of concepts developed in lecture		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Wintersemester Dauer: 1 Semester		
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 5 - 6; Master: 1 - 3		
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5515: Transportmechanismen in heterogenen Medien		2 SWS
Lernziele/Kompetenzen: Lernziele: Heterogenität und Zweiphasensysteme, das effektive Medium, Perkolation, Selbstähnlichkeit, die Renormierungsgruppe, eingebettete Netzwerke, Zufallsnetzwerke		Arbeitsaufwand: Präsenzzeit: 28 Stunden
Kompetenzen: Die Studenten sollen die wichtigsten Mischungsgesetze verstehen und auf verschiedene Transportmechanismen (z.B. elektrische Leitung und Fluidtransport) anwenden können.		Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (60 Min.) oder mündliche Prüfun		
Prüfungsanforderungen: Die wichtigsten Parameter und Algorithmen der Mischungsgesetze für das effektive Medium und für Perkolation		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: wechselnd Dauer: 1 Semester		
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1 - 3	
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5516: Physik der Galaxien		2 SWS
Lernziele/Kompetenzen: Lernziele: Galaxienklassifikation; Aufbau, Struktur und Kinematik von Galaxien; stellare und Gas-Komponenten in Galaxien, Galaxienentwicklung, großräumige Galaxienstrukturen Kompetenzen: Galaxien sind die fundamentalen Bausteine des Universums. Die Studenten sollen die Klassifizierung, die Eigenschaften sowie die grundlegende Physik der Galaxien verstehen.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündlich (ca. 30 Minuten)		
Prüfungsanforderungen: Klassifikation, Struktur, stellare und Gaskomponente, Kinematik, Entwicklung, Umgebung von Galaxien.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Dauer: jedes Wintersemester 1 Semester		
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 4 - 6; Master: 1		
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C 2 SWS
raumwetters Schlüsselwissen		
English title: Physics of the Sun, Heliosphere and Spa	ace weatner: Key Knowledge	
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Einführung in die grundlegenden physikalis	schen Prozesse der Sonnen- und	Präsenzzeit:
Heliosphärenphysik.		28 Stunden
Kompetenzen: Verständnis der grundlegenden physi	kalischen Prozesse der Sonnen-	Selbststudium:
und Heliosphärenphysik.		62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündliche Prüfung (ca. 30 Min.) oder Klausur (120 Min.)		
Prüfungsanforderungen: grundlegende physikalischen Prozesse der Sonnen- und Heliosphärenphysik		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
keine	keine	
Sprache:	Modulverantwortliche[r]:	
Deutsch, Englisch	Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit:	Dauer:	
jedes Wintersemester 1 Semester		
Wiederholbarkeit:	Empfohlenes Fachsemester:	
dreimalig	Bachelor: 4 - 6; Master: 1	
Maximale Studierendenzahl:		
30		

Georg-August-Universität Göttinge	n	3 C
Modul B.Phy.5518: Physik der Soni raumwetters: Weltraumwetter Anwe English title: Physics of the Sun, Heliosphere Applications	2 SWS	
Lernziele/Kompetenzen: Lernziele: Einführung in die physikalischen Prozesse des Weltraumwetters anhand angewandter Problemstellungen. Kompetenzen: Verständnis der physikalischen Prozesse des Weltraumwetters. Anwendungsorientiertes Wissen über das Weltraumwetter. Befähigung zur selbstständigen Bearbeitung von Aufgabenstellungen zum Weltraumwetter.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung	2 SWS	
Prüfung: Mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Physikalischen Prozesse des Weltraumwette		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5519: Plattentektonik und Geophysikalische Exploration		2 SWS
Lernziele/Kompetenzen: Lernziele: Kontinentalverschiebungstheorie, Paläomagnetismus, Konduktion und Konvektion, Plattentektonik, Subduktion, Erdbeben, Seismologie, Anisotropie, Lattice-preferred Orientation Kompetenzen: Die Studenten sollen die Entstehung der modernen Theorie der Plattentektonik nachvollziehen und die wichtigsten Beiträge der verschiedenen Explorationsverfahren zur Rekonstruktion der Plattenbewegungen kennen.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (60 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Die wichtigsten Beiträge der verschiedenen Explorationsverfahren zur Rekonstruktion der Plattenbewegungen, die drei verschiedenen Moden der Plattentektonik.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1 - 3	
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen		6 C
Modul B.Phy.552: Spezielle Themen der	6 SWS	
Lernziele/Kompetenzen:	Arbeitsaufwand:	
Lernziele:Inhalte aktueller Forschung in der Astro- u	nd Geophysik, Vertiefung des im	Präsenzzeit:
Wahlpflichtbereich angeeigneten Verständnisses vor	n Methoden und Modellen.	84 Stunden
Kompetenzen: Die Studierenden sollen aktuelle Forbewerten können.	Kompetenzen: Die Studierenden sollen aktuelle Forschungsthemen verstehen und bewerten können.	
Lehrveranstaltung: Spezielle Themen der Astro-	und Geophysik Ila	3 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		3 C
Lehrveranstaltung: Spezielle Themen der Astro-	3 SWS	
Prüfung: Klausur (120 Min.) oder mündl. Prüfung Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereit	3 C	
Prüfungsanforderungen: Vertiefung der im Wahlpflichtbereich angeeigneten K Geophysik.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 90		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5520: Seismology of the Sun and Stars		2 SWS
Lernziele/Kompetenzen:	Arbeitsaufwand:	
Lernziele: global mode seismology (2D structure and	rotation); local helioseismology	Präsenzzeit:
(3D tomography); effects of magnetic activity cycles; in	ntroduction to the analysis	28 Stunden
of space observations; applications to the study of the	interior of the Sun and Sun-	Selbststudium:
like stars: global properties and age, evolutionary changes; sound speed, internal rotation, border of convection zones, meridional circulation, convective flows, sunspot seismology.		62 Stunden
Kompetenzen: Understanding of the physics of solar can be used to extract information about the internal solar the students should be able to start simple research pasteroseismology.		
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündlich (ca. 30 Minuten)		
Prüfungsanforderungen: Demonstrate an understanding of concepts developed in lecture		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
keine	B.Phy.5514	
	empfohlen aber nicht verlangt	
Sprache:	Modulverantwortliche[r]:	
Englisch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: Dauer:		
jedes Sommersemester Beginn SoSe2013 1 Semester		
Wiederholbarkeit: Empfohlenes Fachsemester:		
dreimalig	dreimalig Bachelor: 6; Master: 1 - 3	
Maximale Studierendenzahl:		
40		

Georg-August-Universität Göttinger	n	4 C
Modul B.Phy.5521: Seminar zu einem Thema der Geophysik English title: Seminar on Geophysics		2 SWS
Lernziele/Kompetenzen: Lernziele: Fragestellungen aus der Geophysik und ihrem fachlichen Umfeld. Kompetenzen: Selbständige Literaturrecherche, Vorbereitung eines Vortrages mit schriftlicher Zusammenfassung.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 92 Stunden
Lehrveranstaltung: Seminar		sws
Prüfung: Vortrag (ca. 60 Min.) mit schriftlicher Ausarbeitung		
Prüfungsanforderungen: Selbständige Einarbeitung in ein Thema der Geophysik, Vorbereitung eines für Bachelor-Studenten verständlichen Vortrages mit schriftlicher Zusammenfassung.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 4 - 6; Master: 1 - 3		
Maximale Studierendenzahl:		
Bemerkungen: Schwerpunkt Astro-/Geophysik		

Georg-August-Universität Göttingen 3 C 2 SWS Modul B.Phy.5522: Solar Eclipses and Physics of the Corona Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Phenomenology of solar eclipses, timing of eclipses. Phyics of hot gases, Präsenzzeit: interaction of gas and magnetic field in the outer atmosphere of the Sun and other stars, 28 Stunden Selbststudium: phyiscal processes for plasma heating ("coronal heating"), wave and Ohmic heating, acceleration of plasma to form a solar wind, solar-terrestrial relations. 62 Stunden Kompetenzen: The students should understand the basic processes on how a cool star can heat and sustain its million Kelvin hot outer atmosphere, the corona. Using basic concepts of magnetohydrodynamics they should also be able to explain the structure and dynamics of the corona. 2 SWS Lehrveranstaltung: Vorlesung Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.) Prüfungsanforderungen: Understanding of basic physical process in the corona of a star. The exam will be based on excecises distributed during the lecture course. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine B.Phy.501 Elektrodynamik Sprache: Modulverantwortliche[r]: Deutsch, Englisch PD Dr. Hardi Peter Angebotshäufigkeit: Dauer: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** Bachelor: 4 - 6; Master: 1 - 3 dreimalia Maximale Studierendenzahl: nicht begrenzt

Schwerpunkt: AG/KT

Georg-August-Universität Göttingen		6 C
Modul B.Phy.5523: Allgemeine Relativitätstheorie English title: General Relativity		6 SWS
Lernziele/Kompetenzen: Grundlagen der Differentialgeometrie, Einsteinsche Gleichung und zugrunde liegende Prinzipien, Schwarzschild-Raum-Zeit, Gravitationswellen, schwarze Löcher, Grundlagen der Kosmologie. Die Studierenden sollen die Grundlagen der ART mathematisch und physikalisch beherrschen undin der Lage sein, Rechnungen zu einfachen Modellen durchzuführen.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltungen: 1. Vorlesung 2. Übung		4 SWS 2 SWS
Prüfung: Klausur (120 Minuten) Prüfungsanforderungen: Grundbegriffe der Differentialgeometrie, einfache Rechenbeispiele, Einsteinsche gleichung zugrunde liegende Prinzipien, Schwarzschild-Raum-Zeit, Gravitationswellen, Grundlagen der Kosmologie		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Grundkenntnisse in Mechanik, Ele und spezieller Relativitätstheorie, I Integralrechnung mehrerer Veränd	Differenzial- und
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Jens Niemeyer	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: Empfohlenes Fachsemester: ab 5		
Maximale Studierendenzahl: 30		
Bemerkungen:		

4 C Georg-August-Universität Göttingen 2 SWS Modul B.Phy.5524: Seminar über Fortgeschrittene Themen der ART Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Verständnis eines speziellen Themas aus dem Bereich der Allgemeinen Präsenzzeit: Relativitätstheorie anhand von Originalarbeiten oder fortgeschrittener Lehrbuchliteratur. 28 Stunden Fähigkeit zur kompetenten Präsentation der wesentlichen Ideen und Rechnungen. Selbststudium: 92 Stunden Kompetenzen: Jeder Teilnehmer soll sich in ein fortgeschrittenes Thema aus dem Bereich der Allgemeinen Relativitätstheorie einarbeiten und dieses professionell präsentieren können. 2 SWS Lehrveranstaltung: Seminar Prüfung: Vortrag (ca. 120 Min.) mit schriftlicher Ausarbeitung (max. 20 Seiten) Prüfungsanforderungen: Prüflinge sollen die dem Thema zugrunde liegenden Fachbegriffe erklären und die wesentlichen Rechnungen skizzieren können. **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine Grundlagen der ART Sprache: Modulverantwortliche[r]: Deutsch, Englisch apl. Prof. Folkert Müller-Hoissen Angebotshäufigkeit: Dauer: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalig ab 5 Maximale Studierendenzahl: Bemerkungen:

Schwerpunkte: AG, KT

Schwerpunkt: AG, BK

Georg-August-Universität Göttingen		4 C
Modul B.Phy.5525: Seminar über Solitonen		2 SWS
Lernziele/Kompetenzen: Lernziele:		Arbeitsaufwand: Präsenzzeit:
Verständnis eines speziellen Themas der Mathematik und Physik von Solitonen anhand von Originalarbeiten oder fortgeschrittener Lehrbuchliteratur. Fähigkeit zur kompetenten Präsentation der wesentlichen Ideen und Rechnungen.		28 Stunden Selbststudium: 92 Stunden
Kompetenzen:		
Jeder Teilnehmer soll sich in ein fortgeschrittenes Thema aus dem Bereich der Mathematik und Physik von Solitonen einarbeiten und dieses professionell präsentieren können.		
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Vortrag (ca. 120 Min.) mit schriftlicher Ausarbeitung (max. 20 Seiten) Prüfungsanforderungen: Prüflinge sollen die dem Thema zugrunde liegenden Fachbegriffe erklären und die wesentlichen Rechnungen skizzieren können.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		thysik intograpler
keine	Grundlagen der Mathematik und F Systeme und Solitonen-Gleichung	
Sprache: Modulverantwortliche[r]: Deutsch, Englisch apl. Prof. Folkert Müller-Hoissen		
Angebotshäufigkeit: unregelmäßig Dauer: 1 Semester		
Wiederholbarkeit: Empfohlenes Fachsemester: ab 5		
Maximale Studierendenzahl: 10		
Bemerkungen:		

Georg-August-Universität Göttingen		6 C
Modul B.Phy.5527: Computational Cosmology		4 SWS
Lernziele/Kompetenzen:		Arbeitsaufwand:
Learning outcome: Methods and concepts relevant f	or cosmological and astrophysical	Präsenzzeit:
simulations, including techniques for N-body simulation	ns, Poisson solvers, fluid	56 Stunden
dynamics, radiation transport and feedback		Selbststudium:
core skills: Understanding of numerical methods rele	vant for cosmological simulation	124 Stunden
Lehrveranstaltungen:		
1. lecture		2 SWS
2. tutorial		2 SWS
Prüfung: term paper (max. 15 pages) or presention (approx. 30 min.) or written exam (45 min.)		
Prüfungsvorleistungen:		
30% of scores from the exercise sheets		
Prüfungsanforderungen:		
Understanding and application of numerical methods for cosmological simulations		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
keine Programming skills comparable in		
	programming languages like Fortra	
	experience with basic numercal alg	gorithms (roor
	finding, integration, interpolation)	
Sprache:	Modulverantwortliche[r]:	
Englisch Prof. Dr. Wolfram Kollatschny		

Dauer:

ab 5

1 Semester

Empfohlenes Fachsemester:

Angebotshäufigkeit:

jedes Wintersemester

Maximale Studierendenzahl:

Wiederholbarkeit:

dreimalig

40

Georg-August-Universität Göttingen		4 C
Modul B.Phy.5528: Black holes in Astrophysics and Cosmology		2 SWS
Lernziele/Kompetenzen: Learning outcome: Foundations concerning black holes in astrophysics and cosmology. The topics include properties of black holes as general relativistic spacetime solutions, models for accretion disks, observational methods and cosmological applications;		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 92 Stunden
Core skills: Basics knowledge on black holes in astrophysics and cosmology and presentation in scientific talks.		
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Referat (ca. 45 Minuten) Prüfungsanforderungen: Scientific presentation of important aspects concerning black holes in astrophysics and cosmology.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.501	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Wolfram Kollatschny	
Angebotshäufigkeit: jedes Wintersemester Dauer: 1 Semester		
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 4 - 6; Master: 1		
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		4 C
Modul B.Phy.5529: Galaxies and the Intergalactic Medium		2 SWS
Lernziele/Kompetenzen: Lernziele: Globale Eigenschaften von Galaxien und deren Interaktion mit dem intergalaktischen Medium, kosmologische Entwicklung des intergalaktischen Medium: Beobachtungen, analytische und numerische Modelle.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium:
Kompetenzen: Grundlagen und aktuelle Forschung bezüglich Galaxien und dem intergalaktischen Medium; Darstellung entsprechender Grundlagenkenntnisse in Vorträgen.		92 Stunden
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Vortrag (ca. 45 Min.) Prüfungsvorleistungen: keine Prüfungsanforderungen: Präsentation wichtiger Grundlagen sowie aktueller Forschungsergebnisse über Galaxien oder das intergalaktische Medium		
Zugangsvoraussetzungen: B.Phy.501 Einführung in die Astro- und Geophysik	Empfohlene Vorkenntnisse: Grundlagen der Astro- und Geoph	ysik
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: PD Dr. Wolfram Schmidt	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: Empfohlenes Fachsemester: ab 4		
Maximale Studierendenzahl: 25		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.553: Spezielle Themen der Astro- und Geophysik III		3 SWS
Lernziele/Kompetenzen: Lernziele: Inhalte aktueller Forschung in der Astro- und Geophysik, Vertiefung des im Wahlpflichtbereich angeeigneten Verständnisses von Methoden und Modellen. Kompetenzen: Die Studierenden sollen aktuelle Forschungsthemen verstehen und bewerten können.		Arbeitsaufwand: Präsenzzeit: 42 Stunden Selbststudium: 48 Stunden
Lehrveranstaltung: Veranstaltung aus dem Lehrangebot der Astro- und Geophysik		3 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		
Prüfungsanforderungen: Vertiefung der im Wahlpflichtbereich angeeigneten Kenntnisse in Astro- bzw. Geophysik.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: Empfohlenes Fachsemester: dreimalig		
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5530: Kosmologie		2 SWS
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Homogene isotrope Kosmologie, k	osmologische Parameterbestimmung,	Präsenzzeit:
Thermodynamik des frühen Universums, Inflation, Newtonsche Strukturentstehung,		28 Stunden
kosmischer Mikrowellenhintergrund		Selbststudium:
Kompetenzen: Physikalisches Verständnis de	er Entwicklung des Universums auf sehr	62 Stunden
großen Skalen, Kenntnis der aktuellen Fragen	der Kosmologie	
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.) Prüfungsvorleistungen: keine Prüfungsanforderungen: Physikalisches Verständnis der Entwicklung des Universums auf sehr großen Skalen, Kenntnis der aktuellen Fragen der Kosmologie		
Prüfungsanforderungen: Physikalisches Verständnis der Entwicklung d	_	
Prüfungsanforderungen: Physikalisches Verständnis der Entwicklung d Kenntnis der aktuellen Fragen der Kosmologie Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
Prüfungsanforderungen: Physikalisches Verständnis der Entwicklung d Kenntnis der aktuellen Fragen der Kosmologie Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse:	
Prüfungsanforderungen: Physikalisches Verständnis der Entwicklung d Kenntnis der aktuellen Fragen der Kosmologie Zugangsvoraussetzungen: keine Sprache:	Empfohlene Vorkenntnisse: keine Modulverantwortliche[r]:	
Prüfungsanforderungen: Physikalisches Verständnis der Entwicklung d Kenntnis der aktuellen Fragen der Kosmologie Zugangsvoraussetzungen: keine Sprache: Deutsch	Empfohlene Vorkenntnisse: keine Modulverantwortliche[r]: Prof. Dr. Jens Niemeyer	
Prüfungsanforderungen: Physikalisches Verständnis der Entwicklung d Kenntnis der aktuellen Fragen der Kosmologie Zugangsvoraussetzungen: keine Sprache:	Empfohlene Vorkenntnisse: keine Modulverantwortliche[r]:	
Prüfungsanforderungen: Physikalisches Verständnis der Entwicklung d Kenntnis der aktuellen Fragen der Kosmologie Zugangsvoraussetzungen: keine Sprache: Deutsch Angebotshäufigkeit:	Empfohlene Vorkenntnisse: keine Modulverantwortliche[r]: Prof. Dr. Jens Niemeyer Dauer:	
Prüfungsanforderungen: Physikalisches Verständnis der Entwicklung d Kenntnis der aktuellen Fragen der Kosmologie Zugangsvoraussetzungen: keine Sprache: Deutsch Angebotshäufigkeit: jedes Sommersemester	Empfohlene Vorkenntnisse: keine Modulverantwortliche[r]: Prof. Dr. Jens Niemeyer Dauer: 1 Semester	
Prüfungsanforderungen: Physikalisches Verständnis der Entwicklung d Kenntnis der aktuellen Fragen der Kosmologie Zugangsvoraussetzungen: keine Sprache: Deutsch Angebotshäufigkeit: jedes Sommersemester Wiederholbarkeit:	Empfohlene Vorkenntnisse: keine Modulverantwortliche[r]: Prof. Dr. Jens Niemeyer Dauer: 1 Semester Empfohlenes Fachsemester:	
Prüfungsanforderungen: Physikalisches Verständnis der Entwicklung d Kenntnis der aktuellen Fragen der Kosmologie Zugangsvoraussetzungen: keine Sprache: Deutsch Angebotshäufigkeit: jedes Sommersemester Wiederholbarkeit: dreimalig	Empfohlene Vorkenntnisse: keine Modulverantwortliche[r]: Prof. Dr. Jens Niemeyer Dauer: 1 Semester Empfohlenes Fachsemester:	

Georg-August-Universität Göttingen Modul B.Phy.5531: Entstehung von Sonnensystemen English title: Creation of solar systems

Lernziele/Kompetenzen:	Arbeitsaufwand:
Lernziele: Frühe Stadien der Sternentstehung und Entstehung der chemischen	Präsenzzeit:
Elemente, protoplanetare Scheiben, Kondensation von Molekülen und Mineralien,	28 Stunden
Entstehung und Migration von Planeten, extrasolare Planeten, Meteoriten, Asteroiden	Selbststudium:
und Kometen als Informationsquelle über das frühe Sonnensystem	62 Stunden
Kompetenzen: Die Studierenden sollen die grundlegenden Kenntnisse und	
Begriffe über den Aufbau und die Entstehung von Planetensystemen auf geo- und	
astrophysikalische Fragestellungen anwenden können.	

