Modulverzeichnis

Bachelor's degree programme "Molecular Ecosystem Sciences" (supplement to the examination and study regulations for the Bachelor's degree programme published in Amtliche Mitteilungen I 17/2015 p. 235)

Seite 4369

Module

B.MES.101: Molecular plant and stress physiology	4375
B.MES.102: Chemical ecology	4376
B.MES.103: Ecological genetics	4377
B.MES.104: Biotic and abiotic interactions	4378
B.MES.106: Microbiology and molecular biology	4379
B.MES.107: Ecological modelling	4380
B.MES.108: Computer science and mathematics	4381
B.MES.109: Plant ecology and diversity	4382
B.MES.111: Terrestrial biogeochemistry	
B.MES.112: Environmentally friendly production of wood	4384
B.MES.113: Methods in systems biology	4385
B.MES.114: Biodiversity of pro- and eukaryotic soil microbial communities	4386
B.MES.116: Conservation and ecosystem management	4387
B.MES.117: Atmosphere-ecosystem interactions	
B.MES.118: Resource assessment in ecosystems	4389
B.MES.119: Isotopes in ecosystem sciences	
B.MES.121: Global change	4392
B.MES.122: Molecular soil ecology	4393
B.MES.123: Project (research participation)	4395
B.MES.301: Special topics in plant methods and ecological applications I	4396
B.MES.302: Special topics in plant methods and ecological applications II	
B.MES.303: Semiochemical diversity	4398
B.MES.304: Protection of renewable resources	4399
B.MES.305: Conservation of biodiversity	
B.MES.306: Intraspecific diversity of plants	4401
B.MES.307: Research practicum	
B.MES.308: Scientific project	
B.MES.309: Practical training in laboratory techniques	
B.MES-SK.105: Laboratory techniques	4405

B.MES-SK.110: The science-policy interface: society and research structures	4406
B.MES-SK.115: Scientific methods and project design	4407
SK.FS.EN-FF-C1-1: Scientific Writing in English	4408

Übersicht nach Modulgruppen

I. Bachelor's degree programme "Molecular Ecosystem Sciences"

To successfully complete the Bachelor's degree programme, a total of 180 C must be earned.

1. Compulsory Modules in the field of Molecular Ecosystem Sciences

The 19 following modules comprising 114 Credits must be successfully completed.

B.MES.101: Molecular plant and stress physiology (6 C, 4 SWS)
B.MES.102: Chemical ecology (6 C, 4 SWS)4376
B.MES.103: Ecological genetics (6 C, 4 SWS)4377
B.MES.104: Biotic and abiotic interactions (6 C, 4 SWS)4378
B.MES.106: Microbiology and molecular biology (6 C, 4 SWS)4379
B.MES.107: Ecological modelling (6 C, 4 SWS)4380
B.MES.108: Computer science and mathematics (6 C, 4 SWS)4381
B.MES.109: Plant ecology and diversity (6 C, 4 SWS)
B.MES.111: Terrestrial biogeochemistry (6 C, 4 SWS)4383
B.MES.112: Environmentally friendly production of wood (6 C, 4 SWS)4384
B.MES.113: Methods in systems biology (6 C, 4 SWS)4385
B.MES.114: Biodiversity of pro- and eukaryotic soil microbial communities (6 C, 4 SWS)4386
B.MES.116: Conservation and ecosystem management (6 C, 4 SWS)
B.MES.117: Atmosphere-ecosystem interactions (6 C, 4 SWS)
B.MES.118: Resource assessment in ecosystems (6 C, 4 SWS)4389
B.MES.119: Isotopes in ecosystem sciences (6 C, 4 SWS)4391
B.MES.121: Global change (6 C, 4 SWS)4392
B.MES.122: Molecular soil ecology (6 C, 4 SWS)4393
B.MES.123: Project (research participation) (6 C, 4 SWS)

2. Professionalisation

A total of 54 C have to be earned according to the following regulations.

a. Key competencies

The 4 following modules comprising 24 C must be successfully completed.	
B.MES-SK.105: Laboratory techniques (6 C, 4 SWS))5

B.MES-SK.110: The science-policy interface: society and research structures (6 C, 4 SWS)4406
B.MES-SK.115: Scientific methods and project design (6 C, 4 SWS)4407
SK.FS.EN-FF-C1-1: Scientific Writing in English (6 C, 4 SWS)

b. Elective modules

A minumum of 5 modules mentioned below comprising at least 30 C must be successfully completed. Modules mentioned below may be substituted with alternative modules according to regulation 2 paragraph 4 of the examination regulations for this degree programme. Save sentence 2, one module may be substituted with any module regarding key competencies in the sense of Regulation 8 a of the General Examination Regulations comprising at least 6 C.