Lehrveranstaltung: Vorlesung	2 SWS
Prüfung: Mündlich (ca. 30 Minuten)	
Prüfungsanforderungen:	
Sternentstehung, Aufbau extrasolarer Planetensysteme sowie des Sonnensystems und	
ihre Entstehung, kleine Körper des Sonnensystems	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Einführung in die Astro-/Geophysik (B.Phy.501)
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Dr. Klaus Jockers
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: ab 4
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen Modul B.Phy.5532: Symmetrien und Nichtlineare Differenzialgleichungen in der Physik English title: Symmetries and Nonlinear Differential Equations in Physics

Lernziele/Kompetenzen:

Lernziele: Verständnis verschiedener Symmetriebegriffe in Zusammenhang mit gewöhnlichen und partiellen Differenzialgleichungen, insbesondere Lie-Punktsymmetrien und Berührungstransformationen, aber auch allgemeine Koordinatentransformationen und Eichtransformationen, sowie deren Relevanz in physikalischen Theorien. Anwendungsfähigkeit auf relevante Beipiele aus der Physik. Kenntnis der wichtigsten Solitonengleichungen, Lösungsmethoden, Eigenschaften exakter Lösungen, Auftreten in physikalischen Modellen.

Kompetenzen: Studenten sollen einen Überblick gewinnen hinsichtlich der Bedeutung von kontinuierlichen Symmetrien für die Untersuchung von Differenzialgleichungen und als Grundlage physikalischer Theorien. Sie sollten in der Lage sein, grundlegende mathematische Methoden auf einfache Beispiele anwenden zu können. Das Auftreten von Solitonen (lokalisierte und formstabile Wellen mit einer Art nichtlinearem Superpositionsprinzip) soll als typisch nichtlineares Phänomen (spezieller) nichtlinearer partieller Differenzialgleichungen verstanden werden. Gegebenenfalls sollte die Fähigkeit zur Nutzung von Mathematiksoftware (Mathematica oder Maple) in diesem Kontext angestrebt werden.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 34 Stunden

Lehrveranstaltung: Symmetrien und Nichtlineare Differenzialgleichungen in der Physik

Angebotshäufigkeit: jedes Wintersemester

4 SWS

Prüfung: Klausur (120 Minuten)

Prüfungsanforderungen:

Symmetriebegriffe, Anwendungsfähigkeit entsprechender Methoden in einfachen Beispielen, spezielle mathematische Methoden der Theorie integrabler Systeme, Beispiele von Solitonen-Gleichungen und deren Auftreten in physikalischen Systemen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Differenzial- und Integralrechnung mehrerer Veränderlicher, Grundlagen der komplexen Analysis, Grundkenntnisse der Mechanik und Elektrodynamik
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: apl. Prof. Folkert Müller-Hoissen
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: ab 4
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Bachelor und Master

Schwerpunkt Astro-/Geophysik, Biophysik/Komplexe Systeme; Kern-/Teilchenphysik

Georg-August-Universität Göttingen 6 C 4 SWS Modul B.Phy.5533: Solar and Stellar Activity English title: Solar and Stellar Activity Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Grundlagen des Aufbaus der Sonne und sonnenähnlicher Sterne, Präsenzzeit: Entstehung von Magnetfelder und magnetischer Aktivität, Physik der Chromosphäre und 56 Stunden Korona, Dynamomechanismen, Entwicklung stellarer Aktivität mit stellaren Parametern, Selbststudium: Star-Planet-Interaction 124 Stunden Kompetenzen: Verständnis der Entwicklung der Sonne und sonnenähnlicher Sterne und ihrer Aktivität. Lehrveranstaltung: Vorlesung Prüfung: Klausur (ca. 120 Min.) oder mdl. Prüfung (ca. 30Min.) Prüfungsanforderungen: Kenntnis des Aufbaus der Sonne und sonnenähnlicher Sterne, Entstehung von Magnetfelder und magnetischer Aktivität, Physik der Chromosphäre und Korona, Dynamomechanismen, Entwicklung stellarer Aktivität mit stellaren Parametern, Star-Planet-Interaction **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine Einführung in die Geo- und Astrophysik Sprache: Modulverantwortliche[r]: Prof. Dr. Ansgar Reiners Deutsch, Englisch Angebotshäufigkeit: Dauer: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalig ab 6 Maximale Studierendenzahl: Bemerkungen:

Bachelor und Master (Schwerpunkt Astro-/Geophysik)

3 C Georg-August-Universität Göttingen 2 SWS Modul B.Phy.5535: Fluid dynamics, nonlinear dynamics and turbulence English title: Fluid dynamics, nonlinear dynamics and turbulence Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Kinetische Theorie, relativistische und nichtrelativistische kompressible Präsenzzeit: Fluiddynamik, allgemeine Aspekte nichtlinearer Systeme, Turbulenz als nichtlineares 28 Stunden Phänomen in der Fluiddynamik, Überschallturbulenz, Skalengesetze und Intermittenz Selbststudium: 62 Stunden Kompetenzen: Verständnis der kinetischen und fluiddynamischen Beschreibung von Gasen, Anwendung von verschiedenen Näherungen (relativistisch/nichtrelativistisch, viskos/ideal, etc.), Zugang zur Theorie der Turbulenz, Verständnis des Ursprungs von Skalengesetzen 2 SWS Lehrveranstaltung: Vorlesung Inhalte: Kinetische Theorie, relativistische und nichtrelativistische kompressible Fluiddynamik, allgemeine Aspekte nichtlinearer Systeme, Turbulenz als nichtlineares Phänomen in der Fluiddynamik, Überschallturbulenz, Skalengesetze und Intermittenz Prüfung: Mündlich (ca. 30 Minuten) Prüfungsanforderungen: Grundlagen der kinetischen Theorie, fluiddynamische Beschreibung (insbesondere kompressible Navier-Stokes-Gleichungen), Theorie der Turbulenz (allgemeine Grundlagen, Kolmogorov-Theorie und Erweiterungen/Modifikationen) Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine Theoretische Physik Sprache: Modulverantwortliche[r]: PD Dr. Wolfram Schmidt Englisch Angebotshäufigkeit: Dauer: jedes Sommersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalig Bachelor: 6; Master: 1 - 3 Maximale Studierendenzahl: nicht begrenzt Bemerkungen:

Schwerpunkt Astro-/Geophysik

Präsenzzeit:

28 Stunden
Selbststudium:

62 Stunden

Lernziele/Kompetenzen:	Arbeitsaufwand:
Modul B.Phy.5601: Theoretical and Computational Neuroscience I	2 3 7 7 3
Georg-August-Universität Göttingen	3 C 2 SWS

Lernziele: Grundlagen der Membranbiophysik, Bifurkationen anregbarer System, Verständnis der Grundlagen der Modellierungsansätze der Neurophysik, kollektive Zustände spikender Neuronaler Netzwerke, insbesondere Synchonizität, Balanced State, Phase-Locking und diesen Zuständen unterliegenden lokalen und Netzwerkeigenschaften: Netzwerktopologie, Delays, inhibitorische und exzitatorische Kopplung, sparse random networks

Kompetenzen: Methoden und Methodenentwicklung für die Analyse hochdimensionaler Modelle ratenkodierter Einheiten in Feldmodellen; Handhabung von Bifurkationsszenarien und zugehörigen Instabilitäten

Lehrveranstaltung: Collective Dynamics Biological Neural Networks I (Vorlesung)

Angebotshäufigkeit: jedes Sommersemester

Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder

Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit).

Prüfungsanforderungen:

Das vertiefte Verstaendnis genannter Themen: TCN I: biophysikalische Grundlagen neuronaler Anregbarkeit, mathematische GRundlagen neuronaler Anregbarkeit, input-output Beziehungen und Bifurkationen, Klassifizierung, Existenz, Stabilitaet und Koexistenz sychroner und asynchroner Zustaende in spikenden neuronalen Netzwerken

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache:	Modulverantwortliche[r]:
Englisch	Prof. Dr. Andreas Tilgner
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
dreimalig	Bachelor: 4 - 6; Master: 1
Maximale Studierendenzahl:	
90	

dreimalia

90

Maximale Studierendenzahl:

3 C Georg-August-Universität Göttingen 2 SWS Modul B.Phy.5602: Theoretical and Computational Neuroscience II Arbeitsaufwand: Lernziele/Kompetenzen: Lernziele: Ratenmodelle von Einzelneuronen, Feldansatz in der theoretischen Präsenzzeit: Neurophysik, Grundlagen der Bifurkationen anregbarer System, Verständnis der 28 Stunden Selbststudium: Grundlagen der Modellierungsansätze der Neurophysik, Zusammenhang diskrete/ kontinuierliche Modelle, kollektive Zustände ein- und zweidimensionaler Feldmodelle, 62 Stunden insbesondere ring model of feature selectivity, orientation preference maps. Kompetenzen: Methoden und Methodenentwicklung für die Analyse spikender neuronaler Netzwerke mit und ohne Delays, Handhabung von Bifurkationsszenarien und zugehörigen Instabilitäten 2 SWS Lehrveranstaltung: Collective Dynamics Biological Neural Networks II (Vorlesung) Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit). Prüfungsanforderungen: Das vertiefte Verständnis genannter Themen: TCN II: Grundlagen neuronaler Anregbarkeit, input-output Beziehungen bei Einzelneuronen, eindimensionale Feldmodelle (Feature Selectivity, Contrastinvariance), zweidimensionale Feldmodell (Zusammenwirken von kurz- und langreichweitigen Verbindungen sowie lokaler Nichtlinearitaeten), Amplitudengleichungen und ihre Loesungen. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Sprache: Modulverantwortliche[r]: Englisch Prof. Dr. Andreas Tilgner Angebotshäufigkeit: Dauer: jedes Sommersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:**

Bachelor: 4 - 6: Master: 1

Georg-August-Universität Göttin		3 C 2 SWS	
Modul B.Phy.5603: Einführung in die Laserphysik			
Lernziele/Kompetenzen:		Arbeitsaufwand:	
Lernziele: Entwicklung des Laserprinzips aus einfachen Grundbegriffen: Licht		Präsenzzeit:	
und Materie, Laserprinzip, Ratengleichungen, Lasertypen, optische Resonatoren,		28 Stunden	
ausgewählte Thermen.		Selbststudium:	
Kompetenzen: Die Studenten sollten grui	ndlegende Kenntnisse auf dem Gebiet der	62 Stunden	
Elektrizitätslehre und der Optik besitzen.			
Lehrveranstaltung: Vorlesung		2 SWS	
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.)			
Prüfungsanforderungen: Laserprinzip, Ratengleichungen, Funktionsweise von Lasern (Festkörper, Farbstoffl, Gas, Halbleiter und Freier-Elektronen), Wellengleichung, Strahlen- und Wellenoptische Behandlung von Resonatoren.		•	
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse:	· ·	
Sprache:	Modulverantwortliche[r]:		
Deutsch	Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit:	Dauer:		
jedes Sommersemester	1 Semester	1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:		
Maximale Studierendenzahl:			
20			

Georg-August-Universität Göttingen Modul B.Phy.5604: Foundations of Nonequilibrium Statistical Physics

Lernziele/Kompetenzen:

Lernziele: Invariant densities of phase-space flows with local and global conservation of phase-space volume; reduction of a microscopic dynamics to a stochastic description, to kinetic theory and to hydrodynamic transport

equations; fluctuation theorems; Green-Kubo relations; local equilibrium; entropy balance and entropy production; the second law; statistical physics of equilibrium processes as a limit of a non-equilibrium processes;

applications in nanotechnology and biology: small systems far from thermodynamic equilibrium.

Kompetenzen: The students will come to know modeling approaches for a statistical-physics description of small systems far from thermodynamic equilibrium: in homework problems, that will be presented in a subsequent

problems, that will be presented in a subsequent symposium, this will be highlighted by explicitly working out examples in nanotechnology and biology.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

62 Stunden

Lehrveranstaltung: lecture

2 SWS

Prüfung: Presentation (approx. 30 min) and handout (max. 4 pages)

Prüfungsanforderungen:

Modeling of an experimental system by a Master equation, kinetic theory or Non-Equilibrium Molecular Dyanamics with discussion of the appropriate fluctuation relations and/or the relation of models on different levels of coarse graining.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.203
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1
Maximale Studierendenzahl: 20	

Georg-August-Universität Göttingen Modul B.Phy.5605: Grundlagen Computational Neuroscience

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele: Einführung in die verschiedenen Gebiete der Computational Neuroscience: Modelle einzelner Nervenzellen, kleine Netzwerke, Implementation aller gängigen einfachen sowie komplexeren Rechenoperationen mit wenigen Neuronen

Aspekte sensorischer Signalverarbeitung (Neuronen als "Filter"). Enstehung topographischer Abbildungen ("Landkarten") sensorischer Modalitäten (z.B. Sehen, Hören) im Gehirn. Erste Modelle zur Hirnentwicklung, Grundlagen von Adaptivität und Lernen. Berechenbarkeit von kognitiven Eigenschaften.

Kompetenzen: Gewinn einer Übersicht in die verschiedenen Gebiete der Computational Neuroscience; Erster Einblick und erstes Erfassen der Komplexität von Hirnfunktion in seiner ganzen Bandbreite; Erlernen des Zusammenhangs und Wechselspiels zwischen Wahl der mathematischen Methode und dem modellierten Substrat (Synapse, Nervenzelle, Netzwerk, etc.); Realisierung verschiedener Modellebenen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden

Lehrveranstaltung: Vorlesung

2 SWS

Prüfung: Klausur (90 Minuten)

Prüfungsanforderungen:

Gewinn einer Übersicht in die verschiedenen Gebiete der Computational Neuroscience; Erster Einblick und erstes Erfassen der Komplexität von Hirnfunktion in seiner ganzen Bandbreite; Erlernen des Zusammenhangs und Wechselspiels zwischen Wahl der mathematischen Methode und dem modellierten Substrat (Synapse, Nervenzelle, Netzwerk, etc.); Realisierung verschiedener Modellebenen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Inf.1451
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3
Maximale Studierendenzahl: 50	

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5606: Mechanik der Zelle English title: Mechanics of the cell	2 SWS	
Lernziele/Kompetenzen: Lernziele: Polymerphysik und Polymernetzwerke, Membrane, Physik auf kleiner Längenskala, Zellmechanik, molekulare Motoren, Zellmotilität, Dynamik in der Zelle Kompetenzen: Die Studierenden sollen grundlegende Begriffe der zellulären Mechnik beherrschen und selbständig auf ausgewählte Fragestellungen anwenden können. Lehrveranstaltung: Vorlesung		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Prüfung: Mündliche Prüfung (ca. 15 min.) oder		
Prüfungsanforderungen: Polymerphysik und Polymernetzwerke, Membrand Zellmechanik, molekulare Motoren, Zellmotilität, E Zugangsvoraussetzungen: keine		
Sprache: Deutsch, Englisch	keine Modulverantwortliche[r]: Prof. Dr. Sarah Köster	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3	
Maximale Studierendenzahl: nicht begrenzt		
Bemerkungen: Schwerpunkt: BK, FM		

Georg-August-Universität Göttingen		4 C
Modul B.Phy.5607: Mechanik und Dynamik des Zytoskeletts		2 SWS
English title: Mechanics and dynamics of the cytoskeleton		
Lernziele/Kompetenzen: Lernziele: Polymerphysik und Polymernetzwerke, Membrane, Physik auf kleiner Längenskala, Zellmechanik, molekulare Motoren, Zellmotilität, Dynamik in der Zelle Kompetenzen: Die Studierenden sollen anhand eines oder mehrerer Publikationen oder Buchkapitel ausgewählte Fragestellungen erarbeiten und in einem Seminarvortrag vorstellen.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 92 Stunden
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Mündliche Prüfung (ca. 15 min.) oder Seminarvortrag (ca. 30 min.)		
Prüfungsanforderungen: Polymerphysik und Polymernetzwerke, Membrane, Physik auf kleiner Längenskala, Zellmechanik, molekulare Motoren, Zellmotilität, Dynamik in der Zelle		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Sarah Köster	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: ab 4	
Maximale Studierendenzahl: 20		
Bemerkungen: Schwerpunkt: BK, FM		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5608: Mikro- und Nanofluidik		2 SWS
English title: Micro- and Nanofluidics		
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Einführung in die Hydrodynamik auf d	der Mikro- und Nanoskala und ihre	Präsenzzeit:
Anwendung in der Biologie, Biophysik, Materialw	vissenschaften und Biotechnologie;	28 Stunden
Benetzung und Kapillarität, "Leben" bei kleinen F	Reynoldszahlen, "weiche" Lithographie,	Selbststudium:
Fluidik in der Biologie und Biophysik, "Lab on a C Gleichung	62 Stunden	
Kompetenzen: Die Studierenden sollen grundler auf kleinen Skalen beherrschen und selbständig anwenden können.		
Lehrveranstaltung: Vorlesung	2 SWS	
Prüfung: mündliche Prüfung (ca. 15 Min.) ode		
Prüfungsanforderungen: Fluiddynamik		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	keine	
Sprache:	Modulverantwortliche[r]:	
Deutsch, Englisch	Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit:	Dauer:	
unregelmäßig	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
dreimalig	Bachelor: 4 - 6; Master: 1 - 3	
Maximale Studierendenzahl:		
nicht begrenzt		

Georg-August-Universität Göttingen		6 C
Modul B.Phy.5609: Moderne Optik (Optik English title: Modern optics	4 SWS	
Lernziele/Kompetenzen: Lernziele: Vermittlung der Grundlagen der Modernen Optik, insbesondere der Fourieroptik, Quantenoptik, Abbildungstheorie, Spektroskopie, Kurzzeitoptik und Röntgenphysik Kompetenzen: Fähigkeit, für gegebenes optisches Problem die richtige Modellebene zu wählen, Verständnis Wellengleichungen und ihre Lösungen, Verständnis von Spektroskopie und Signalanalyse, Kompetenz in der Interpretation experimenteller Ergebnisse, Kompetenz in der Planung optischer Experimente		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltung: Vorlesung		4 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (Seminarvortrag (ca. 30 Min. 2 Wochen Vorbereitur		
Prüfungsanforderungen: Grundlagen der Modernen Optik, insbesondere der Forabbildungstheorie, Spektroskopie, Kurzzeitoptik und F		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.102, B.Phy.103, B.Phy.104	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: mind. alle 2 jahre	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 6; Master: 1 - 2	
Maximale Studierendenzahl: 50		

Georg-August-Universität Göttingen		6 C	
Modul B.Phy.561: Spezielle Themen der Biophysik und Physik komplexer Systeme I		6 SWS	
Lernziele/Kompetenzen: Lernziele: Inhalte aktueller Forschung in der Biophys	Arbeitsaufwand: Präsenzzeit:		
Vertiefung des im Wahlpflichtbereich angeeigneten Vom Modellen.		84 Stunden Selbststudium:	
Kompetenzen: Die Studierenden sollen aktuelle Forsbewerten können.	Kompetenzen: Die Studierenden sollen aktuelle Forschungsthemen verstehen und		
Lehrveranstaltung: Veranstaltung aus dem Lehrankomplexer Systeme	ngebot der Biophysik und Physik	6 SWS	
	Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		
Prüfungsanforderungen: Vertiefung der im Wahlpflichtbereich angeeigneten Kernen Physik komplexer Systeme			
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine keine			
Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Andreas Tilgner			
Angebotshäufigkeit: jedes Semester			
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:		
Maximale Studierendenzahl: 90			

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5611: Optische Spektroskopie und Mikroskopie		2 SWS
Lernziele/Kompetenzen: Lernziele: Grundlagen der Physik der Fluoreszenz un		
Fluoreszenzanisotropie, Fluoreszenzlebenszeit, Fluor	•	Präsenzzeit: 28 Stunden
Grundlagen der Fluoreszenzmikroskopie, Beugungsgi	• • •	Selbststudium:
Weitfeld- und Konfokalmikroskopie, Superresolutions-		62 Stunden
Kompetenzen: Die Studenten sollen mit den Grundla der Fluoreszenzspektroskopie und -mikroskopie vertra	<u> </u>	
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündlich (ca. 30 Minuten)		
Prüfungsanforderungen: Verständnis der Physik der Fluoreszenz und der verschiedenen Verfahren der Fluoreszenzspektroskopie und -mikroskopie.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Modulverantwortliche[r]:		
Deutsch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: Dauer:		
unregelmäßig 1 Semester		
Wiederholbarkeit: Empfohlenes Fachsemester:		
dreimalig Bachelor: 4 - 6; Master: 1		
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5612: Physics of Extreme Events		2 SWS
Lernziele/Kompetenzen: Lernziele: Grundlagen der Physik extremer Events, analytische und numerische Methoden für die statistische Analyse und Vorhersage extremer Events, Anwendung der Theorie extremer Events u. a. in Wellensystemen, Biophysik und Ökonophysik. Kompetenzen: Entwicklung und Handhabung statistischer Modelle, die extreme Events beschreiben; analytische und numerische Methoden für deren Analyse und Vorhersage.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Seminarvortrag (ca. 60 Min.) inkl. Diskus	sion	
Prüfungsanforderungen: Analytische und numerische Methoden für die statistische Analyse und Vorhersage extremer Events		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Modulverantwortliche[r]: Englisch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: unregelmäßig Dauer: 1 Semester		
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 4 - 6; Master: 1		
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttinge	n	6 C
Modul B.Phy.5613: Physik der weichen kondensierten Materie English title: Physics of soft condensed matter		4 SWS
Lernziele/Kompetenzen: Lernziele: Intermolekulare Wechselwirkungen, Phasenübergänge, Grenzflächenphysik, amphiphile Moleküle, Kolloide, Polymere, Polymernetzwerke, Gele, Fluiddynamik, Selbstorganisation Kompetenzen: Die Studierenden sollen grundlegende Begriffe der Physik der weichen kondensierten Materie beherrschen und selbständig auf ausgewählte Fragestellungen anwenden können.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltungen: 1. Vorlesung 2. Übung		3 SWS 1 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.)		
		·
Prüfungsanforderungen: Intermolekulare Wechselwirkungen, Phasenü amphiphile Moleküle, Kolloide, Polymere, Poly Selbstorganisation		
Intermolekulare Wechselwirkungen, Phasenü amphiphile Moleküle, Kolloide, Polymere, Pol		und B.Phy.503
Intermolekulare Wechselwirkungen, Phasenü amphiphile Moleküle, Kolloide, Polymere, Polyselbstorganisation Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse: B.Phy.502, B.Phy.503 B.Phy.502 "Einführung in die Biop	und B.Phy.503
Intermolekulare Wechselwirkungen, Phasenü amphiphile Moleküle, Kolloide, Polymere, Poly Selbstorganisation Zugangsvoraussetzungen: keine Sprache:	Empfohlene Vorkenntnisse: B.Phy.502, B.Phy.503 B.Phy.502 "Einführung in die Biop Physik komplexer Systeme" oder/ "Einführung in die Festkörper- und	und B.Phy.503
Intermolekulare Wechselwirkungen, Phasenü amphiphile Moleküle, Kolloide, Polymere, Poly Selbstorganisation Zugangsvoraussetzungen: keine Sprache: Deutsch, Englisch Angebotshäufigkeit:	Empfohlene Vorkenntnisse: B.Phy.502, B.Phy.503 B.Phy.502 "Einführung in die Biop Physik komplexer Systeme" oder/ "Einführung in die Festkörper- und Modulverantwortliche[r]: Prof. Dr. Sarah Köster Dauer:	und B.Phy.503

Schwerpunkt: BK, FM

Georg-August-Universität Göttingen		5 C 2 SWS
Modul B.Phy.5614: Proseminar Computational Neuroscience/Neuro-informatik		2 5005
Lernziele/Kompetenzen: Lernziele: Vertiefung der Kenntnisse aus der Computational Neuroscience / Neuroinformatik durch eigenständige Ausarbeitung eines Themas. Kompetenzen: Erlernen von Methoden der Präsentation von Themen aus der Informatik. Erwerb von Fähigkeiten im Umgang mit (englischsprachiger) Fachliteratur, Präsentation eines informatischen Themas, Führung einer wissenschaftlichen Diskussion.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 122 Stunden
Lehrveranstaltung: Proseminar		2 SWS
Prüfung: Vortrag (ca. 45 Min.) mit schriftlicher Ausarbeitung (max. 7 S.)		
Prüfungsanforderungen: Nachweis der erworbenen Kenntnisse und Kompetenzen zum Umgang mit wissenschaftlicher Literatur aus dem Gebiet der Computational Neuroscience/ Neuroinformatik unter Anleitung durch Vortrag und Ausarbeitung.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: B.Inf.1401		
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5615: Biologie und Biochemie für Physiker		2 SWS
	<u> </u>	
Lernziele/Kompetenzen:	"hardistanta Oa allana anda	Arbeitsaufwand:
Lernziele : Aufbau und Erweiterung von Kenntnissen über biologische Grundlagen der		Präsenzzeit: 28 Stunden
Biophysik.		Selbststudium:
Kompetenzen: Die Studenten sollen grundlegende K		62 Stunden
Funktion von Makromolekülen in der Zelle, die wichtig	, , , , , , , , , , , , , , , , , , , ,	oz otanach
über die Signaltransduktion und biologische Informati	onsverarbeitung erwerben.	
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (120 Minuten)		
Prüfungsanforderungen: Fundierte biologische Kenntnisse als Grundlage für die Bearbeitung von Fragestellungen der Biophysik		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
keine	keine	
Sprache: Modulverantwortliche[r]:		
Deutsch, Englisch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: Dauer:		
jedes Sommersemester	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
dreimalig	Bachelor: 4 - 6; Master: 1	
Maximale Studierendenzahl:		
35		

Georg-August-Universität Götting	ien	6 C
Modul B.Phy.5616: Biophysik der Zelle - Physik auf kleinen Skalen English title: Biophysics of the cell - physics on small scales		4 SWS
Lernziele/Kompetenzen: Lernziele: Physikalische Prinzipien in Zellen: Adhäsion, Bewegung, zelluläre Kommunikation, Signaltransduktion, Biopolymere und deren Netzwerke, Nervenleitung, Extrazelluläre Matrix, Experimentelle Methoden, Aktuelle Forschung Kompetenzen: Die Studierenden sollen grundlegende Begriffe der Zell-Biophysik beherrschen und selbständig auf ausgewählte Fragestellungen anwenden können.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltungen: 1. Vorlesung 2. Übung		3 SWS 1 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Zell-Biophysik		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.502 B.Phy.502 "Einführung in die Biop komplexer Systeme	hysik und Physik
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Sarah Köster	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: nicht begrenzt		
Bemerkungen: Schwerpunkt: BK, FM		

Georg-August-Universität Göttingen		4 C
Modul B.Phy.5617: Seminar zur Physik de Materie	2 SWS	
Lernziele/Kompetenzen: Lernziele: Intermolekulare Wechselwirkungen, Phasenübergänge, Grenzflächenphysik, amphiphile Moleküle, Kolloide, Polymere, Polymernetzwerke, Gele, Fluiddynamik, Selbstorganisation Kompetenzen: Die Studierenden sollen anhand eines oder mehrerer Publikationen oder Buchkapitel ausgewählte Fragestellungen erarbeiten und in einem Seminarvortrag vorstellen.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 92 Stunden
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Seminarvortrag (ca. 30 Min.)		3 C
Prüfungsanforderungen: Intermolekulare Wechselwirkungen, Phasenübergänge, Grenzflächenphysik, amphiphile Moleküle, Kolloide, Polymere, Polymernetzwerke, Gele, Fluiddynamik, Selbstorganisation		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: B.Phy.502, B.Phy.503		
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		4 C
Modul B.Phy.5618: Seminar zur Biophysik der Zelle		2 SWS
English title: Seminar to Biophysics of the cell -		
Lernziele/Kompetenzen: Lernziele: Physikalische Prinzipien in Zellen: Adhäsion, Bewegung, zelluläre Kommunikation, Signaltransduktion, Biopolymere und deren Netzwerke, Nervenleitung, Extrazelluläre Matrix, Experimentelle Methoden, Aktuelle Forschung Kompetenzen: Die Studierenden sollen anhand eines oder mehrerer Publikationen oder Buchkapitel ausgewählte Fragestellungen erarbeiten und in einem Seminarvortrag		Arbeitsaufwand Präsenzzeit: 28 Stunden Selbststudium: 92 Stunden
vorstellen.		
Lehrveranstaltungen: 1. Übung		
2. Vorlesung		
Prüfung: Seminarvortrag (ca. 30 Min.)		3 C
Prüfungsanforderungen: Physikalische Prinzipien in Zellen		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.502 "Einführung in die Biophysik und Physkomplexer Systeme	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Sarah Köster	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: ab 4	
Maximale Studierendenzahl: 20		
Bemerkungen:	•	

4 C Georg-August-Universität Göttingen 2 SWS Modul B.Phy.5619: Seminar zur Mikro- und Nanofluidik English title: Seminar on Micro- and Nanofluidics

Lernziele/Kompetenzen: Lernziele: Einführung in die Hydrodynamik auf der Mikro- und Nanoskala und ihre Anwendung in der Biologie, Biophysik, Materialwissenschaften und Biotechnologie; Benetzung und Kapillarität, "Leben" bei kleinen Reynoldszahlen, "weiche" Lithographie,

Fluidik in der Biologie und Biophysik, "Lab on a Chip"-Anwendungen; Navier-Stokes-

Gleichung

Kompetenzen: Die Studierenden sollen anhand eines oder mehrerer Publikationen oder Buchkapitel ausgewählte Fragestellungen erarbeiten und in einem Seminarvortrag vorstellen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

92 Stunden

2 SWS Lehrveranstaltung: Seminar Prüfung: Seminarvortrag (ca. 30 Min.) 3 C

Prüfungsanforderungen:

Hydrodynamik auf der Mikro- und Nanoskala und ihre Anwendung in der Biologie, Biophysik, Materialwissenschaften und Biotechnologie; Benetzung und Kapillarität, "Leben" bei kleinen Reynoldszahlen, "weiche" Lithographie, Fluidik in der Biologie und Biophysik, "Lab on a Chip"-Anwendungen; Navier-Stokes-Gleichung

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse:
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3
Maximale Studierendenzahl: 20	

Georg-August-Universität Göttingen		6 C
Modul B.Phy.562: Spezielle Themen der Biophysik und Physik komplexer Systeme II		6 SWS
Lernziele/Kompetenzen: Lernziele: Inhalte aktueller Forschung in der Biophysi Vertiefung des im Wahlpflichtbereich angeeigneten Ve Modellen. Kompetenzen: Die Studierenden sollen aktuelle Forsbewerten können.	erständnisses von Methoden und	Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: Veranstaltung aus dem Lehran komplexer Systeme IIa	ngebot der Biophysik und Physik	3 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		3 C
Lehrveranstaltung: Veranstaltung aus dem Lehrangebot der Biophysik und Physik komplexer Systeme IIb		3 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		3 C
Prüfungsanforderungen: Vertiefung der im Wahlpflichtbereich angeeigneten Kenntnisse in der Biophysik und der Physik komplexer Systeme.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: jedes Semester Dauer: 2 Semester		
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 90		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5620: Sportphysik		2 SWS
Lernziele/Kompetenzen:	Arbeitsaufwand:	
Lernziele: Modellierung komplexer physikalischer Zu	sammenhänge: von der	Präsenzzeit:
Anschauung zum Feststellen der relevanten physikali	schen Grundlagen, Aufstellen	28 Stunden
eines geeigneten Modells und Diskussion der Lösung	en; Literatur-Recherche	Selbststudium:
Kompetenzen: Die Studenten lernen Literatur zu suc	hen und kritisch zu bewerten.	62 Stunden
Sie erwerben grundlegende Fertigkeiten in der Model	bildung und in der Diskussion	
nichtlinearer Partialgleichungen und/oder partieller Di	fferentialgleichungen.	
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Seminarvortrag (ca. 30 Min.) mit Handou	t (max. 4 S.)	
Prüfungsanforderungen: Modellierung eines komplexen physikalischen Zusammenhanges aus der Sportphysik; gegebenenfalls unter Berücksichtigung und kritischer Diskussion der bestehenden Literatur.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
keine B.Phy.201		
Sprache: Modulverantwortliche[r]:		
Deutsch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: Dauer:		
unregelmäßig	Imäßig 1 Semester	
Wiederholbarkeit: Empfohlenes Fachsemester:		
dreimalig Bachelor: 3 - 6; Master: 1		
Maximale Studierendenzahl:		
22		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5621: Stochastic Processes		2 SWS
Lernziele/Kompetenzen: Lernziele: Random Walks, Raumzeitliche Ausbreitungsmodelle (von Information und Epidemien), Entropie-Konzepte, Informationstheorie zur Beschreibung von stochastischen Prozessen, Markov-Ketten, Fokker- Planck-Formalismus		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Kompetenzen : Die Studenten sollen die grundlegenden Begriffe von stochastischen Prozessen auf Fragestellungen anweden können, die im Grenzgebiet von Biologie, Physik und Ökonomie liegen.		62 Stunden
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Seminarvortrag (ca. 60 Min.) inkl. Diskussion		
Prüfungsanforderungen: Informationstheorie, Markov-Ketten, Fokker-Planck-Formalismus		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Sommersemester		
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1	
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5622: Weiterführende Optik		2 SWS
Lernziele/Kompetenzen: Lernziele: Fortgeschrittene Themen der Optik mit Schwerpunkt auf Mikroskopie und Spektroskopie: Propagation von EM Wellen und skalare Beugungstheorie, Kohärenz, Interferometrie, Absorption und moderne Spektroskopie, Fluoreszenz, Mikroskopie Grundlagen, Mikroskopie höchste Auflösung Kompetenzen: Die Studenten sollten grundlegende Kenntnisse auf dem Gebiet der Elektrizitätslehre und der Optik besitzen.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (30 Min.) oder mündliche Prüfun	g (ca. 30 Min.)	
Prüfungsanforderungen: Wellengleichung, Brechung, Skalare Beugungstheorie, Kohärenz, Methoden der Interferometrie, Methoden der Spektroskopie, Fluoreszenz, Grundlagen der Mikroskopie, Methoden zur Umgehung der Beugungslimitierung.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: Empfohlenes Fachsemester: dreimalig		
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen		6 C
Modul B.Phy.5623: Theoretische Biophysik		4 SWS
Lernziele/Kompetenzen: Lernziele: Wahrscheinlichkeiten und Stochastische Differentialgleichungen Fokker- Planck-Gleichung, Fluktuations-Dissipations-Theoreme, Stochastische Resonanz, Thermische Ratschen, Polymere und Membrane, Ligand-Rezeptor-Wechselwirkung, Proteinfaltung, Zelladhäsion, Hydrodynamik in und um die Zelle, Elastohydrodynamik weicher und biologischer Materie, Populationsdynamik, Evolutionsmodelle.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Kompetenzen: Die Studenten sollen fundamentale theoretische Kenntnisse über stochastische Prozesse mit Anwendungen im Bereich der Biophysik von Biomolekülen, Zellen, und Populationen erhalten.		
Lehrveranstaltung: Vorlesung mit Selbststudium l	Literatur	4 SWS
Prüfung: Mündlich (ca. 30 Minuten)		
Prüfungsanforderungen: Ableiten fundamentaler Beziehungen stochastischer Differentialgleichungen, Ableitung von analytischen und Näherungs-Lösungen der verschiedenen behandelten Probleme.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse:	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1	
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen		3 C 2 SWS
Modul B.Phy.5624: Introduction to Theoretical Neuroscience		2 5 7 7 5
Lernziele/Kompetenzen: Lernziele: Elementare Kenntnisse von Aufbau, Biophysik und Funktion von Nervenzellen, Probabilistischer Analyse sensorischer Codierung, einfacher Modelle zur Dynamik und Informationsverarbeitung in Netzwerken biologischer Neurone, Modellierung der biophysikalischen Grundlagen von Lernprozessen.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Kompetenzen: Die Studierenden sollen lernen grundlegenden Begriffe Modellvorstellungen und mathematische Methoden der theoretischen Physik neuronaler Systeme zu verstehen und anzuwenden.		
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Vortrag (ca. 60 Min.)		
Prüfungsanforderungen: Elementare Kenntnisse von Aufbau, Biophysik und Funktion von Nervenzellen. Modellierung der biophysikalischen Grundlagen von Lernprozessen		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine keine		
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
ngebotshäufigkeit: des Sommersemester Dauer: 1 Semester		
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 4 - 6; Master: 1		
Maximale Studierendenzahl: 20		