B.MES.301: Special topics in plant methods and ecological applications I (6 C, 4 SWS)	4396
B.MES.302: Special topics in plant methods and ecological applications II (6 C, 4 SWS)	4397
B.MES.303: Semiochemical diversity (6 C, 4 SWS)	4398
B.MES.304: Protection of renewable resources (6 C, 4 SWS)	4399
B.MES.305: Conservation of biodiversity (6 C, 4 SWS)	4400
B.MES.306: Intraspecific diversity of plants (6 C, 4 SWS)	4401
B.MES.307: Research practicum (6 C, 4 SWS)	4402
B.MES.308: Scientific project (12 C, 3 SWS)	4403
B.MES.309: Practical training in laboratory techniques (18 C, 4 SWS)	4404

3. Bachelor's thesis

A total of 12 C are awarded for successfully completing the Bachelor's thesis.

Georg-August-Universität Göttingen		6 C
Module B.MES.101: Molecular plant and stress physiology		4 WLH
Learning outcome, core skills: In this course the students will learn how a plant functions at the cell, tissue and whole-plant level. The contents of the lectures encompass basic cell biology and plant physiology (nutrient uptake, and transport process, photosynthesis, respiration, plant hormones, development and stress adaptation). In the practical courses students will be trained at modern microscopes, will lean the basics of tissue culture, and will obtain practical expertise with the use of ecophysiological methods such as measurements of photosynthesis, fluorescence, water potentials etc.		Workload: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Molecular plant physiology (Lecture) 2. Cell biology, tissue culture and stress response Examination: Written exam (120 minutes)	es (Practical course)	2 WLH 2 WLH 6 C
Examination requirements: Cell compartments and organelles, their structure and function, membrane transport, molecular principles of photosynthesis and respiration, molecular functioning of plant hormones in plant development and stress adaptation, tree biotechnology. Skills: solid theoretical foundation in plant physiology and practical skills in tree regeneration and working under sterile conditions.		
Admission requirements: none	Recommended previous knowled Basic knowledge in biology	dge:
Language: English Course frequency: each winter semester	Person responsible for module: Prof. Dr. Andrea Polle Duration: 1 semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 1	
Maximum number of students: 25		

Course frequency:

25

each winter semester

cf. examination regulations

Maximum number of students:

Number of repeat examinations permitted:

Georg-August-Universität Göttingen		6 C
Module B.MES.102: Chemical ecology		4 WLH
Learning outcome, core skills:		Workload:
Students will learn to analyze the molecular basis of	of plant-insect interactions from the	Attendance time
plant and from the insect point of view, based on plant volatiles associated to plant		56 h
stress correlating with defence status and nutritional value of the plant. They learn how		Self-study time:
information gained by insect antennae is examined to understand the translation of this		124 h
information into insect behaviour. Students will learn to assess how sensor-systems		
on the basis of insect olfaction can be utilized and how chemo-ecological findings can		
be extended into landscape by an integrative examination of biotic interactions from		
the molecular to the stand level. This will be the basis for understanding the role of		
semiochemical diversity in adaptation toward global change and for ecosystem functions		5
and services.		
Courses:		
1. Chemical ecology (Lecture)		1 WLH
	ourse, seminar)	1 WLH 3 WLH
 Chemical ecology (Lecture) Exercises in chemical ecology (Laboratory context Examination: Oral examination (approx. 20 minimation) 		
2. Exercises in chemical ecology (Laboratory co Examination: Oral examination (approx. 20 min		3 WLH
2. Exercises in chemical ecology (Laboratory co Examination: Oral examination (approx. 20 mine Examination requirements:	utes)	3 WLH
2. Exercises in chemical ecology (Laboratory co	utes) vs, perception of semiochemicals,	3 WLH
2. Exercises in chemical ecology (Laboratory co Examination: Oral examination (approx. 20 mine Examination requirements: Biosynthesis of semiochemicals, signaling pathway transduction pathways, physiological action and be	utes) vs, perception of semiochemicals,	3 WLH
2. Exercises in chemical ecology (Laboratory co Examination: Oral examination (approx. 20 min) Examination requirements: Biosynthesis of semiochemicals, signaling pathway	utes) vs, perception of semiochemicals,	3 WLH 6 C
2. Exercises in chemical ecology (Laboratory co Examination: Oral examination (approx. 20 minu Examination requirements: Biosynthesis of semiochemicals, signaling pathway transduction pathways, physiological action and be syn- and demecological aspects. Admission requirements:	utes) /s, perception of semiochemicals, havioural activity of semiochemicals,	3 WLH 6 C
2. Exercises in chemical ecology (Laboratory co Examination: Oral examination (approx. 20 mine Examination requirements: Biosynthesis of semiochemicals, signaling pathway transduction pathways, physiological action and be syn- and demecological aspects.	utes) vs, perception of semiochemicals, havioural activity of semiochemicals, Recommended previous knowledge	3 WLH 6 C