Geowissenschaftler)

Coorg / tagaot Cinvoloitat Cottingon	6 C
Modul B.Phy.5625: Röntgenpyhsik	4 SWS

Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: physikalischen Grundlagen von Streuexperimenten zur Bestimmung von Präsenzzeit: Struktur und Dynamik in kondensierter Materie und Biophysik, Charakterisierung 56 Stunden von Struktur durch Korrelationsfunktionen, Elementaranregungen, Wellenoptik, Selbststudium: Experimentelle und instrumentelle Umsetzung, Röntgenoptik und Röntgenmikroskopie, 124 Stunden Röntgenquellen Kompetenzen: - Kompetenz bei der Vorbereitung und Planung von Experimenten - Kompetenz zur Durchführung von Messzeiten an Großforschungseinrichtungen (Photonen, Neutronen) - Verständnis der Funktion von Großforschungseinrichtungen und Vorbereitung eigener späterer Arbeit dort als Nutzer - Verständnis für die Funktion und Bedeutung der Kristallographie in Materialwissenschaft und Biowissenschaften - Fähigkeit, den Zusammenhang zwischen Experiment und Theorie am Beispiel von Streuexperimenten zu erkennen - Kompetenz in den physikalischen Grundlagen des Strahlenschutzes - Fähigkeit, physikalische Experimentiermethoden für Wissenschaftler anderer Disziplinen (Biologen, Chemiker, Materialwissenschaftler,

Lehrveranstaltung: Vorlesung	4 SWS
Prüfung: Klausur (120 min.) oder mündliche Prüfung (ca. 30 min.) oder	
Seminarvortrag (ca. 30 min., 2 Wochen Vorbereitungszeit)	
Prüfungsvorleistungen:	
keine	
Prüfungsanforderungen:	
Aufgaben aus dem genannten Teilgebiet quantitativ lösen	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	Elektrodynamik (Physik II), Optik u. Wellenlehre (Physik III), Quantenmechanik (Physik IV) und
	Theorie-Vorlesung
Sprache:	Modulverantwortliche[r]:
Deutsch, Englisch	Prof. Dr. Tim Salditt
Angebotshäufigkeit:	Dauer:
mind. alle 2 jahre	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:

dreimalig	ab 6
Maximale Studierendenzahl: nicht begrenzt	
Bemerkungen: Schwerpunkt: alle	

Georg-August-Universität Göttingen Modul B.Phy.5628: Pattern Formation 6 C 4 SWS

Lernziele/Kompetenzen:

Lernziele: Spatial patterns such as stripes or spots emerge in many physical systems, biology and beyond. This course will cover the mechanisms and most common examples of such patterns. We shall show how broad classes of nonlinear dynamical systems are related in terms of non-dimensional groups, and symmetries. Linear stability theory will be introduced to demonstrate the onset of emergent features, and amplitude equations will be derived around these instabilities to describe the rules of pattern selection (like spots or stripes). Finally, the significance of defects and their dynamics will be explored. Model systems such as convection cells, waves in excitable tissue, wrinkling, reaction-diffusion patterns and beyond will be introduced. Additional context and related questions of current research will be covered in talks by members of the Göttingen Research Campus.

Kompetenzen: The students will learn how to approach the study of natural patterns in nonlinear systems from a rigorous physical perspective. They will learn how to identify the conditions for the onset of a pattern, and to analyse pattern selection and stability. In homework problems, they will develop a familiarity with the principles of pattern formation, and apply these to a broad range of situations, from the large-scale structure of the universe, to a leopard's spots and flux tubes in superconductors. Students will also perform an in-depth investigation on a particular topic of their choice, and present this topic during class.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltungen: 1. lecture 2 SWS 2 SWS

Prüfung: presentation (approx. 45 min) and handout (max. 4 pages) Prüfungsanforderungen:

Modeling of an experimental system by identifying appropriate dimensionless variables; determining the stability threshold; deriving appropriate amplitude equations and discussing the pattern selection beyond the threshold of linear stability.

Zugangsvoraussetzungen: none	Empfohlene Vorkenntnisse: Analytische Mechanik, basic knowledge on Partial Differential Equations
Sprache: Englisch	Modulverantwortliche[r]: apl. Prof. Dr. Jürgen Vollmer
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: ab 5

Maximale Studierendenzahl: 50	
Bemerkungen: Schwerpunkt: alle	

Georg-August-Universität Göttingen 6 C 4 SWS Modul B.Phy.5629: Nichtlineare Dynamik und Zeitreihenanalyse Arbeitsaufwand: Lernziele/Kompetenzen: Lernziele: dynamische Systeme, Stabilität und Bifurkationen, deterministisches Chaos, Präsenzzeit: Lyapunov Exponenten, fraktale Dimensionen, erregbare Medien, raumzeitliches 56 Stunden Chaos, Zustandsraumrekonstruktion, lineare und nichtlineare Filter, Synchronisation, Selbststudium: Chaoskontrolle, SVD und PCA, Modellbildung, Datenassimilation, repräsentative 124 Stunden dynamische Systeme (z.B. Modelle neuronaler oder kardialer Zellen) Kompetenzen: Die Studenten sollen die grundlegenden Begriffe der Nichtlinearen Dynamik auf physikalische und biologische Fragestellungen anwenden können, insbesondere mit Hilfe selbstentwickelter Simulations- und Analyseprogramme. 4 SWS Lehrveranstaltung: Blockpraktikum Prüfung: Seminarvortrag (ca. 45 Min.) und Ergebnisprotokoll (max. 10 Seiten) Prüfungsvorleistungen: keine Prüfungsanforderungen: Vortrag: Einarbeitung und Präsentation eines ausgewählten Themas Protokoll: Darstellung und Diskussion der Ergebnisse eigener Simulationen und Analysen zu diesem Thema. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Sprache: Modulverantwortliche[r]: Deutsch apl. Prof. Dr. Ulrich Parlitz Dauer: Angebotshäufigkeit: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalig ab 4

Maximale Studierendenzahl:

14-tägiger Blockkurs in der vorlesungsfreien Zeit

10

Bemerkungen:

Georg-August-Universität Göttingen		3 C	
Modul B.Phy.563: Spezielle Themen der Biophysik und Physik komplexer Systeme III		3 SWS	
Lernziele/Kompetenzen:		Arbeitsaufwand:	
Lernziele: Inhalte aktueller Forschung in der Biophysi	ik und Physik komplexer Systeme,	Präsenzzeit:	
Vertiefung des im Wahlpflichtbereich angeeigneten Vertiefung des im Wahlpflichtbereich and Wahlpflichtbereich a	erständnisses von Methoden und	42 Stunden	
Modellen.		Selbststudium:	
Kompetenzen: Die Studierenden sollen aktuelle Forsbewerten können.	chungsthemen verstehen und	48 Stunden	
Lehrveranstaltung: Veranstaltung aus dem Lehrar komplexer Systeme	Lehrveranstaltung: Veranstaltung aus dem Lehrangebot der Biophysik und Physik komplexer Systeme		
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitu			
Prüfungsanforderungen: Vertiefung der im Wahlpflichtbereich angeeigneten Kenntnisse in der Biophysik und der Physik komplexer Systeme.			
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:			
keine	keine		
Sprache:	Modulverantwortliche[r]:		
Deutsch	Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit:	Dauer:		
jedes Semester	1 Semester		
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:		
Maximale Studierendenzahl:			
90			

Georg-August-Universität Göttinge	en	4 C
Modul B.Phy.5630: Nichtlineare Dynamik und Biokomplexität		2 SWS
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Aktuelle Forschungsgebiete am N	IPIDS, z. B. anregbare Medien, optische	Präsenzzeit:
und nicht optische Methoden der Biophysik,	S	28 Stunden
biologischer Prozesse (insbesondere Zytoski	elettdynamik und Chemotaxis)	Selbststudium:
Kompetenzen: Darstellung eigener Forschung im Kontext internationaler wissenschaftlicher Arbeiten		92 Stunden
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Vortrag (ca. 60 Min.)		
Prüfungsvorleistungen:		
keine		
Prüfungsanforderungen:		
ausgearbeiteter Vortrag, der die Forschung zusammen mit einer Einführung in die		
erforderlichen Grundlagen vorstellt		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine		
	komplexer Systeme; VL Nichtline	eare Dynamik 1
Sprache:	Modulverantwortliche[r]:	
Englisch	Prof. Dr. Eberhard Bodenschatz	
Angebotshäufigkeit:	Dauer:	
jedes Semester	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
dreimalig	ab 5	
Maximale Studierendenzahl:		
10		

Georg-August-Universität Göttingen Modul B.Phy.5631: Selbstorganisation in der Physik und der Biologie English title: Self-organization in physics and biology

Lernziele/Kompetenzen: Lernziele: Nichtlineare Dynamik, Instabilitäten, Prinzip der Selbstorganisation, Bifurkation, Nichtgleichgewichtsthermodynamik Kompetenzen: Die Studenten sollen erlernen, eigenständige Literaturrecherche durchzuführen und diese zu nutzen, um einen wissenschaftlichen Artikel und dessen Kontext zu analysieren und zu verstehen. Weiterhin soll erlernt werden, wie der Artikel sowie dazu notwendige physikalische und biologische Grundlagen in einem wissenschaftlichen Vortrag dargestellt werden.

Lehrveranstaltung: Seminar	2 SWS
Prüfung: Vortrag (ca. 60 Min.)	
Prüfungsvorleistungen:	
keine	
Prüfungsanforderungen:	
Ausgearbeiteter Vortrag, der den gewählten Artikel zusammen mit einer Einführung in	
die erforderlichen Grundlagen vorstellt	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: VL Einführung in die Biophysik und Physik komplexer Systeme			
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Eberhard Bodenschatz			
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester			
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: ab 5			
Maximale Studierendenzahl:				

15

4 C Georg-August-Universität Göttingen 2 SWS Modul B.Phy.5632: Seminar über aktuelle Fragen zur Turbulenzforschung English title: Current questions in turbulence research Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Grundsätzliches Verständnis der Physik der Turbulenz, Instabilitäten, Präsenzzeit: Skaleneigenschaften, Turbulenzmodelle, Turbulenz in rotierenden Systemen, Turbulenz 28 Stunden in geschichteten Fluiden, turbulenter Wärmetransport, Teilchen in der Turbulenz Selbststudium: 92 Stunden Kompetenzen: Darstellung eigener Forschung im Kontext internationaler wissenschaftlicher Arbeiten Lehrveranstaltung: Seminar 2 SWS Prüfung: Vortrag (ca. 60 Min.) Prüfungsvorleistungen: keine Prüfungsanforderungen: Grundsätzliches Verständnis der Physik der Turbulenz Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine Grundkenntisse in der fortgeschrittenen Kontinuumsmechanik oder Elektrodynamik Sprache: Modulverantwortliche[r]: Englisch Prof. Dr. Eberhard Bodenschatz Angebotshäufigkeit: Dauer: jedes Semester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalig ab 5 Maximale Studierendenzahl:

Modul B.Phy.5633: Theoretische und computergestützte Biophysik: Einführung

English title: Theoretical and Computational Biophysics: Introduction

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele: Proteinstruktur und -funktion, Physik der Proteindynamik, relevante intermolekulare Wechselwirkungen, Prinzip der Molekulardynamik-Simulationen; numerische Integration, Einfluss von Näherungen, effiziente Algorithmen, parallele Programmierung, Methoden der Elektrostatik, Protonierungsgleichgewichte, Lösungsmitteleffekte, Proteinstrukturbestimmung (Kernspinresonanzspektroskopie (NMR), Röntgenstreuung), Hauptkomponentenanalyse, Normalmoden; Funktionsmechanismen in Proteinen, Bioinformatik: Sequenzabgleiche, Protein-Strukturvorhersage, Homologie-Modellierung, "hands-on"-Rechnungen und Simulationen am Computer.

Kompetenzen: Die Vorlesung vermittelt die Grundlagen der computergestützten Biophysik, und behandelt Fragen wie: "Wie kann die Dynamik, die statistische Mechanik und die Quantenmechanik biologischer Makromoleküle, welche aus Tausenden von Atomen bestehen, hinreichend akkurat beschrieben werden, um deren Funktion zu verstehen?", "Welche physikalischen Prinzipien stehen dahinter?", oder "Wie funktioniert Sequence-Alignment"? Ziel der Vorlesung ist ein physikalisches Verständnis dieser "Nano-Maschinen" mit Hilfe moderner Konzepte der Nichtgleichgewichtsthermodynamik und von Computersimulationen der Bewegung aller einzelnen Atome. Anhand von Beispielen wird gezeigt, wie Rechner in der modernen Biophysik eingesetzt werden, um Proteinstrukturen zu berechnen, mit Hilfe experimenteller Daten zu verfeinern, und schließlich die Funktionsweise der Proteine zu verstehen. Ohne diese hochspezialisierten Makromoleküle wäre keine Zelle lebensfähig: So gut wie alle zellulären Funktionen, z.B. Photosynthese, Bewegung, Signalübertragung und Informationsverarbeitung, Transport, Sensorik und Erkennung, werden von spezialisierten Proteinen verrichtet, die von der Evolution über mehrere Milliarden Jahre hinweg perfektioniert worden sind.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden

Lehrveranstaltung: Vorlesung mit Übung

Prüfung: Mündlich (ca. 30 Minuten)

Prüfungsvorleistungen:

keine

Prüfungsanforderungen:

Grundkenntnisse der computergestützten Biophysik, insbesondere der Dynamik, statischen Mechanik und Quantenmechanik biologischer Makromoleküle; Fähigkeit, die Funktion, Struktur und intramolekularen Wechselwirkungen von Proteinen unter Anwendung physikalischer Prinzipien und mit Hilfe von Computersimulationen zu beschreiben, zu vergleichen und zu verstehen.

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

2 SWS

	Vorlesung "Einführung in die Biophysik und die Physik komplexer Systeme" (B.Phy.502)
Sprache: Englisch	Modulverantwortliche[r]: HonProf. Dr. Karl Helmut Grubmüller
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: ab 5
Maximale Studierendenzahl: 30	

Modul B.Phy.5634: Theoretische und computergestützte Biophysik: Konzepte und Methoden

English title: Theoretical and Computational Biophysics: Concepts and Methods

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele: Freie-Energie-Rechnungen, Ratentheorie,

Nichtgleichgewichtsthermodynamik, Elektrostatik in Proteinen, quantenmechanische Verfahren (Hartree-Fock, Dichtefunktionaltheorie), enzymatische Katalyse, "hands-on"-Rechnungen und Simulationen am Computer.

Kompetenzen: Angeboten wird eine Vorlesung mit Computer-Praktikum als Ergänzung der Veranstaltung "Theoretische und computergestützte Biophysik: Einführung". Während in der Einführungsvorlesung die Methode der kraftfeldbasierten Simulation von Proteinfunktion beispielhaft im Vordergrund steht, vermittelt die hier beschriebene Vorlesung die für ein umfassendes Verständnis essentieller molekularer Lebensprozesse (z.B. Photosynthese, Bewegung, Signalübertragung und Informationsverarbeitung, Transport, Sensorik und Erkennung) nötigen physikalischen Konzepte und numerischen Verfahren. Die Studenten erhalten die Möglichkeit, ein tieferes Verständnis dieser Zusammenhänge anhand von aktuellen Beispielen im Verlauf der Vorlesung und Übungen (Durchführung von Rechnungen und Simulationen am Computer) aufzubauen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium: 62 Stunden

2 SWS

Lehrveranstaltung: Vorlesung mit Übung

Prüfung: Mündlich (ca. 30 Minuten)

Prüfungsvorleistungen:

keine

Prüfungsanforderungen:

Kenntnis der grundlegenden Prinzipien, Methoden, Konzepte und Verfahren der computergestützten Biophysik, insbesondere der Freie-Energie-Rechnungen, Ratentheorie, Nichtgleichgewichtsthermodynamik, Elektrostatik in Proteinen, quantenmechanischen Verfahren (Hartree-Fock, Dichtefunktionaltheorie), und enzymatische Katalyse.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	Vorlesung und Übung "Theoretische und computergestützte Biophysik: Einführung"
Sprache: Englisch	Modulverantwortliche[r]: HonProf. Dr. Karl Helmut Grubmüller
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: ab 5
Maximale Studierendenzahl: 30	

Georg-August-Universität Göttingen	3 C	
Modul B.Phy.5635: Introduction to Chaot Systems	2 SWS	
Lernziele/Kompetenzen: Lernziele: Chaos in diskreten dynamischen Systeme Lyapunov-Exponenten, invariante Maße, Korrelations kontinuierliche dynamische Systeme und seltsame A Routen ins Chaos, Periodenverdopplung und Feigen Kompetenzen: Analytische Methoden der nichtlinea	Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden	
Lehrveranstaltung: Vorlesung	2 SWS	
Prüfung: Klausur (90 Minuten) Prüfungsvorleistungen: keine Prüfungsanforderungen: Methoden der Nichtlinearen Dynamik		
Zugangsvoraussetzungen: keine		
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Theo Geisel	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: ab 6	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen	3 C	
Modul B.Phy.5636: Introduction to C Systems	2 SWS	
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Arnold's Cat Map, Hartmann-Grobm	nann-Theorem, Homokline Schnitte,	Präsenzzeit:
Melnikov-Methode, Homoklines Knäuel, Smale	s's Horseshoe Map, Ergodizität,	28 Stunden
Kolmogorov-Sinai-Entropie		Selbststudium:
Kompetenzen: Analytische Methoden der nich	ntlinearen Dynamik	62 Stunden
Lehrveranstaltung: Vorlesung	2 SWS	
Prüfung: Klausur (90 Minuten) Prüfungsvorleistungen: keine		
Prüfungsanforderungen: Methoden der Nichtlinearen Dynamik		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse: keine	
Sprache:	Modulverantwortliche[r]:	
Deutsch, Englisch	Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit:	Dauer:	
jedes Sommersemester	1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
	au 0	
Maximale Studierendenzahl:		
30		

Georg-August-Universität Göttingen Modul B.Phy.5637: Computer simulation methods in statistical physics

Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Markov chain Monte Carlo, Molecular Dynamics, Entropic sampling methods, Präsenzzeit: phase transitions and finite-size effects. 28 Stunden Selbststudium: Kompetenzen: The use of computers to solve problems in statistical physics is well 62 Stunden established, and extremely useful in cases where exact solutions are not available. In this course, the Monte Carlo simulation method will be presented, whose applications are widespread, and include the field of biology. Starting with the basic Metropolis algorithm for the Ising model, this course will gradually move on to consider more complex systems, and show how the Monte Carlo method can be used to extract thermodynamic limit properties with relative ease.

Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.)
Prüfungsanforderungen:
Markov chain Monte Carlo, Molecular Dynamics, Entropic sampling methods, phase transitions and finite-size effects.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine				
Sprache: Englisch	Modulverantwortliche[r]: Dr. Richard L.C. Vink Dr. Claus Heussinger				
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester				
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: ab 5				
Maximale Studierendenzahl: 20					

Bemerkungen:
Schwerpunkt: BK, FM

Modul B.Phy.5638: Atificial Intelligence Robotics: An Introduction

English title: Atificial Intelligence Robotics: An Introduction

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele/Kompetenzen:

Nach erfolgreicher Teilnahme sind die Studierenden in der Lage,

- · die Grundprinzipien der künstlichen Intelligenz und der Robotik zu kennen und zu erläutern,
- grundlegende Hardwarekomponenten und deren Funktionsweisen zu kennen und zu erläutern,
- Steuerungsparadigmen beschreiben und klassifizieren zu können,
- eigene Steuerungen zu entwerfen und zu programmieren,

Robotersimulationen im Modular Robot Control Environment durchzuführen.

Arbeitsaufwand:

Präsenzzeit:

28 Stunden

Selbststudium:

62 Stunden

Lehrveranstaltungen:

1. Vorlesung

Inhalte:

- Geschichte der Künstlichen Intelligenz und der Robotik
- Roboterkomponenten (Morphologie, Body Dynamics, Aktuatoren und Sensoren)
- Low Level Steuerungen (Open/Closed Loop Control, PID)
- Manipulator Steuerungen (Forward/Inverse Kinematics)
- Steuerungen zur Fortbewegung (Räder und Beine)
- Steuerungsarchitekturen
- Navigation, Lokalisierung, Mapping
- Anwendungen und Ausblick, kurze Einführung in Lernen in der Robotik

2. Praktikum

Inhalte:

Entwurf und Implementierung von Roboterteuerungen unter Nutzung des Modular Robot Control Environment (using LPZRobots)

Prüfung: Klausur (90 Minuten)

Prüfungsanforderungen:

Die Studierenden weisen in der Modulprüfung nach, dass sie

- die Vorlesungsinhalte vollständig wiedergeben können
- mit Hilfe der Vorlesungsinhalte eine Robotersteuerung für ein gegebenes Problem entwerfen können

Hardwarekomponenten erkennen und deren Funktionsweisen wiedergeben können

Zugangsvoraussetzungen:

Empfohlene Vorkenntnisse:

keine	keine
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Florentin Andreas Wörgötter
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1 - 2
Maximale Studierendenzahl: 20	

Bemerkungen:

Master ab 1

Schwerpunkt: BK, PI

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5639: Optische Messtechni English title: Optical Measuring	2 SWS	
Lernziele/Kompetenzen: Lernziele: Verständnis optischer Messprinzipien un Kompetenzen: Anwendung von Lichtmodellen, Ver Messprinzipien, Überblick über optische Messverfah physikalischer Größen in unterschiedlichen Größen Lehrveranstaltung: Optische Messtechnik Prüfung: Vortrag oder mdl. Prüfung (ca. 30 Min.)	Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden	
Prüfungsanforderungen: Verständnis optischer Messprinzipien und -verfahren		
Zugangsvoraussetzungen:		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Wintersemester1	Dauer:	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1 - 4	
Maximale Studierendenzahl: 30		
Bemerkungen: Bachelor/Master (BK)	•	

Modul B.Phy.5640: Principles of self-organization in biophysics

English title: Principles of self-organization in biophysics

6 C 4 SWS

Lernziele/Kompetenzen:

Lernziele: Life exploits simple physical principles in order to produce self-organized structures that are stable and functional. Examples span all scales, from chemical oscillations within a single cell, to morphogenesis (gastrulation, segmentation of animal embryos), to the growth (the fractal nature of leaves) and dynamics (spiral waves in the heart) of organs, and multi-organism interactions (swarming/flocking of fish and birds, termite mound formation). We shall discuss such features of living systems, show how they are examples of universal mechanisms of self-organization, and analyze these mechanisms quantitatively. In many cases, the patterns created by life are directly homologous to simple non-living physical systems and the behavior of these paradigm systems will also be demonstrated. Additional context and related questions of current research will be covered in talks by members of the Göttingen Research Campus.

Kompetenzen: Students will learn how to quantify and interpret the essential features of self-organization in biological systems. They will learn how to show when symmetries and symmetry-breaking mechanisms can be expected to give rise to new types of structures, and how to classify them by universal laws. Tutorials will include the computational exploration of biological self-organization with modern numerical methods. Students will also perform an in-depth investigation on a state of the art research topic of their choice, and present this topic during class.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltung: lecture and accompanying tutorial

Prüfung: Vortrag mit schriftlicher Ausarbeitung (45 Minuten) Prüfungsanforderungen:

Students must demonstrate an understanding of the principles of self-organization, and prepare an in-depth investigation of a particular aspect of its application in current research in biophysics, which will be presented in a seminar to their peers in class.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Dynamical systems theory (eg. one of: "Dynamik komplexer System in Physik und Biologie", "Biophysik II", or "Pattern Formation")
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1 - 3
Maximale Studierendenzahl: 50	

D	^	m	^	٠L		n	~	_	n	
ט	C		CI	n	u		ч	ᆫ		

Schwerpunkt Biophysik/Komplexe Systeme

Georg-August-Universität Göttingen Modul B.Phy.5641: Theorie und Praxis der Mikroskopie English title: Theory and Praxis of microscopy 4 C 2 SWS

Lernziele/Kompetenzen:

Lernziele: Physikalische Prinzipien des Lichtmikroskops auf der Basis von E-Dynamik, klassischer Optik und Fourier-Optik (Niveau: Lauterborn/Kurz; Hecht). Ferner: Weitfeld, Dunkelfeld, Phasenkontrast, Abbesche Auflösungtherie, Fourier-Ebenen, "Köhlern"; Prinzip und Anwendung konfokaler Mikroskopie in verschiedenen Varianten; Structured Illumination, Zweiphotonen-AbsortionsMikroskopie, STED und stochastische Imaging-Verfahren (PALM, STORM, SOFI).

Kompetenzen: Die Studierenden lernen grundlegende Begriffe der Optik anzuwenden und die Funktionsweise verschiedenster Typen von Mikroskopen und Imaging-Verfahren damit zu erklären.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 92 Stunden

Lehrveranstaltung: Seminar SWS

Prüfung: Vortrag, (ca. 60-90 Min.)

Prüfungsanforderungen:

Fundierte Grundkenntnisse der E-dynamik und Optik (Physik III) sowie detailierte Einarbeitung in die Prinzipien und Anwendungen der optischen Mikroskopie, sowie in aktuelle Entwicklungen der Mikroskopie. Vorbereitung und Halten eines Seminarvortrags, incl. zufriedenstellender Diskussion.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Physik III
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Dr. Detlev Schild
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3
Maximale Studierendenzahl: 20	

Bemerkungen:

Schwerpunkt Biophysik/Komplexe Systeme

Georg-August-Universität Göttingen Modul B.Phy.5642: Experimentelle Methoden in der Biophysik English title: Experimental Methods in Biophysics

Lernziele/Kompetenzen: Lernziele: Einführung in experimentelle Methoden in der Biophysik: u.a. Mikroskopie, Rasterkraftmikroskop, Elektronenmikroskop, Mikropipettenaspiration, optische Fallen, Rheologie Insbesondere sollen die zu Grunde liegenden physikalischen Phänomene und Grundlagen vermittelt werden. Kompetenzen: Die Studierenden sollen die grundlegende Physik experimenteller Methoden der Biophysik beherrschen und selbständig auf ausgewählte Fragestellungen anwenden können. Lehrveranstaltung: Vorlesung

Prüfung: mündliche Prüfung (ca. 15 Min.) oder Seminarvortrag (ca. 30 Min.) Prüfungsanforderungen: Grundlegende Physik von experimentellen Methoden in der Biophysik: u.a. Mikroskopie, Rasterkraftmikroskop, Elektronenmikroskop, Mikropipettenaspiration, optische Fallen, Rheologie

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Besuch der Veranstaltung "Einführung in die Biophysik und Physik komplexer Systeme"
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Dr. Florian Rehfeldt
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3
Maximale Studierendenzahl: 20	

Bemerkungen:

Schwerpunkt Biophysik und Physik komplexer Systeme

Georg-August-Universität Göttingen 3 C 2 SWS Modul B.Phy.5643: Seminar Experimentelle Methoden in der Biophysik English title: Seminar: Experimental Methods in Biophysics Arbeitsaufwand: Lernziele/Kompetenzen: Lernziele: Experimentelle Methoden in der Biophysik: Präsenzzeit: 28 Stunden u.a. Mikroskopie, Rasterkraftmikroskop, Elektronenmikroskop, Mikropipettenaspiration, Selbststudium: optische Fallen, Rheologie 62 Stunden Kompetenzen: Die Studierenden sollen anhand einer oder mehrerer Publikationen oder Buchkapitel ausgewählte Fragestellungen erarbeiten und in einem Seminarvortrag vorstellen. Lehrveranstaltung: Seminar Prüfung: Vortrag (ca. 30 Minuten) Prüfungsanforderungen: Experimentelle Methoden in der Biophysik: u.a. Mikroskopie, Rasterkraftmikroskop, Elektronenmikroskop, Mikropipettenaspiration, optische Fallen, Rheologie

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Besuch der Veranstaltung "Einführung in die Biophysik und Physik komplexer Systeme"
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Dr. Florian Rehfeldt
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3
Maximale Studierendenzahl: 20	

Bemerkungen:

Schwerpunkt Biophysik und Physik komplexer Systeme

Comm Assessed Hadronaität Cättingan		2.0
Georg-August-Universität Göttingen		3 C 2 SWS
Modul B.Phy.5701: Weiche Materie: Flüss	igkristalle	
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Nematische Flüssigkristalle: anisotrope Eig	genschaften;	Präsenzzeit:
Orientierungsverteilung und Ordnungsparameter; The	·	28 Stunden
Phasenübergang; Direktorfeld, elastische Eigenschaft	_	Selbststudium:
Wirkung äußerer Felder und Frederiks-Übergang; Eigenschaften der chiral-nematischen Phase; Flüssigkristalldisplays.		62 Stunden
Smektische Flüssigkristalle: Phasen- und Strukturübersicht; Eigenschaften		
der smektischen A und C Phase.		
Diskotische und columnare Flüssigkristalle.		
Lyotrope Flüssigkristalle und biologische Aspekte.		
von Festkörpern und Flüssigkeiten auf Flüssigkristalle anwenden können. Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Seminarvortrag oder mündliche Prüfung (je ca. 30 Min.)		
Prüfungsanforderungen:		
Kenntnis der grundlegenden Eigenschaften von therm	notropen Flüssigkristallen und der	
Konzepte zu ihrer Beschreibung		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	keine	
Sprache:	Modulverantwortliche[r]:	
Deutsch	Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit:	Dauer:	
jedes Sommersemester	1 Semester	
Wiederholbarkeit: Empfohlenes Fachsemester:		
dreimalig Bachelor: 5 - 6; Master: 1		

Maximale Studierendenzahl:

20

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5702: Dünne Schichten		2 SWS
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Oberflächen, UHV, Dünnschichtverfahren		Präsenzzeit:
dünner Schichten, Epitaxie, Untersuchungsmethoden, spezielle Eigenschaften dünner		28 Stunden
Schichten.		Selbststudium:
Kompetenzen: Die Studenten sollen die grundlegenden Begriffe der Physik Dünner		62 Stunden
Schichten und Schichtstrukturen anwenden können.		
Lehrveranstaltung: Vorlesung mit Seminar (je zur Hälfte)		2 SWS
Prüfung: Vortrag (ca. 30 Min.)		
Prüfungsanforderungen:		
Kenntnisse der Physik Dünner Schichten		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	keine	
Sprache:	Modulverantwortliche[r]:	
Deutsch	Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit:	Dauer:	
unregelmäßig	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
dreimalig	ab 6	
Maximale Studierendenzahl:		
24		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5703: Vorlesungszyklus: Eigenschaften fester Stoffe und grundlegende Phänomene		2 SWS
Lernziele/Kompetenzen: Lernziele: Beispiele und Grundlagen zum Zusammenhang von Materialklassen, physikalischen Phänomenen und Anwendungen. Nanostrukturierte Materialien, Materialien für magnetische, optische und elektronische Anwendungen, weiche und granulare Materialien, Polymere und biologische Werkstoffe.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Kompetenzen: Die Studenten sollen die grundlegenden Materialklassen, Strategien zum Materialdesign und die aktuelle Forschungsgebiete aus der Perspektive der unterschiedlichen beteiligten Fakultäten/Institute (Physik, Chemie, Forstwissenschaften) kennenlernen.		
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündlich (ca. 30 Minuten)		
Prüfungsanforderungen: Kenntnisse zu zwei der Vortragsthemen		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.503	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1 - 3	
Maximale Studierendenzahl: 40		

Georg-August-Universität Göttingen Modul B.Phy.5704: Magnetismus 6 C 4 SWS

Lernziele/Kompetenzen:

Lernziele: Spin und Bahnmoment klassisch/ QM, Spin-Bahn Kopplung, Diaund Paramagnetismus, Thermische Statistik: Curie Gesetz, Brillouinfunktion, Magnetismus delokalisierter Elektronen, Weiss Molekularfeld, Curie-Weiss Gesetz, Phasenübergang bei Tc, Landau Theorie, Antiferromagnetische Ordnung, Magnetische Korrelationen in Oxiden, Doppel und Superaustausch, Kristallfeld, Ligandenfeldtheorie, Jahn Teller Effekt, Hubbard Modell, Magnetostatik, Domänenwände, Magnetische Nanostrukturen, Stoner Modell und Bandstruktur im Rigid Band Modell Magnetismus von Oberflächen, Methoden APRES, Spinaufgelöste PE, Antiferromagnetismus, Spindichtewellen, RKKY Wechselwirkung und Zwischenschichtkopplung, Kondoeffekt, Magnetische Anisotropie, Magnetostriktion, Stoner-Wohlfarth Modell, Hysterese, Landau-Lifshitz-Gilbert Gleichung, Spintransport, Mottsches Zweistrommodell, Spintransport, Magnonik

Kompetenzen: Die Studenten sollen die grundlegenden Eigenschaften magnetischer Materialien und deren moderne Anwendung erfahren.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltung: Vorlesung mit Blockseminar

4 SWS

Prüfung: Mündliche Prüfung (ca. 30 Min.), Klausur (30 Min.) oder Vortrag (ca. 30 Min.)

Prüfungsanforderungen:

Wiedergabe und weiterführendes Verständnis des Stoffes der Vorlesung.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Andreas Tilgner
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3
Maximale Studierendenzahl: 50	

Georg-August-Universität Göttingen Modul B.Phy.5705: Magnetismus Seminar 4 C 2 SWS

Lernziele/Kompetenzen:

Lernziele: Spin und Bahnmoment klassisch/ QM, Spin-Bahn Kopplung, Diaund Paramagnetismus, Thermische Statistik: Curie Gesetz, Brillouinfunktion, Magnetismus delokalisierter Elektronen, Weiss Molekularfeld, Curie-Weiss Gesetz, Phasenübergang bei Tc, Landau Theorie, Antiferromagnetische Ordnung, Magnetische Korrelationen in Oxiden, Doppel und Superaustausch, Kristallfeld, Ligandenfeldtheorie, Jahn Teller Effekt, Hubbard Modell, Magnetostatik, Domänenwände, Magnetische Nanostrukturen, Stoner Modell und Bandstruktur im Rigid Band Modell Magnetismus von Oberflächen, Methoden APRES, Spinaufgelöste PE, Antiferromagnetismus, Spindichtewellen, RKKY Wechselwirkung und Zwischenschichtkopplung, Kondoeffekt, Magnetische Anisotropie, Magnetostriktion, Stoner-Wohlfarth Modell, Hysterese, Landau-Lifshitz-Gilbert Gleichung, Spintransport, Mottsches Zweistrommodell, Spintransport, Magnonik.

Kompetenzen: Die Studenten sollen die grundlegenden Eigenschaften magnetischer Materialien und deren moderne Anwendung erfahren und eigenständig präsentieren.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium:

92 Stunden

Lehrveranstaltung: Seminar	2 SWS
Prüfung: Vortrag (ca. 30 Min.)	3 C

Prüfungsanforderungen:

Aufarbeitung und Darstellung eines aktuellen Themas aus dem Bereich Magnetismus.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1
Maximale Studierendenzahl: 50	

Georg-August-Universität Göttingen Modul B.Phy.5707: Nanoscience		3 C 2 SWS
Lernziele/Kompetenzen: Lernziele: Electronic properties of electrons confined in low-dimensional nanostructures (2D, 1D and 0D). Experimental methods for the preparation and characterization of nanostrucures. Semiconductor materials will be on focus. Kompetenzen: The students should be able to gain a knowledge basis of the relevant concepts and methods needed when dealing with nanostructures.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündliche Prüfung oder Seminarvortragif in German or in English	(je ca. 30 Min.) - student choice	
Prüfungsanforderungen: The students should show a knowledge basis of the reded when dealing with nanostructures.	elevant concepts and methods	
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.202, B.Phy.503	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C 2 SWS
Modul B.Phy.5708: Physik der Nanostrukt	uren	2 5 0 0 5
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Klassifizierung von Nanostrukturen, Cluster, Fullerene, Quantendots,		Präsenzzeit:
nanokristalline Materialien, Schichtpakete, Zonenplatten, Strukturierungsverfahren,		28 Stunden Selbststudium:
Messverfahren an Nanostrukturen, spezielle Eigenschaften von Nanostrukturen Kompetenzen: Die Studenten sollen die grundlegenden Begriffe der Physik nanostrukturierter Materialien anwenden können.		62 Stunden
Lehrveranstaltung: Vorlesung mit Seminar (je zur Hälfte)		2 SWS
Prüfung: Seminarvortrag (ca. 30 Min.)		
Prüfungsanforderungen: Kenntnisse der Physik nanostrukturierter Materialien		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache:	Modulverantwortliche[r]:	
Deutsch	Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 24		

20

	4 C
nce	2 SWS
	Arbeitsaufwand: Präsenzzeit:
Lernziele: Electronic properties of electrons confined in low-dimensional structures	
(2D, 1D and 0D). Experimental methods for the preparation and characterization of	
nanoelectronics. Semiconductor	Selbststudium: 92 Stunden
materials will be on focus.	
a deep knowledge of a current	
Lehrveranstaltung: Seminar (Blockveranstaltung)	
Prüfung: Seminarvortrag (ca. 30 Min.) - student choice if in German or in English	
The students should achieve a deep knowledge of a current topic in nanoscience and	
·	
current topic in nanoscience and ure. The student should be able to	
·	
·	
ire. The student should be able to	7
re. The student should be able to Empfohlene Vorkenntnisse:	7
Empfohlene Vorkenntnisse: B.Phy.202, B.Phy.503, B.Phy.570	7
Empfohlene Vorkenntnisse: B.Phy.202, B.Phy.503, B.Phy.570 Modulverantwortliche[r]:	7
Empfohlene Vorkenntnisse: B.Phy.202, B.Phy.503, B.Phy.570 Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	7
Empfohlene Vorkenntnisse: B.Phy.202, B.Phy.503, B.Phy.570 Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner Dauer: 1 Semester Empfohlenes Fachsemester:	7
Empfohlene Vorkenntnisse: B.Phy.202, B.Phy.503, B.Phy.570 Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner Dauer: 1 Semester	7
- d - d - d - d - d - d - d - d - d - d	aration and characterization of nanoelectronics. Semiconductor a deep knowledge of a current mmended scientific literature. The ar.