Duration:

1

1 semester[s]

Recommended semester:

Georg-August-Universität Göttingen		6 C
Module B.MES.103: Ecological genetics		4 WLH
Learning outcome, core skills:	atio) variation for accountam	Workload: Attendance time:
Understanding of the importance of intraspecific (gene processes and functions, in particular		56 h
 knowledge of modern methods to assess geneti organisms 	c diversity in diverse groups of	Self-study time: 124 h
• understanding of the role of the evolutionary factors to shape genetic diversity with emphasis on selection		
 understanding of evolutionary processes including conditions and in managed ecosystems 	ng adaptation under natural	
understanding of the impact of global change on	genetic resources	
Courses: 1. Ecological genetics (Lecture)		2 WLH
2. Assessment of genetic variation (Laboratory co	urse, workshops)	2 WLH
Examination: Oral examination (approx. 20 minute	es)	
Examination requirements: Use of modern methods to assess genetic variation in evolutionary factors and how they shape genetic dive natural or managed conditions, impact of global change	rsity, the role of adaptation under	
Admission requirements: none	Recommended previous knowle	dge:
Language: English	Person responsible for module: N. N.	
Course frequency: each winter semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 1	
Maximum number of students: 25		

Georg-August-Universität Göttingen		6 C 4 WLH
Module B.MES.104: Biotic and abiotic interactions		
Learning outcome, core skills: Interactions between biotic and abiotic components of ecosystems are largely responsible for ecosystem properties and functions. Abiotic interactions will be studied in a submodule focused on the biochemistry of soils; biotic interactions are introduced with a focus on pathogens. Students will be trained to analyze these important ecological interactions at different scales.		Workload: Attendance time: 56 h Self-study time: 124 h
Significance of soil biochemistry for ecosystem pro- basic soil properties and chemical principles. Trans solid, liquid, gaseous and living phases in soil will g of soils as the main part of terrestrial ecosystems a knowledge from molecular to pedon and field scale	formations and interactions between live background for understanding nd application of biochemical	
Biotic interactions will be studied at different levels taking into consideration their molecular basis such as genes and their products and with different organisms, plants and/or animals including wildlife.		
Courses:		
1. Soil biochemistry (Lecture, seminar)		2 WLH
2. Biotic interactions in ecology (Lecture, seminar)		2 WLH
Examination: Written exam (90 minutes)		6 C
Examination requirements: Biochemical processes in soils, weathering and soi soil formation, soil organisms and decomposition pr interactions with clay minerals, molecular basis of b products, interactions among different organisms.	rocesses, soil organic matter and	
Admission requirements: none	Recommended previous knowledge: none	
Language: English	Person responsible for module: Prof. Dr. Yakov Kuzyakov	
Course frequency: each winter semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 1	
Maximum number of students:		

Georg-August-Universität Göttingen		6 C
Module B.MES.106: Microbiology and molecular biology		4 WLH
Learning outcome, core skills: Students will be introduced to molecular, biochemical and physiological aspects in		Workload: Attendance time:
microbiology and molecular biology which is important to Ecosystem Sciences. The		56 h
acquired knowledge allows the students to address questions and problems in Ecology		Self-study time:
and Systems Biology on molecular levels and understand the background of modern molecular methods that can be applied to solve such topics.		124 h
Courses:		
1. Microbiology and biotechnology (Lecture)		2 WLH
2. Molecular biology (Lecture)		2 WLH
Examination: Oral examination (approx. 20 minutes)		6 C
Examination requirements:		
Basic knowledge on genetics, physiology, and ecolog	gy of microorganisms (bacteria and	
fungi), applications of microorganism in biotechnolog		
on ecological tasks, structure and functions of DNA,		
metabolites, basic concepts and techniques in molec	•••	
technology, DNA transfer techniques, handling of GM	10s.	
Admission requirements:	Recommended previous knowle	edge:
none	none	
Language:	Person responsible for module:	
English	Prof. Dr. Ursula Kües	
Course frequency:	Duration:	
Course frequency: each summer semester	Duration: 1 semester[s]	
each summer semester	1 semester[s]	

Course frequency:

25

each summer semester

cf. examination regulations

Maximum number of students:

Number of repeat examinations permitted:

Georg-August-Universität Göttingen		6 C
Module B.MES.107: Ecological modelling		4 WLH
Learning outcome, core skills:		Workload:
Comprehensive knowledge of ecological models, the	ories and concepts. Development	Attendance time
of interdisciplinary analytical thinking. Critical analysis	s and evaluation of the chances and	56 h
limitations of different modelling approaches.		Self-study time:
		124 h
Courses:		
1. Ecological modelling (Lecture)		2 WLH
Contents:		
Theoretical basics as well as classical and modern m	nodels of terrestrial ecology with	
special consideration of models in microbial ecology.		
2. Ecological modelling (Tutorial)		2 WLH
Contents:		
Application and analysis of classic and modern ecolo	gical models and concepts .	
Examination: Written exam (90 minutes)		6 C
Examination requirements:		
Comprehensive knowledge of ecological models, the	ories and concepts.	
Interdisciplinary analytical thinking skills. Ability to crit	tically analyze and evaluate the	
chances and limitations of different modelling approa	ches.	
	Admission requirements: Recommended previous knowledge:	
Admission requirements:	Recommended previous knowle	edge:
Admission requirements: none	Recommended previous knowle	dge:
•		dge:

Duration:

2

1 semester[s]

Recommended semester:

Georg-August-Universität Göttingen		6 C
Module B.MES.108: Computer science and mathematics		4 WLH
Learning outcome, core skills: Understanding of basic notions and methods of computer science and mathematics, including: representation of information, databases, the World Wide Web, foundations of programming, simulation, visualization; notations from logic and set theory, relations, graphs, functions, differentiation, extreme values, integration; vectors, linear transformations, matrices, eigenvalues; scale levels of variables, measures of location, dispersion and correlation, linear regression, probability, sampling, confidence intervals, fundamentals about statistical testing.		Workload: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Computer science and mathematics (Lecture) 2. Computer science and mathematics (Exercise) Examination: Written exam (90 minutes)		3 WLH 1 WLH 6 C
Examination requirements: Understanding of basic notions and methods of comp including: databases, WWW, foundations of program graphs, functions, differentiation, extreme values, inte descriptive statistics, linear regression, probability, sa	ming, simulation, visualization; egration; vectors, linear algebra;	
Admission requirements: Recommended previous knowl none none		edge:
Language:Person responsible for module:EnglishProf. Dr. Winfried Kurth		
Course frequency: Duration: each summer semester 1 semester[s]		
Number of repeat examinations permitted:	Recommended semester:	

2

cf. examination regulations

25

Maximum number of students:

Maximum number of students:

Georg-August-Universität Göttingen Module B.MES.109: Plant ecology and diversity		6 C 4 WLH
Learning outcome, core skills: Students are familiar with global to regional scale patterns of plant diversity, the distribution of major climatic and vegetation zones (ecozones, biomes), as well as their predominant land uses and anthropogenic impacts. Students are familiar with basic aut- and synecological concepts in plant and vegetation ecology from the level of the individual plant to plant communities. They have learned to distinguish different major plant communities in Central Europe and are familiar with their specific abiotic site conditions, and their conservation significance. Students are		Workload: Attendance time: 56 h Self-study time: 124 h
able to apply ecological field methods and to perform community structure.	-	
Courses: 1. Plant ecology and diversity (Lecture) 2. Plant ecology and diversity (Field studies)		2 WLH 2 WLH
Examination: Oral examination (approx. 20 minutes)		6 C
Examination requirements: Distribution and determinants of ecozones and biome of plant diversity, alpha-beta-gamma diversity, aut-ar communities and their relations with abiotic site cond and analysis methods.	nd synecological concepts, plant	
Admission requirements: Recommended previous knowle		edge:
Language: English	Person responsible for module: Prof. Dr. Holger Kreft	
Course frequency: each summer semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 2	

Georg-August-Universität Göttingen		6 C
Module B.MES.111: Terrestrial biogeochemistry		4 WLH
Learning outcome, core skills:		Workload:
At the end of this course students should understar	nd the major biogeochemical	Attendance time:
processes at the interface of biosphere, lithosphere	hydrosphere and atmosphere.	56 h
Students will be able to detect where measurement	s of biogeochemical processes are	Self-study time:
useful using a system based approach. They will ha		124 h
relevant measurements of biogeochemical process	es in terrestrial ecosystems.	
Courses:		
1. Terrestrial biogeochemistry (Lecture)		2 WLH
2. Biogeochemical processes (Laboratory cours	se)	2 WLH
Examination: Written examination (120 minutes)) and term paper (10 pages max.)	6 C
Examination requirements: Cycles in biogeochemistry, element ratios, carbon cycle of terrestrial ecosystems, biogeochemical cycling on land, nitrogen cycle of terrestrial ecosystems, soil development, mass balances at different scales, redox reaction in natural environments, biogeochemistry of wetlands, measurements of biogeochemical processes.		
Admission requirements:	Recommended previous knowle	edge:
none	none	
Language:	Person responsible for module	:
English	Prof. Dr. Edzo Veldkamp	
Course frequency:	Duration:	
each winter semester	1 semester[s]	
Number of repeat examinations permitted:	Recommended semester:	
cf. examination regulations	3	
Maximum number of students:		
25		

Georg-August-Universität Göttingen	6 C 4 WLH
Module B.MES.112: Environmentally friendly production of wood	
Learning outcome, core skills:	Workload:
Environmentally friendly use of timber, of wood for energy and wood products. Basics and practice of wood protection and degradation by fungi. Knowledge of technological	Attendance time 56 h
relevant wood properties of important commercial timbers. Modification technology for long-living major forest products (lumber, veneer, plywood, wood-based composites) and their significance for forest utilization.	Self-study time: 124 h
Courses: 1. Wood biology (Lecture, exercises, laboratory visits, excursion)	2 WLH
<i>Contents</i> : Classroom lectures with practical exercises, visits in labs and short presentations of the students, one excursion to a wood processing company.	
2. Wood-based-composites (Lecture, exercises, laboratory visits, excursion) Contents:	2 WLH
Classroom lectures with practical exercises, visits in labs and short presentations of the students, one excursion to a wood processing company.	
Examination: Oral examination (approx. 20 minutes)	6 C
Examination requirements: Anatomy, wood physics, wood chemistry, wood properties, wood-based composites, wood-plastic composites, wood modification, wood protection.	

Admission requirements:	Recommended previous knowledge:
none	none
Language:	Person responsible for module:
English	Prof. Dr. Holger Militz
Course frequency:	Duration:
each winter semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
cf. examination regulations	3
Maximum number of students: 25	