Georg-August-Universität Göttingen		6 C
Modul B.Phy.571: Spezielle Themen der Festkörper- und Material- physik I		6 SWS
Lernziele/Kompetenzen: Lernziele: Inhalte aktueller Forschung in der Festkörper- und Materialphysik, Vertiefung des im Wahlpflichtbereich angeeigneten Verständnisses von Methoden und Modellen. Kompetenzen: Die Studierenden sollen aktuelle Forschungsthemen verstehen und bewerten können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: Veranstaltung aus dem Lehrar Materialphysik	6 SWS	
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitu		
Prüfungsanforderungen: Vertiefung der im Wahlpflichtbereich angeeigneten Kenntnisse in Festkörper- und Materialphysik.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5710: Spintransport und Dynamik		2 SWS
Lernziele/Kompetenzen: Lernziele: Aktuelle Themen des Spintransport und Spindynamik. Kompetenzen: Die Studenten sollen die spezielle Themen des Spintransport und Spindynamik Eigenständig präsentieren.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Seminarvortrag (ca. 30 Min.)		
Prüfungsanforderungen: Aufarbeitung und Darstellung eines aktuellen Themas aus dem Bereich Magnetismus.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: jährlich Dauer: 1 Semester		
Wiederholbarkeit: Empfohlenes Fachsemester: dreimalig Bachelor: 6; Master: 1 - 3		
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		4 C
		2 SWS
Modul B.Phy.5711: Starkkorrelierte Elektronensysteme		
English title: Strongly correlated electron systems		
Lernziele/Kompetenzen:	Arbeitsaufwand:	
Lernziele: Aktuelle Fragen der Forschung auf dem	Gebiet der starkkorrelierten	Präsenzzeit:
Elektronensysteme		28 Stunden
Kompetenzen: Wichtigste Eigenschaften starkkorre	lierter Elektronensysteme	Selbststudium:
		92 Stunden
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		
Prüfungsanforderungen: Verständnis grundlegender Begriffe und Modelle der Physik der starkkorrelierten Elektronensysteme		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
für Bachelor- und Masterstudierende, welche ihre	B.Phy.101, B.Phy.102, B.Phy.103	, B.Phy.104,
Abschlussarbeit in der Arbeitsgruppe durchführen B.Phy.202, B.Phy.503		
Sprache:	Modulverantwortliche[r]:	
Englisch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit:	gebotshäufigkeit: Dauer:	
jedes Semester	1 Semester	
Wiederholbarkeit: Empfohlenes Fachsemester:		
dreimalig	Bachelor: 6; Master: 1 - 3	
Maximale Studierendenzahl:		
20		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5712: Tieftemperaturphysik		2 SWS
Lernziele/Kompetenzen: Lernziele: Erzeugung tiefer Temperaturen, Kryoflüssigkeiten, Suprafluidität in Helium, spezifische Wärme, elektrischer Widerstand und andere Eigenschaften von Metallen bei tiefen Temperaturen, klassische und Quanten-Phasenübergänge Kompetenzen: Die Studierenden sollen mit den grundlegenden Begriffen und Modellen der Tieftemperaurphysik umgehen.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung mit Demonstrations	sexperimenten	2 SWS
Prüfung: Mündliche Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		
Prüfungsanforderungen: Verständnis grundlegender Begriffe und Modelle der Tieftemperaturphysik		
Zugangsvoraussetzungen: keine Empfohlene Vorkenntnisse: B.Phy.101, B.Phy.102, B.Phy.103, B.Phy.202, B.Phy.503		B.Phy.104,
Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: unregelmäßig Dauer: 1 Semester		
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 5 - 6; Master: 1 - 3		
Maximale Studierendenzahl: 90		

Georg-August-Universität Göttingen		3 C 2 SWS
Modul B.Phy.5713: Supraleitung		
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Grundlagen, Phänomenolog	ische Modelle, BCS Theorie und Anwednungen,	Präsenzzeit:
Josephson Effekte, Unkonventionelle S	upraleitung	28 Stunden
Kompetenzen: Die Studierenden soller	n mit den grundlegenden Begriffen und Modellen	Selbststudium:
zur Supraleitung umgehen.		62 Stunden
Lehrveranstaltung: Vorlesung mit De	monstrationsexperimenten	2 SWS
Wochen Vorbereitungszeit) Prüfungsanforderungen: Verständnis grundlegender Begriffe und Modelle der Supraleitung		
	d Modelle der Supraleitung	
	Modelle der Supraleitung Empfohlene Vorkenntnisse:	
Verständnis grundlegender Begriffe und	Empfohlene Vorkenntnisse: Quantenmechanik, Physik I-IV, Eir	nführung in die
Verständnis grundlegender Begriffe und Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Quantenmechanik, Physik I-IV, Eir Festkörper- und Materialphysik	nführung in die
Verständnis grundlegender Begriffe und Zugangsvoraussetzungen: keine Sprache:	Empfohlene Vorkenntnisse: Quantenmechanik, Physik I-IV, Eir Festkörper- und Materialphysik Modulverantwortliche[r]:	nführung in die
Verständnis grundlegender Begriffe und Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Quantenmechanik, Physik I-IV, Eir Festkörper- und Materialphysik	nführung in die
Verständnis grundlegender Begriffe und Zugangsvoraussetzungen: keine Sprache:	Empfohlene Vorkenntnisse: Quantenmechanik, Physik I-IV, Eir Festkörper- und Materialphysik Modulverantwortliche[r]:	nführung in die
Verständnis grundlegender Begriffe und Zugangsvoraussetzungen: keine Sprache: Deutsch	Empfohlene Vorkenntnisse: Quantenmechanik, Physik I-IV, Eir Festkörper- und Materialphysik Modulverantwortliche[r]: Prof. Dr. Philipp Gegenwart	nführung in die
Verständnis grundlegender Begriffe und Zugangsvoraussetzungen: keine Sprache: Deutsch Angebotshäufigkeit:	Empfohlene Vorkenntnisse: Quantenmechanik, Physik I-IV, Eir Festkörper- und Materialphysik Modulverantwortliche[r]: Prof. Dr. Philipp Gegenwart Dauer:	nführung in die
Verständnis grundlegender Begriffe und Zugangsvoraussetzungen: keine Sprache: Deutsch Angebotshäufigkeit: unregelmäßig	Empfohlene Vorkenntnisse: Quantenmechanik, Physik I-IV, Eir Festkörper- und Materialphysik Modulverantwortliche[r]: Prof. Dr. Philipp Gegenwart Dauer: 1 Semester	nführung in die
Verständnis grundlegender Begriffe und Zugangsvoraussetzungen: keine Sprache: Deutsch Angebotshäufigkeit: unregelmäßig Wiederholbarkeit:	Empfohlene Vorkenntnisse: Quantenmechanik, Physik I-IV, Eir Festkörper- und Materialphysik Modulverantwortliche[r]: Prof. Dr. Philipp Gegenwart Dauer: 1 Semester Empfohlenes Fachsemester:	nführung in die

Georg-August-Universität Göttingen		6 C
Modul B.Phy.5714: Introduction to Solid	6 SWS	
Lernziele/Kompetenzen: Lernziele: Fundamental concepts of of solid state theory, Born-Oppenheimer approximation, homogeneous electron gas, electrons in lattices, lattice vibrations, elementary transport theory Kompetenzen: Application of fundamental concepts in solid state theory, interpretation		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
of basic experimental observations, theoretical des solid state physics		
Lehrveranstaltungen: 1. lecture 2. exercises		4 SWS 2 SWS
Prüfung: Klausur (90 Minuten) Prüfungsanforderungen: Describe and calculate fundamental properties of s language of solid-state theory		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: Reine Quantum mechanics		
Sprache: Englisch Modulverantwortliche[r]: Prof. Dr. Thomas Pruschke Prof. Kehrein		
Angebotshäufigkeit: jedes Wintersemester Dauer: 1 Semester		
Wiederholbarkeit: Empfohlenes Fachsemester: ab 5		
Maximale Studierendenzahl: nicht begrenzt		
Bemerkungen: im Master nur für den Profilierungsbereich einbringbar		

Georg-August-Universität Göttingen 3 C 2 SWS Modul B.Phy.5715: Quantum Simulators English title: Quantum Simulators Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Präsenzzeit: 28 Stunden • Basic concepts: ultracold gases, Bose-Einstein condensates, optical lattices Selbststudium: ("crystals of light"), Feshbach-Resonances 62 Stunden • Basic idea of a quantum simulator: difference to a quantum computer, possible realizations • Selected quantum many body models: Hubbard-, t-J- and Heisenberg model Basic properties of these systems: Mott insulator, suprafluidity, superconductivity, frustrated quantum magnetism, unconventional states of matter • Theoretical and numerical approaches and their limitations • State of the experiments: bosonic and fermionic Hubbard model • Outlook recent developments: ultracold polar molecules and alkaline earth metal atoms; the search vor unconventional states of matter in these systems Kompetenzen: develop a basic understanding of recent developments in the field of ultracold gases and quantum many body systems Lehrveranstaltung: Vorlesung Prüfung: Mdl. Prüfung (ca 30 min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit) Prüfungsanforderungen: Verständnis grundlegender Begriffe und Eigenschaften der Quantensimulatoren, der Vielteilchenmodelle und -zustände, und der Experiment. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Sprache: Modulverantwortliche[r]: Englisch Prof. Dr. Andreas Tilgner Angebotshäufigkeit: Dauer: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalig Bachelor: 6: Master: 1 - 3 Maximale Studierendenzahl: nicht begrenzt

Bemerkungen:

Schwerpunkt Festkörper-/Materialphysik

Georg-August-Universität Göttingen		6 C 6 SWS
Modul B.Phy.572: Spezielle Themen der Festkörper- und Material- physik II		0 SWS
Lernziele/Kompetenzen: Lernziele: Inhalte aktueller Forschung in der Festkörper- und Materialphysik, Vertiefung des im Wahlpflichtbereich angeeigneten Verständnisses von Methoden und Modellen. Kompetenzen: Die Studierenden sollen aktuelle Forschungsthemen verstehen und bewerten können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: Veranstaltung aus dem Lehrar Materialphysik IIa	ngebot der Festkörper- und	3 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitu	•	3 C
Lehrveranstaltung: Veranstaltung aus dem Lehrar Materialphysik IIb	3 SWS	
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		3 C
Prüfungsanforderungen: Vertiefung der im Wahlpflichtbereich angeeigneten Kenntnisse in Festkörper- und Materialphysik.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit:Dauer:jedes Semester2 Semester		
Wiederholbarkeit: Empfohlenes Fachsemester: dreimalig		
Maximale Studierendenzahl: 90		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.573: Spezielle Themen der F physik III	3 SWS	
Lernziele/Kompetenzen: Lernziele: Inhalte aktueller Forschung in der Festkörper- und Materialphysik, Vertiefung des im Wahlpflichtbereich angeeigneten Verständnisses von Methoden und Modellen. Kompetenzen: Die Studierenden sollen aktuelle Forschungsthemen verstehen und bewerten können.		Arbeitsaufwand: Präsenzzeit: 42 Stunden Selbststudium: 48 Stunden
Lehrveranstaltung: Veranstaltung aus dem Lehrar Materialphysik	3 SWS	
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitu		
Prüfungsanforderungen: Vertiefung der im Wahlpflichtbereich angeeigneten Kenntnisse in Festkörper- und Materialphysik.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen Modul B.Phy.5801: Classical field theory English title: Classical field theory		6 C 6 SWS
Lernziele/Kompetenzen: Lernziele: Basic concepts in field theories, elasticity and hydrodynamics, special relativity and covariant formulation of Maxwell's theory, elements of differential geometry and general relativity, lagrangian field theories, gauge theories Kompetenzen: Abstraction of daily concepts to formal objects, general structure of space-time, formulation of scientific theories		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltungen: 1. Lecture 2. Exercises		4 SWS 2 SWS
Prüfung: Klausur (60 Minuten)		
Prüfungsanforderungen: Derivation of equations of motion and conservation I of solutions to the equations of motion for simple geo		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: B.Phy.201, B.Phy.202		
Sprache: Modulverantwortliche[r]: Englisch Prof. Dr. Thomas Puschke		
Angebotshäufigkeit: unregelmäßig Dauer: 1 Semester		
Wiederholbarkeit: Empfohlenes Fachsemester: dreimalig Bachelor: 4 - 6; Master: 1 - 3		
Maximale Studierendenzahl: 40		
Bemerkungen: Schwerpunkt Kern-/Teilchenphysik		

3 C Georg-August-Universität Göttingen 3 SWS Modul B.Phy.5803: Wechselwirkung zwischen Strahlung und Materie - Detektorphysik English title: Interactions between radiation and matter - detector physics Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Mechanismen der Teilchendetektion, Wechselwirkung geladener Teilchen Präsenzzeit: und Photonen mit Materie, Ionisationsdetektoren, Drift und Diffusion, Gas-gefüllte 42 Stunden Drahtkammern, Proportional- und Driftkammern, Halbleiterdetektoren, Mikrostreifen-Selbststudium: und Pixeldetektoren, Tscherenkov-Detektoren, Übergangssstrahlungsdetektoren, 48 Stunden Szintillation (anorganische Kristalle und Plastikszintillatoren), elektromagnetische Kalorimeter, Hadronkalorimeter Kompetenzen: Die Studierenden sollen mit grundlegenden Methoden der Detektion von Teilchen/Strahlung in der Hochenergiephysik und ähnlichen Anwendungsgebieten vertraut gemacht werden. Lehrveranstaltung: Vorlesung mit Übung 3 SWS Prüfung: Mündlich (ca. 30 Minuten) Prüfungsanforderungen: Konzeptionelles Verständnis der Funktionsweise verschiedener Teilchendetektoren und den der Messung zugrunde liegenden Wechselwirkungen

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.504
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1
Maximale Studierendenzahl: 30	

Georg-August-Universität Göttingen		6 C
Modul B.Phy.5804: Quantenmechanik II English title: Quantum mechanics II		6 SWS
Lernziele/Kompetenzen: Lernziele: Spezielle Themen der Quantenmechanik: Streutheorie, Symmetrien in QM und Dreh-impulsdarstellungen, Vielteilchensysteme, Quantisierung des elektromagnetischen Feldes, Klein-Gordon Gleichung, Dirac Gleichung. Kompetenzen: Die Studenten sollten mit den Konzepten der fortgeschrittenen QM vertraut werden und sie in expliziten Rechnungen anwenden können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltungen: 1. Vorlesung 2. Übung		4 SWS 2 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Behandlung konkreter Aufgaben aus dem Bereich der Vorlesung, Rechnung von Lösungen der Vielteilchen-Schrödinger Gleichung, Anwendung von QM Methoden		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine B.Phy.202, B.Phy.5801		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1 - 3	
Maximale Studierendenzahl:		
Bemerkungen: Schwerpunkte: Astro-/Geophysik, Festkörper- und Materialphysik, Kern-/Teilchenphysik		

Georg-August-Universität Göttingen		6 C
Modul B.Phy.5805: Quantenfeldtheorie I		6 SWS
Lernziele/Kompetenzen: Lernziele: Grundkonzepte und Fundamente der Quantenfeldtheorie; skalare QFT, Spinoren und Dirac Gleichung, QED und abelsche Eichsymmetrien; Störungstheorie; Renormierung. Kompetenzen: Die Studenten sollten mit den Methoden und Konzepten der QFT vertraut werden und sie in expliziten Rechnungen anwenden können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltungen: 1. Vorlesung 2. Übung		4 SWS 2 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfu	ng (ca. 30 Min.)	
Prüfungsanforderungen: Lösung von Problemen in QFT, Rechnung von Wirkungsquerschnitten, Anwendung von QFT Methoden		
Zugangsvoraussetzungen: keine Empfohlene Vorkenntnisse: B.Phy.202, B.Phy.5801, B.Phy.580)4
Sprache: Modulverantwortliche[r]: Englisch Prof. Dr. Andreas Tilgner		
ngebotshäufigkeit: edes Sommersemester Dauer: 1 Semester		
Wiederholbarkeit: Empfohlenes Fachsemester: Bachelor: 6; Master: 1 - 2		
Maximale Studierendenzahl: 50		

Georg-August-Universität Göttingen		3 C 2 SWS
Modul B.Phy.5806: Spezielle Relativitätstheorie		
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Lorentzgruppe, relativistische Mechanik, Konzept der Raum-Zeit-		Präsenzzeit:
Mannigfaltigkeit, Vierergroessen, Energie-Impuls-Tensor		28 Stunden Selbststudium:
Kompetenzen: Umgang mit der Lorentzgruppe, Vers	Kompetenzen: Umgang mit der Lorentzgruppe, Verstaendnis der Raum-Zeit-Konzepte,	
Einsatz von Gedankenexperimenten		62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (120 Minuten)		
Prüfungsanforderungen: Einfache Fragestellungen gemäß Stoff der Vorlesung Zugangsvoraussetzunge		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
keine	keine	
Sprache:	Modulverantwortliche[r]:	
Deutsch	Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit:	Dauer:	
unregelmäßig	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
dreimalig	Bachelor: 5 - 6; Master: 1	
Maximale Studierendenzahl:		
nicht begrenzt		

Georg-August-Universität Göttingen 3 C 3 SWS Modul B.Phy.5807: Physik der Teilchenbeschleuniger English title: Physics of particle accelerator Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Einführung in die Physik der Teilchenbeschleuniger, Synchrotronstrahlung, Präsenzzeit: Lineare Strahloptik, Injektion und Ejektion, Hochfrequenzsysteme zur 42 Stunden Teilchenbeschleunigung, Strahlungseffekte, Luminosität, Wiggler und Undulatoren, Selbststudium: moderne Teilchbeschleuniger am Beispiel von HERA, LEP, Tevatron, LHC, ILC und free 48 Stunden electron laser FLASH/XFEL Kompetenzen: Die Studierenden sollen mit den Konzepten, der Physik und den konkrete gebauten Teilchenbeschleuniger vertraut gemacht werden. Wenn möglich soll die Strahlführung mittels numerischer Simulation (MatLab/SciLab) studiert werden. Lehrveranstaltung: Physik der Teilchenbeschleuniger Prüfung: Mündlich (ca. 30 Minuten) Prüfungsanforderungen: Konzepte, Physik und konkrete experimentelle Methoden zu Teilchenbeschleunigern Prüfungsanforderungen: ECTS-Bedingungen de **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: Einführung in die Kern- und Teilchenphysik keine (B.Phy.504) Sprache: Modulverantwortliche[r]: Deutsch, Englisch Prof. Dr. Arnulf Quadt Angebotshäufigkeit: Dauer: unregelmäßig ein Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalia Maximale Studierendenzahl: nicht begrenzt Bemerkungen: Bachelor und Master ab 5. FS (KT)

Bemerkungen:

Bemerkungen extern de

3 C Georg-August-Universität Göttingen 3 SWS Modul B.Phy.5808: Wechselwirkung zwischen Strahlung und Materie - Detektorphysik English title: Interactions between radiation and matter - detector physics Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Mechanismen der Teilchendetektion, Wechselwirkung geladener Teilchen Präsenzzeit: und Photonen mit Materie, Ionisationsdetektoren, Drift und Diffusion, Gas-gefüllte 42 Stunden Drahtkammern, Proportional- und Driftkammern, Halbleiterdetektoren, Mikrostreifen-Selbststudium: und Pixeldetektoren, Tscherenkov-Detektoren, Übergangssstrahlungsdetektoren, 48 Stunden Szintillation (anorganische Kristalle und Plastikszintillatoren), elektromagnetische Kalorimeter, Hadronkalorimeter Kompetenzen: Die Studierenden sollen mit grundlegenden Methoden der Detektion von Teilchen/Strahlung in der Hochenergiephysik und ähnlichen Anwendungsgebieten vertraut gemacht werden. 3 SWS Lehrveranstaltung: Wechselwirkung zwischen Strahlung und Materie -Detektorphysik Prüfung: Mündlich (ca. 30 Minuten) Prüfungsanforderungen: Konzeptionelles Verständnis der Funktionsweise verschiedener Teilchendetektoren und den der Messung zugrunde liegenden Wechselwirkungen Prüfungsanforderungen: ECTS-Bedingungen de Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** Einführung in die Kern-/Teilchenphysik (B.Phy.504) keine Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Arnulf Quadt Angebotshäufigkeit: Dauer: iedes Sommersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalia ab 5 Maximale Studierendenzahl: nicht begrenzt

Georg-August-Universität Göttingen 3 C 3 SWS Modul B.Phy.5809: Hadron-Collider-Physik English title: Hadron-Collider-Physics Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Einführung in die Teilchenphysik, Kinematik an Hadron Collidern, historischer Präsenzzeit: 42 Stunden Überblick und experimentelle Besonderheiten von Hadron Collidern wie PS, SPS, Tevatron, HERA und LHC, typische Detektoren der Hadron-Collider Physik und Selbststudium: 48 Stunden deren Funktionsweise, Struktur des Protons und deren experimentelle Vermessung, Faktorisierungstheorem, totale und differentielle Hadron Wirkungsquerschnitte, Diffrakrtion, soft-underlying event und multiple interactions/pile-up, Physik starker Wechselwirkung wie Jet Rate, Winkelkorrelationen, Physik der schwachen Eichbosonen, Z-Asymmetrie, W-Masse, W-Ladungsasymmetrie, Z-/W_Jets Raten, Physik des Top-Quarks, Suche nach supersymmetrischen Teilchen als Kandidaten dunkler Materie, Suche nach neuer Physik/exotischen Modellen, experimentelle Methoden der Datenauswertung (Statistik, grid computing, ...). Kompetenzen: Die Studierenden sollen mit den Herausforderungen und Konzepten der experimentellen an modernen Hadron Collidern vertraut gemacht werden. 3 SWS Lehrveranstaltung: Hadron-Collider-Physik Prüfung: Mündlich (ca. 30 Minuten) Prüfungsanforderungen: Konzepte und konkrete experimentelle Methoden zur Hadron-Collider Physik. Prüfungsanforderungen: ECTS-Bedingungen de Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine Einführung in die Kern-/Teilchenphysik (B.Phy.504) Sprache: Modulverantwortliche[r]: Prof. Dr. Arnulf Quadt Deutsch, Englisch Angebotshäufigkeit: Dauer: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** ab 5 dreimalig Maximale Studierendenzahl: 30

Bemerkungen:

Georg-August-Universität Göttingen		6 C
Modul B.Phy.581: Spezielle Themen d	6 SWS	
Lernziele/Kompetenzen: Lernziele: Inhalte aktueller Forschung in der Kern- und Teilchenphysik, Vertiefung des im Wahlpflichtbereich angeeigneten Verständnisses von Methoden und Modellen. Kompetenzen: Die Studierenden sollen aktuelle Forschungsthemen verstehen und bewerten können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: Veranstaltung aus dem Lehrangebot der Kern- und Teilchenphysik		6 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		
Prüfungsanforderungen: Vertiefung der im Wahlpflichtbereich angeeigneten Kenntnisse in der Kern- und Teilchenphysik.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 90		

3 C Georg-August-Universität Göttingen 3 SWS Modul B.Phy.5810: Physik des Higgs-Bosons English title: Physics of the Higgs boson Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Einführung in das Standardmodell der Teilchenphysik, Higgs-Mechanismus Präsenzzeit: 42 Stunden und Higgs-Potenzial, Eigenschaften eines Standard Modell Higgs-Bosons, experimentelle Methoden der Suche nach dem Standard Modell Higgs Boson bei Selbststudium: LEP, Tevatron und LHC, Entdeckung des Higgs-Bosons, Messung der Kopplung und 48 Stunden anderer Eigenschaften des Higgs, Zwei-Higgs-Dublett Modell (2HDM) und andere Erweiterungen, insbesondere im MSSM, Suche nach Hinweisen für erweiterte Higgs-Modelle Kompetenzen: Die Studierenden sollen mit dem Higgs-Mechanismus, den Eigenschaften und experimentellen Methoden zur Untersuchung der Physik des Higgs-Bosons vertraut gemacht werden. 3 SWS Lehrveranstaltung: Physik des Higgs-Bosons Prüfung: Mündlich (ca. 30 Minuten) Prüfungsanforderungen: Konzepte und konkrete experimentelle Methoden zur Entdeckung und Vermessung der Physik des Higgs-Bosons Prüfungsanforderungen: ECTS-Bedingungen de

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Einführung in die Kern-/Teilchenphysik (B.Phy.504)
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Arnulf Quadt
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: ab 5
Maximale Studierendenzahl: 30	

Bemerkungen:

30

Bemerkungen:

Bachelor/Master ab 5. FS (KT)

Georg-August-Universität Göttingen 3 C 3 SWS Modul B.Phy.5811: Statistische Methoden der Datenanalyse English title: Statistical methods in data analysis Lernziele/Kompetenzen: Arbeitsaufwand: Präsenzzeit: Lernziele: Einleitung und Beschreibung von Daten, theoretische Verteilung wie Gauß, 42 Stunden Poisson etc. in mehreren Dimensionen mit Korrelation, Schätzung von Parametern, Maximum Likelihood Methoden mit Beispielen, chi^2 und chi^2-Verteilungen, Selbststudium: Optimierung, Prüfung von Hypothese, Hypothesetests, Klassifizierungsmethoden, Monte 48 Stunden Carlo Methoden, Entfaltung Kompetenzen: Die Studierenden sollen die Grundlagen der statistischen Methoden der Datenanalyse theoretisch erlernen und anhand von Programmierbeispielen in ROOT (kostenloses C++ artiges Softwarepaket zur Datenanalyse inkl. Displayfunktion, läuft auf Linux, Windows und Mac) erlernen und konkrete Beispiele im Detail diskutieren. Lehrveranstaltung: Statistische Methoden der Datenanalyse 3 SWS Prüfung: Mündlich (ca. 30 Minuten) Prüfungsanforderungen: Konzepte und Methoden sowie konkrete Implementierungen von statistischen Methoden der Datenanalyse Prüfungsanforderungen: ECTS-Bedingungen de Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine Einführung in die Kern-/Teilchenphysik (B.Phy.504) Sprache: Modulverantwortliche[r]: Prof. Dr. Arnulf Quadt Deutsch Angebotshäufigkeit: Dauer: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalig ab 5 Maximale Studierendenzahl:

3 C Georg-August-Universität Göttingen 3 SWS Modul B.Phy.5812: Physik des Top-Quarks English title: Physics of the top-quark Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Einführung in die Teilchenphysik der Quarks, Entdeckung des Top-Quarks, Präsenzzeit: 42 Stunden Top-Antitop Produktion (Theorie und Experiment), elektroschwache Produktion einzelner Top-Quarks, Top-Quark Masse, elektrische Ladung und Spin des Top-Quarks, Selbststudium: W-Helizität im Top-Zerfall, Top-Quark Zerfall im Standardmodell und darüberhinaus, 48 Stunden Sensitivität auf neue Physik, Top-Quark Physik am ILC, aktuelle und neueste Ergebnisse zum Top-Quark Kompetenzen: Die Studierenden sollen mit den Eigenschaften und Wechselwirkung des Top-Quarks sowie den experimentellen Methoden zur Untersuchung des Top-Quarks vertraut gemacht werden. Lehrveranstaltung: Physik des Top-Quarks 3 SWS Prüfung: Mündlich (ca. 30 Minuten) Prüfungsanforderungen: Konzepte und konkrete experimentelle Methoden zur Entdeckung und Vermessung der Physik des Top-Quarks Prüfungsanforderungen: ECTS-Bedingungen de Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine Einführung in die Kern-/Teilchenphysik (B.Phy.504) Sprache: Modulverantwortliche[r]: Prof. Dr. Arnulf Quadt Deutsch, Englisch Angebotshäufigkeit: Dauer: unregelmäßig 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalig ab 5 Maximale Studierendenzahl: 30 Bemerkungen:

Georg-August-Universität Göttingen Modul B.Phy.5813: Teilchenphysik 2 - von und mit Quarks English title: Particle physics II - of and with quarks

Lernziele/Kompetenzen:

Lernziele: Einführung in Teilchenphysik, Wiederholung von Teilchenphysik 1 (Einführung in die Kern- und Teilchenphysik), Übersicht, Eigenschaften und Entdeckung der Quarks (außer top), Entdeckung der W und Z Bosonen an Hadron-Collidern, das Top-Quark, Entdeckung und Eigenschaften, Die CKM Mischungsmatrix, Zerfälle schwerer Quarks, Quark-Mischung und Oszillationen, CP-Verletzung, Jets, Gluonen und Fragmentation, Tief-inelastische Streuung, QCD-Tests und Messung von alpha_s

Arbeitsaufwand:Präsenzzeit:
84 Stunden

Selbststudium: 96 Stunden

Kompetenzen: Die Studierenden sollen die Eigenschaften und Wechselwirkungen der Quarks erlernen und sich mit den experimentellen Methoden und Experimente zu deren Entdeckung bzw präzisen Untersuchung vertraut machen.

Lehrveranstaltungen:

- 1. Teilchenphysik 2 von und mit Quarks
- 2. Teilchenphysik 2 von und mit Quarks

4 SWS

2 SWS

Prüfung: Mündlich (ca. 30 Minuten)

Prüfungsanforderungen:

Konzepte und Methoden sowie konkrete Implementierungen von statistischen Methoden der Datenanalyse

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Einführung in die Kern-/Teilchenphysik (B.Phy.504)
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Arnulf Quadt
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: ab 5
Maximale Studierendenzahl: 30	

Bemerkungen:

Georg-August-Universität Göttingen Modul B.Phy.5814: Particle Physics 3 - of and with leptons English title: Particle Physics 3 - of and with leptons

Lernziele/Kompetenzen:

Lernziele: Entdeckung der Leptonen, Eigenschaften der Leptonen, schwache Wechselwirkung und V-A Struktur, neutrale Ströme, Standardmodell der Teilchenphysik, e+e- Physik bei LEP, Fermionpaar-Produktion bei verschiedenen Schwerpunktsenergie, Lineshape des Wirkungsquerschnitts am Z-Pol, Anzahl leichter Neutrino-Generationen, Vorwärts-Rückwärts-Asymmetrie, Tau-Polarisation, e+e- Physik bei ILC, (g-2)myon, Netrinos und Neutrinooszillationen, solare Neutrinos, athmosphärische Neutrinos, long-baseline Experimente, Neutrino-Fabriken, Neutrino Masse, neutrinoloser Doppel-Betazerfall der Neutrinos

Kompetenzen: Die Studierenden sollen die Eigenschaften und Wechselwirkungen der Leptonen erlernen und sich mit den experimentellen Methoden und Experimente zu deren Entdeckung bzw präzisen Untersuchung vertraut machen.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden

Lehrveranstaltungen:

1. Particle Physics 3 - of and with leptons

a Physics 2 of and with lantons

2. Particle Physics 3 - of and with leptons

2 SWS

4 SWS

Prüfung: Mündlich (ca. 30 Minuten)

Prüfungsanforderungen:

Konzepte und Experimente zu Entdeckung, Eigenschaften und Wechselwirkung der Quarks

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Einführung in die Kern-/Teilchenphysik (B.Phy.504)
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Arnulf Quadt
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: ab 5
Maximale Studierendenzahl: 30	

Bemerkungen:

Georg-August-Universität Göttingen		6 C
Modul B.Phy.582: Spezielle Themen der Kern- und Teilchenphysik II		6 SWS
Lernziele/Kompetenzen: Lernziele: Inhalte aktueller Forschung in der Kern- und Teilchenphysik, Vertiefung des im Wahlpflichtbereich angeeigneten Verständnisses von Methoden und Modellen. Kompetenzen: Die Studierenden sollen aktuelle Forschungsthemen verstehen und bewerten können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: Veranstaltung aus dem Lehrangebot der Kern- und Teilchenphysik IIa		3 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		3 C
Lehrveranstaltung: Veranstaltung aus dem Lehrangebot der Kern- und Teilchenphysik IIb		3 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		3 C
Prüfungsanforderungen: Vertiefung der im Wahlpflichtbereich angeeigneten Korteilchenphysik.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Semester	Dauer: 2 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 90		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.583: Spezielle Themen der Kern- und Teilchenphysik III		3 SWS
Lernziele/Kompetenzen: Lernziele: Inhalte aktueller Forschung in der Kern- und Teilchenphysik, Vertiefung des im Wahlpflichtbereich angeeigneten Verständnisses von Methoden und Modellen. Kompetenzen: Die Studierenden sollen aktuelle Forschungsthemen verstehen und bewerten können.		Arbeitsaufwand: Präsenzzeit: 42 Stunden Selbststudium: 48 Stunden
Lehrveranstaltung: Veranstaltung aus dem Lehrangebot der Kern- und Teilchenphysik		3 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		
Prüfungsanforderungen: Vertiefung der im Wahlpflichtbereich angeeigneten Kenntnisse in der Kern- und Teilchenphysik.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

180

0 4 411 1 100 000		140
Georg-August-Universität Göttingen		4 C 2 SWS
Modul B.Phy.602: Professionalisierungsseminar		2 000
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Umgang mit Präsentationsmedien und Prä	sentation komplexer Sachverhalte	Präsenzzeit:
vor Experten und fachfremden Zuhörern, Kommunika	tions- und Diskussionsfähigkeit,	28 Stunden
Kritikfähigkeit und Ausdrucksfähigkeit.		Selbststudium:
Kompetenzen: Die Studierenden sollen selbständig o	den Inhaltwissenschaftlicher	92 Stunden
Publikationen (in der Regel englischsprachig) erarbeit	en und vor einem breiten Publikum	
präsentieren können.		
Lehrveranstaltung: B.Phy.602. Professionalisierungsseminar (Seminar)		2 SWS
Prüfung: Seminarvortrag (ca. 30 Min.)		
Prüfungsanforderungen:		
4 Wochen Vorbereitungszeit		
Prüfungsanforderungen:		
Selbständige Erarbeitung wissenchaftlicher Publikationen und deren Präsentation.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
keine	keine	
Sprache:	Modulverantwortliche[r]:	
Deutsch, Englisch Studiendekan/in der Fakultät für P		hysik
Angebotshäufigkeit: Dauer:		
jedes Sommersemester	mester 1 Semester	
Wiederholbarkeit: Empfohlenes Fachsemester:		
dreimalig		
Maximale Studierendenzahl:		

Georg-August-Universität Götting	en	6 C	
Modul B.Phy.604: Projektpraktikum		6 SWS	
Lernziele/Kompetenzen:		Arbeitsaufwand:	
Lernziele: Eigenständige Planung und Anw	_	Präsenzzeit:	
komplexere experimentelle Fragestellunger	. ,	84 Stunden	
Grundpraktikums, Präsentation eigener Arb	eiten.	Selbststudium:	
Kompetenzen: Die Studierenden sollen Pro	ojekte in Teamarbeit planen, durchführen,	96 Stunden	
dokumentieren, aus¬ und bewerten können			
Lehrveranstaltung: B.Phy.604. Projektpra	aktikum (Praktikum)	6 SWS	
Prüfung: Präsentation und schriftliche Zusammenfassung			
Prüfungsanforderungen:			
Präsentation (ca. 30 Min.) und schriftliche Z	usammenfassung (max. 30 S.). Die		
Präsentation macht 20 Prozent, die schriftlid	che Zusammenfassung 80 % der Endnote		
aus.			
Prüfungsanforderungen:	Prüfungsanforderungen:		
Planung, Durchführung, Dokumentation und	d Bewertung von Projekten in Teamarbeit		
Zugangsvoraussetzungen:	Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
keine	keine		
Sprache:	Modulverantwortliche[r]:	Modulverantwortliche[r]:	
Deutsch	Studiendekan/in der Fakultät für	Studiendekan/in der Fakultät für Physik	
Angebotshäufigkeit:	Dauer:	Dauer:	
jedes Sommersemester	1 Semester	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	Empfohlenes Fachsemester:	
dreimalig	4		
Maximale Studierendenzahl:			
200			