Georg-August-Universität Göttingen		6 C 4 WLH
Module B.MES.113: Methods in systems biology		
Learning outcome, core skills: "Omics" techniques are the backbone of modern systems biology. This course comprises lectures and practicals in genomics, proteomics, transcriptomics and statistical computing. The students will learn the theory of these applications, and the functioning of the required hard- and software. The students will obtain practical training in selected methods. This involves lab work as well as computer applications. The learning outcome will be that the students are to apply "omics" methods to questions in ecology and systems biology.		Workload: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Genomics (Lecture, practicals) 2. Statistical computing and Transcriptomics (Lec 3. Proteomics (Lecture, practicals) Examination: Term paper (20 pages max.)	ture, practicals)	1 WLH 2 WLH 1 WLH 6 C
Examination requirements: Detailed knowledge and understanding of methods to generate and analyse experiments involving approaches of modern systems biology. This includes a detailed understanding of basic statistical concepts to analyse "omics" data sets as well as skills in laboratory analyses and application of software for proteomic and transcriptomic data analysis Skills: knowledge how to analyse plant tissues by application of molecular and statistical methods.		
Admission requirements: Admission requirements: Admission requirements: Successful examination in a minimum of 2 of the following courses: B.MES.101: Molecular plant and stress physiology, B.MES.103: Ecological genetics, B.MES.106: Microbiology and molecular biology, B.MES.108: Computer science and mathematics.	Recommended previous knowle	dge:
Language:Person responsible for module:EnglishProf. Dr. Andrea Polle		
Course frequency: each winter semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 3	
Maximum number of students: 25		

Georg-August-Universität Göttingen		6 C
Module B.MES.114: Biodiversity of pro- and eukaryotic soil microbi- al communities		4 WLH
Learning outcome, core skills: Biodiversity, phylogenetics, morphology and functions of soil microbial communities consisting of prokaryots (archea, bacteria) and eukaryots (algae and fungi); diversity of prokaryotic microbial metabolism and environmental functions. Knowledge of prokaryotic microorganisms and algae relevant for environmental functions, ability to identify these organisms and to analyse them with molecular methods; ability to identify major lineages of cyanobacteria and eukaryotic algae from cultures by microscopy.		Workload: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Biodiversity of pro- and eukaryotic soil micro 2. Biodiversity of pro- and eukaryotic soil micro course) Examination: Protocol (10 pages max.)	· · · ·	2 WLH 2 WLH 6 C
Examination requirements: Students prove their ability to perform specific micro independently and their ability to record, interpret a in written form.	•	
Admission requirements: none	Recommended previous knowle	edge:
Language: English	Person responsible for module: Prof. Dr. Rolf Daniel	:
Course frequency: each winter semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 3	
Maximum number of students: 25		

Georg-August-Universität Göttingen		6 C 4 WLH
Module B.MES.116: Conservation and ecosystem management		
Learning outcome, core skills: The course imparts knowledge about the sustainable management of forest ecosystems and about nature conservation. Based on some fundamentals of forest ecology such as the impact of competitive interactions between trees, options of stand management are presented. Mixed stands and their management are of special importance. The course will provide information on how to analyze forest stands and how to derive appropriate silvicultural treatments in order to achieve the goals set by a given forest owner. The nature conservation part will introduce priority goals of conservation biology, the major threats to natural ecosystems and how they can be managed.		Workload: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Forest ecosystem management (Lecture) 2. Nature conservation (Lecture) Examination: Written exam (120 minutes)		2 WLH 2 WLH 6 C
Examination requirements: Competition in plant communities, plant – environment interactions, mixed stands, principles of stand management, silvicultural systems, human land-use, climate change, biodiversity, ecosystem functioning.		
Admission requirements: none	Recommended previous knowle	dge:
Language: English	Person responsible for module: Prof. Dr. Christian Ammer	
Course frequency: each summer semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 5	
Maximum number of students: 25		

Georg-August-Universität Göttingen		6 C
Module B.MES.117: Atmosphere-ecosystem interactions		4 WLH
Learning outcome, core skills:		Workload:
In this course students will gain insights in the main at	mospheric characteristics and how	Attendance time:
they influence ecosystem processes and fluxes betwe	en ecosystem compounds (e.g.	56 h
air, plants, soil). They will also learn how ecosystems	feed back to the atmosphere at	Self-study time:
local and global scale. This will form the basis for under	erstanding the impact of climate	124 h
change on ecosystem functions and services. The lect	ture course will give an overview	
on atmospheric variables such as radiation, humidity,	temperature, and wind and their	
interactions with terrestrial ecosystems. In the seminal	r/exercise class, the understanding	
will be deepened by quantitative exercises. The stude	nts will be trained in quantitative	
and qualitative scientific methods to describe climate-	dependent physical, chemical and	
biological processes in terrestrial ecosystems enabling them to understand and evaluate		
the current discussion on climate change and its impact on terrestrial ecosystems.		
Courses:		
1. Atmosphere-ecosystem interactions (Lecture)		2 WLH
2. Atmosphere-ecosystem interactions (Seminar, exercise)		2 WLH
Examination: Written exam (120 minutes)		6 C
Examination requirements:		
Qualitative and quantitative description of radiation, humidity, temperature, wind, their		
interactions with terrestrial ecosystems, carbon and water cycle, atmospheric chemistry,		
climate change, climate modelling.		
Admission requirements:	Recommended previous knowle	dge:
none	none	

none	none
Language:	Person responsible for module:
English	Prof. Dr. Alexander Knohl
Course frequency:	Duration:
each winter semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
cf. examination regulations	5
Maximum number of students: 25	

Georg-August-Universität Göttingen		6 C 4 WLH
Module B.MES.118: Resource assessment in ecosystems		
Learning outcome, core skills: The students will be trained		Workload: Attendance time:
 to analyse issues and problems of ecological mecosystems, to plan their own monitoring studies on statistic scientific-technical ojectives and economic feas to critically assess and understand monitoring studies 	ally sound grounds balancing	56 h Self-study time: 124 h
These learning outcomes imply acquiring / enchancin following fields:	ng knowledge and skills in the	
 design-based statistical sampling, including est empirical statistical models, characteristics of a seriers of sampling designs the systematic planning process in monitoring series 	and plot designs,	
Courses: 1. Resource assessment in ecosystems (Lecture) <i>Contents</i> : The lectures comprise the theoretical foundations of monitoring and also the discussion based analysis of cases.		2 WLH
2. Resource assessment in ecosystems (Laboratory course) <i>Contents</i> : The field labs are practical exercises in field data collection techniques and measurement devices, the in-house labs are on data analysis and estimation.		2 WLH
Examination: Written exam (120 minutes)		6 C
Examination requirements: Basics of descriptive and inferential statistics (mean, confidence interval, bias, precision, random selection options (simple random, stratified random, systemati sampling), relevant response designs options (fixed a techniques, point sampling, line sampling). Statistica assessments.	n), relevant basic sampling design c, cluster area plots, variable plots, distance	
Admission requirements: B.MES-SK.115, B.MES.108	Recommended previous knowle	edge:
Language: English	Person responsible for module: Prof. Dr. Christoph Kleinn	
	1	

Maximum number of students:	
25	

Georg-August-Universität Göttingen		6 C
Module B.MES.119: Isotopes in ecosystem sciences		4 WLH
Learning outcome, core skills: The course provides a very broad background for isotope applications in ecosystem compartments including soils, plants, atmosphere, and microorganisms. Overview of various tracer methods and isotope applications will be presented. The specifics		Workload: Attendance time: 56 h Self-study time: 124 h
of stable and radioactive isotopes for investigations of ecosystem processes from submolecular to global scale will give deep background for future isotope applications in Bachelor, Master and PhD theses.		124 11
Courses: 1. Stable isotopes (Lecture, seminar with exercise 2. Radioactive isotopes and labeling techniques (•	2 WLH 2 WLH
Examination: Written exam (90 minutes)		6 C
Examination requirements: Knowledge of specified teaching content, achievement target competence.	nt of defined goals and proof of	
Admission requirements: Recommended previous knowle		edge:
Language: English	Person responsible for module: Prof. Dr. Yakov Kuzyakov	
Course frequency: each winter semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 5	
Maximum number of students: 25		

Georg-August-Universität Göttingen		6 C 4 WLH
Module B.MES.121: Global change		
Learning outcome, core skills: At the end of this course the students are expected	to	Workload: Attendance time:
 have insight in the major components of the earth system and how they are connected, understand how environmental processes and biogeochemical cycles are regulated by biosphere-hydrosphere-atmosphere feedbacks and how they are affected by global chance through natural and anthropogenic processes, are able to understand and evaluate simple biogeochemical models. 		56 h Self-study time: 124 h
Courses: 1. Global change (Lecture) 2. Global change (Modelling exercises, seminar		2 WLH 2 WLH
Examination: Presentation (approx. 30 minutes, 50%) and written report (10 pages max., 50%) Examination prerequisites: Successful completion of exercises and seminar		6 C
Examination requirements: Successful completion of assignments. After every homework assignment (though not graded).	lab students are given a mandatory	
Admission requirements: none	Recommended previous knowle B.MES.111, B.MES.117	edge:
Language: English	Person responsible for module: Prof. Dr. Edzo Veldkamp	
Course frequency: each summer semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 6	
Maximum number of students: 25		