Georg-August-Universität Göttingen		8 C 8 SWS
Modul B.Phy.605: Computergestütztes wissenschaftliches Rechnen		0 3 4 7 3
Lernziele/Kompetenzen:		Arbeitsaufwand:
1. Teilmodul:		Präsenzzeit:
Lernziele: Grundlagen der Rechnerbedienung, eleme einer modernen Hochsprache.	Lernziele: Grundlagen der Rechnerbedienung, elementare Programmier-kenntnisse in einer modernen Hochsprache.	
Kompetenzen: Die Studierenden sollen einfache Auf Rechnerprogramme umsetzen können.	gabenstellungen in	128 Stunden
2. Teilmodul:		
Lernziele: Elementare Algorithmen des naturwissens	chaftlichen Rechnens.	
Kompetenzen: Die Studierenden sollen komplexe Probleme aus dem naturwissenschaftlichen Bereich in effiziente Algorithmen umsetzen, die numerisch gewonnene Daten auswerten, interpretieren sowie graphisch aufbereiten und präsentieren können.		
Lehrveranstaltung: B.Phy.605.1.Grundlagen der Rechnerbedienung und Programmierung (Übung, Vorlesung)		2 SWS
Prüfung: Hausarbeit, unbenotet Prüfungsanforderungen: Hausarbeit (max. 100 kB, Pass/Fail)		2 C
Lehrveranstaltung: B.Phy.605.2.Algorithmen des wissenschaftlichen Rechnens (Übung, Vorlesung)		6 SWS
Prüfung: Schriftlicher Bericht (max. 10 Seiten)		6 C
Prüfungsanforderungen: Teilmodul 1: Programmierkenntnisse Teilmodul 2: Umsetzung einer Aufgabenstellung in ein lauf-fähiges Programm.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in der Fakultät für Physik	
Angebotshäufigkeit: jedes Wintersemester	Dauer: 2 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
		

Maximale Studierendenzahl:

200

Georg-August-Universität Göttingen		6 C
Modul B.Phy.606: Elektronikpraktikum für Naturwissenschaftler		6 SWS
Lernziele/Kompetenzen: Lernziele: (1) Grundbegriffe der Elektronik; (2) Umgang mit einfachen Bauelementen, Grundschaltungen und Funktionseinheiten; (3) Konzipierung und Realisierung eines Projekts im Bereich der Elektronik. Kompetenzen: Die Studierenden sollen mit modernen elektronischen Geräten umgehen können und ein wissenschaftliches Projekt in Teamarbeit innerhalb eines gegebenen Zeitrahmens durchführen können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: B.Phy.606. Elektronikpraktikum für Naturwissenschaftler (Übung, Vorlesung, Praktikum) 1. Vorlesung mit Übung 2. Praktikum (5 Versuche) 3. Praktikum (1 Projekt)		6 SWS
Prüfung: Abschlussbericht (max. 10 S.) mit Vortrag (max. 30 Min.) Prüfungsvorleistungen: Sicherheitsbelehrung; 50% der Übungsaufgaben aus der Vorlesung müssen bestanden sein		
Prüfungsanforderungen: Grundbegriffe der Elektronik; Umgang mit einfachen Bauelementen, Grundschaltungen und Funktionseinheiten; Konzipierung und Realisierung eines Projekts im Bereich der Elektronik.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Arnulf Quadt Studiendekan/in der Fakultät für Physik	
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 20		
Bemerkungen: (Veranstaltung auf Wunsch auch auf Englisch) Blockveranstaltung		

Georg-August-Universität Göttingen Modul B.Phy.607: Akademisches Schreiben für Physiker/innen

Lernziele/Kompetenzen:	Arbeitsaufwand:
Lernziele:	Präsenzzeit:
In diesem Workshop erlernen Studierende Grundkompetenzen des akademischen	28 Stunden
Schreibens in den beiden Schreibtraditionen des Deutschen und Englischen. Hierfür	Selbststudium:
werden unterschiedliche Textarten (z.B. wissenschaftlicher Artikel, Essay, Protokoll,	92 Stunden
Bericht) sowie akademische Teiltexte (z.B. Einleitung – Introduction) in den beiden	
Schreibtraditionen analysiert und miteinander verglichen. Von diesem analytisch-	
rezeptiven Ansatz ausgehend vertiefen die Studierenden ihre Kenntnisse, indem sie	
selbst akademische Texte in beiden Schreibtraditionen verfassen, hierbei wird ein	
Schwerpunkt auf das Schreiben englischer akademischer Texte gelegt.	
Kompetenzen:	
Akademische Schreibkompetenzen in englischer und deutscher Schreibtradition,	
Reflexionsvermögen eigener akademischer Schreibprozesse, Feedbackkompetenzen	

Lehrveranstaltung: Akademisches Schreiben für Physiker/innen	2 SWS
Prüfung: Portfolio (max. 20 Seiten)	
Prüfungsvorleistungen:	
Aktive, regelmäßige Teilnahme an dem Workshop, Erledigen schriftlicher Teilleistungen	

Prüfungsanforderungen: Verfassen deutscher und englischer wissenschaftlicher Texte

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: apl. Prof. Dr. Susanne Schneider
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 20	

Georg-August-Universität Göttingen Modul B.Phy.608: Scientific Literacy - Integration von Naturwissenschaften in die Gesellschaft und Politik English title: Scientific Literacy

Lernziele/Kompetenzen: Arbeitsaufwand: Präsenzzeit:

Dieses interdisziplinäre Modul soll die Kluft zwischen den Naturwissenschaften und den Geistes- und Gesellschaftswissenschaften überbrücken helfen. Die Studierenden aller Fachrichtungen sollen gemeinsam naturwissenschaftliche Erkenntniswege kennenlernen und sie anhand aktueller Themen (z.B. anthropogener Klimawandel) nachvollziehen. Hierzu werden auch Grundlagen der Wissenschaftstheorie vermittelt.

Präsenzzeit: 28 Stunden Selbststudium: 92 Stunden

Kompetenzen:

Scientific Literacy (u.a. wissenschaftliche Nachprüfbarkeit, Unterscheidung zwischen naturwissenschaftlichen, politischen und gesellschaftlichen Komponenten einer Bewertung), Vermittlungskompetenz

Lehrveranstaltung: Seminar	2 SWS
----------------------------	-------

Prüfung: Portfolio (max. 10 Seiten)

Prüfungsvorleistungen:

Seminarvortrag (30 Minuten) oder äquivalente Leistung

Prüfungsanforderungen:

Grundlagen der Wissenschaftstheorie, Unterscheidung zwischen naturwissenschaftlichen, politischen und gesellschaftlichen Komponenten einer Bewertung

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Karsten Bahr
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 1 - 6; Master: 1 - 4
Maximale Studierendenzahl: 24	

Coolig / Laguet Cilifoldiat Cottingon	6 C
Modul B.WIWI-BWL.0002: Interne Unternehmensrechnung	4 SWS
English title: Cost and Management Accounting	

English title: Cost and Management Accounting	
Lernziele/Kompetenzen:	Arbeitsaufwand:
Den Studierenden wird in diesem Modul ein Überblick über die Aufgaben, Grundbegriffe	Präsenzzeit:
und Instrumente der internen Unternehmensrechnung gegeben. Es wird vermittelt, wie	56 Stunden
die interne Unternehmensrechnung das Management bei der Lösung von Planungs-,	Selbststudium:
Kontroll- und Steuerungsaufgaben unterstützen kann. Der Schwerpunkt des Moduls	124 Stunden
liegt auf der Konzeption, dem Aufbau und dem Einsatz operativer Kosten-, Leistungs-	
und Erfolgsrechnungssysteme.	
Lehrveranstaltungen:	
1. Interne Unternehmensrechnung (Vorlesung)	2 SWS
2. Tutorenübung Interne Unternehmensrechnung (Übung)	2 SWS
Prüfung: Klausur (90 Minuten)	
Prüfungsanforderungen:	
Die Studierenden müssen grundlegende Kenntnisse im Bereich der internen	
Unternehmensrechnung nachweisen. Dieses beinhaltet, dass die Studierenden	
die Konzeption, den Aufbau und die Anwendung der grundlegenden Instrumente	
	I

Die Studierenden müssen grundlegende Kenntnisse im Bereich der internen
Unternehmensrechnung nachweisen. Dieses beinhaltet, dass die Studierenden
die Konzeption, den Aufbau und die Anwendung der grundlegenden Instrumente
der internen Unternehmensrechnung theoretisch verstanden haben müssen.
Darüber hinaus müssen sie in der Lage sein, die Instrumente der internen
Unternehmensrechnung bei Fallstudien und Aufgaben anzuwenden und im Hinblick auf
ihre Eignung zur Lösung von Managementaufgaben zu beurteilen.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	Modul "Jahresabschluss (Externes
	Rechnungswesen)"
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Stefan Dierkes
	Prof. Dr. Michael Wolff
Angebotshäufigkeit:	Dauer:
jedes Wintersemester	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	3 - 4
Maximale Studierendenzahl:	
nicht begrenzt	

Georg-August-Universität Göttingen Modul B.WIWI-BWL.0004: Produktion und Logistik English title: Production and Logistics 6 C 4 SWS

Lernziele/Kompetenzen:

Die Vorlesung gibt einen Überblick über betriebliche Produktionsprozesse und zeigt die enge Verzahnung von Produktion und Logistik auf. Es werden Methoden und Planungsmodelle vorgestellt, mit denen betrieblich Abläufe effizient gestaltet werden können. Insbesondere wird dabei auf die Bereiche Produktions- und Kostentheorie, Produktionsprogrammplanung, Beschaffungs- und Produktionslogistik sowie Distributionslogistik eingegangen.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Die Studierenden

- können Produktions- und Logistikprozesse in das betriebliche Umfeld einordnen.
- können die Teilbereiche der Logistik differenzieren und charakterisieren.
- kennen die Grundlagen der Produktionsprogrammplanung.
- können mit Hilfe der linearen Optimierung Produktionsprogrammplanungsprobleme lösen und die Ergebnisse im betrieblichen Kontext interpretieren.
- kennen die Grundlagen und Zielgrößen der Bestell- und Ablaufplanung.
- kennen die Teilbereiche der Distributionslogistik und können diese differenziert in den logistischen Zusammenhang setzen
- können verschiedene Verfahren der Transport- und Standortplanung auf einfache Probleme anwenden.
- kennen Simulations- und Visualisierungssoftware von Produktions- und Logistikprozessen

Lehrveranstaltungen:

- 1. Produktion und Logistik (Vorlesung)
- 2. Tutorenübung Produktion und Logistik (Übung)

2 SWS

2 SWS

Prüfung: Klausur (90 Minuten)

Prüfungsanforderungen:

Die Studierenden weisen in der Modulprüfung Kenntnisse in den folgenden Bereichen nach:

- Produktions- und Kostentheorie
- Produktionsprogrammplanung
- Bereitstellungsplanung/Beschaffungslogistik
- Durchführungsplanung/Produktionslogistik
- Distributionslogistik
- Simulation und Visualisierung von Produktions- und Logistikprozessen

- Anwendung grundlegender Algorithmen des Operations Research und der linearen Optimierung auf Probleme der oben genannten Bereiche.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Modul "Mathematik"
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Jutta Geldermann
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2 - 5
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen	6 C 4 SWS
Modul B.WIWI-OPH.0005: Jahresabschluss	4 3 7 7 3
English title: Financial Statements	

		4 SWS
Modul B.WIWI-OPH.0005: Jahresabschluss		
English title: Financial Statements		
Lernziele/Kompetenzen:		Arbeitsaufwand:
Die Studierenden sollen		
		Präsenzzeit:
- Verständnis gewinnen für Handlungsziele und Informationsinteressen der -		56 Stunden
Stakeholder-;		Selbststudium:
- Kenntnis erlangen über rechtliche Grundlagen der periodischen Rechnungslegung in		124 Stunden
Personenunternehmen und Kapitalgesellschaften (HGB		
- Fähigkeit erlangen, Rechtsvorschriften für die Dokumentation von Wertstrukturen und		
Leistungsprozessen in Unternehmen anzuwenden und		
wirtschaftlichen		
Lage von Unternehmen vorzunehmen;		
- Sicherheit erlangen in der Anwendung der deutschen und englischen Fachbegriffe des		
externen Rechnungswesens.		
Lehrveranstaltungen:		
1. Jahresabschluss (Vorlesung)		2 SWS
2. Tutorium Jahresabschluss (Übung)		2 SWS
Prüfung: Klausur (90 Minuten)		
Prüfungsanforderungen:		
Nachweis von Kenntnissen zu Buchführung, Bilanzierung und Bewertung in		
Unternehmen nach Handelsrecht - einschließlich Jahresabschlussanalyse		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Jörg-Markus Hitz
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 1 - 2
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen Modul B.WIWI-WIN.0001: Management der Informationssysteme English title: Management of Business Information Systems 6 C 2 SWS

Lernziele/Kompetenzen:

Nach erfolgreicher Teilnahme sind die Studierenden in der Lage,

- die Phasen einer Anwendungssystementwicklung zu beschreiben sowie dortige Instrumente erläutern und anwenden zu können,
- Vorgehensweisen, Ansätze und Werkzeuge zur Entwicklung von Anwendungssystemen zu beschreiben, gegenüberzustellen und vor dem Hintergrund gegebener Problemstellungen zu bewerten,
- Elemente von Modellierungstechniken und Gestaltungsmöglichkeiten von Anwendungssystemen zu beschreiben und zu erläutern,
- ausgewählte Methoden zur Modellierung von Anwendungssystemen selbstständig anwenden zu können,
- · Prinzipien der Anwendungssystementwicklung auf gegebene Problemstellungen transferieren zu können,
- · in Gruppenarbeit mit Hilfe angeeigneter Kommunikations- und Organisationsfähigkeiten Aufgabenstellungen im Themenfeld der Vorlesung zu bearbeiten.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 152 Stunden

Lehrveranstaltung: Management der Informationssysteme (Vorlesung)

Inhalte:

Vorlesung:

- Einführung
- Grundlagen der Systementwicklung
- Planung- und Definitionsphase
- Entwurfsphase
- Implementierungsphase
- Abnahme- und Einführungsphase
- Wartungs- und Pflegephase

Prüfung: Klausur (90 Minuten)

Prüfungsvorleistungen:

Drei erfolgreich testierte Bearbeitungen von Fallstudien

Prüfungsanforderungen:

Die Studierenden weisen in der Modulprüfung nach, dass sie

- · die in der Vorlesung vermittelten Aspekte der Anwendungssystementwicklung erläutern und beurteilen können,
- · Projekte zur Anwendungssystementwicklung in die vermittelten Phasen einordnen können,

2 SWS

- · Vorgehensweisen, Ansätze und Werkzeuge zur Entwicklung von Anwendungssystemen auf praktische Problemstellungen transferieren können,
- komplexe Aufgabenstellungen mit Hilfe der vermittelten Inhalte analysieren und Lösungsansätze selbstständig aufzeigen können,
- · Vermittelte Methoden zur Modellierung von Anwendungssystemen notationskonform anwenden können und
- · in der Vorlesung vermittelten Ansätze auf vergleichbare Problemstellungen im Umfeld betrieblicher Anwendungssysteme übertragen können.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Modul "Informations- und Kommunikationssysteme"
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Matthias Schumann
Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 6
Maximale Studierendenzahl: nicht begrenzt	

6 C Georg-August-Universität Göttingen 2 SWS Modul B.WIWI-WIN.0004: Informationsverarbeitung in Dienstleistungsbetrieben English title: Information Management in Service Enterprises Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreicher Teilnahme sind die Studierenden in der Lage, Präsenzzeit: 28 Stunden die theoretischen Grundlagen der Informationsverarbeitung in Selbststudium: Dienstleistungsbetrieben zu beschreiben und zu erläutern, 152 Stunden wesentliche Aspekte der Anforderungen an die IV in ausgewählten Dienstleistungsbranchen zu unterscheiden und deren Umsetzung in Systemkonzeptionen zu erklären, die wichtigsten Anwendungssystemtypen zu erläutern und zu analysieren, anhand von praktischen Beispielen Anwendungssysteme für die Unterstützung ausgewählter Aufgaben von Dienstleistern zu erläutern und zu bewerten sowie diese auf verwandte Situationen anzuwenden und zu transferieren, ausgewählte aktuelle Trends aus dem Bereich der Dienstleistungserbringung zu analysieren und kritisch zu reflektieren, in Gruppenarbeit mit Hilfe angeeigneter Kommunikations- und Organisationsfähigkeiten Aufgabenstellungen zu bearbeiten. Lehrveranstaltung: Informationsverarbeitung in Dienstleistungsbetrieben 2 SWS (Vorlesung) Inhalte: • Grundlagen der Dienstleistungserbringung und der dafür notwendigen Informationsverarbeitung (IV) • IV bei Finanzdienstleistern (Kredit-Scoring, Wertpapiergeschäft, Zahlungsverkehrsabwicklung) • IV in der Versicherungsbranche (Workflow-Management-Systeme, Dokumentenmanagement-Systeme) • IV in der Medienwirtschaft (Content-Management-Systeme) • IV in der Touristik (Reisevertriebssysteme) Prüfung: Klausur (90 Minuten) Prüfungsvorleistungen: drei erfolgreich testierte Bearbeitungen von Fallstudien Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, dass sie Theorien und Konzepte zur Informationsverarbeitung in Dienstleistungsbetrieben

erläutern und beurteilen können,

- komplexe Aufgabenstellungen im Rahmen der Dienstleistungserbringung in kurzer Zeit analysieren und sowohl Herausforderungen als auch Lösungsansätze aufzeigen können und
- in der Vorlesung kennengelernte Ansätze auf vergleichbare Problemstellungen übertragen können.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Modul "Informations- und Kommunikationssysteme"
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Matthias Schumann
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 6
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen Modul B.WIWI-WIN.0011: Programmiersprache C# English title: Computer language C#		4 C 2 SWS
Lernziele/Kompetenzen: Die Studierenden sind nach erfolgreicher Teilnahme of die Paradigmen, Anwendungen und Vorteile de Programmiersprachen zu erläutern, die objektorientierten Begriffe Objekt, Klasse, Avererbung darzulegen und anzuwenden, mit Hilfe der Programmiersprache C# einfache können.	r objektorientierten Abstraktion, Kapselung und	Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 92 Stunden
Lehrveranstaltung: Programmiersprache C# (Vorlesung und Praktikum) Inhalte: Inhalte Vorlesung:		2 SWS
- Grundlagen der Programmiersprache (Programmaufbau, Daten, Ausdrücke, Abweisungen)		
Objektorientierte Programmierung (Grundlagen, Klasse und Objekte, Methoden, Konstruktoren, Vererbung, Nutzung API)		
· Verarbeitung von Ereignissen		
· Verwendung des Collection-Frameworks		
Graphische Benutzeroberfläche (Objekte, Verhalten, Ereignisse)		
· Arbeit mit Datenbank		
Inhalte Praktikum:		
Verdeutlichung und Vertiefung der Vorlesungsinhalte anhand praktischer Übungen(Programmieraufgaben)		
Prüfung: Klausur (90 Minuten)		
Prüfungsanforderungen: Die Studierenden weisen in der Modulprüfung nach, dass sie Programmcode in der Programmiersprache C# im Microsoft .NET-Framework erstellen können, Theorien der Objektorientierung kennen und erläutern können.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: Modul "Informations- und Kommunikationssysteme"	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Matthias Schumann	

Dauer:

Angebotshäufigkeit:

jedes Sommersemester	1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 6
Maximale Studierendenzahl: 40	