Georg-August-Universität Göttingen		6 C
Module B.MES.122: Molecular soil ecolog	y	4 WLH
This lecture and laboratory course aims to integrate the basic knowledge on soil microbiology in ecological studies. The course is focused on the importance of active microorganisms and their diversity of species/genetic lineages as biogeochemical driver		Workload: Attendance time: 56 h Self-study time: 124 h
 Goup 1: The microbial activity state is characterized by the values of eco-physiological indicators based on respiration, molecular biomarkers and viable cell compartments (ATP, PLFA, RNA). The Laboratory training links visualization of plant-microbial interactions by novel zymography approach (based on fluorogenic substrates) with enzyme kinetics and microbial growth parameters determined in the rhizosphere hotspots under impact of environmental stressors. Group 2: Students will become familiar with molecular technologies used for analyzing the structure and function of decomposer systems, such as quantitative real time PCR, tagging of organisms by fluorescent markers compound specific stable isotope lipid analysis and molecular gut content analysis. 		
Courses:		2 WLH
 Molecular soil ecology (Lecture and Seminar) Molecular soil ecology (Laboratory course and \$ 	Seminar)	2 WLH
Examination: Oral presentation (approx. 15 minutes) with written outline (10 pages max.)		6 C
 Examination requirements: Knowledge on: Plant-microbial and microbial interactions in soil Functional diversity and genetic diversity of soil microbial communities Techniques to analyze soil-micro-foodwebs, such as zymography, application of fluorogenic substrates, enzymes kinetics, microbial growth, stable isotopes and lipid analysis 		
Response of soil microorganisms to environmental stressors		
Admission requirements: none	Recommended previous knowle	dge:
Language: English	Person responsible for module: Prof. Dr. Stefan Scheu	

Course frequency:

each summer semester

Number of repeat examinations permitted:

Recommended semester:

Duration:

1 semester[s]

cf. examination regulations	6
Maximum number of students: 25	

Georg-August-Universität Göttingen		6 C 4 WLH
Module B.MES.123: Project (research participation)		
Learning outcome, core skills:		Workload:
Learning outcome, core skills: This course is a final step linking the data-set obtained and statistically treated by the students in practical trainings (B.MES. 105; 111; 113; B.MES-SK-115; 122) to the ongoing research projects. Introduction of structure, research strategy and outcome of the projects, from which the students have got the samples for practical training in previous semesters. Students compare their own results to the projects outcome. Course gives an advanced knowledge and application skills on the methods learnt within MES program (B.MES. 105; 111; 113; 115; 119; 122). Lecture course on Project design comprises all necessary steps to develop a scientific project: literature acquisition, research idea, scientific hypotheses, research strategy, design of the experiments (sites selection, sampling procedure, selection of methods), expected outcome and knowledge dissemination, time-table. Students develop and present their own projects for Bachelor study. This course is also aimed to help the students in preparation of their Bachelor study using as practical examples on-going projects of the department of "Soil Science of Temperate Ecosystems".		Attendance time: 56 h Self-study time: 124 h
Courses: 1. Project design (Lectures and Seminar) Contents: Lecture course on Project design. Seminar on the owr	contribution to research	2 WLH
2. Project (research participation) Contents: Laboratory courses work and/or active participation in lectures involved in the program.		2 WLH
Examination: Oral presentation (approx. 15 minute max.)	es) with written outline (10 pages	6 C
Examination requirements: Scientific hypotheses, experimental design, laboratory interpretation and scientific presentation of research re		
Admission requirements: At least 120 credits earned	Recommended previous knowle	dge:

At least 120 credits earned	none
Language:	Person responsible for module:
English	PD Dr. Evgenia Blagodatskaya
Course frequency:	Duration:
each summer semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
cf. examination regulations	6
Maximum number of students: 25	

Georg-August-Universität Göttingen		6 C
Module B.MES.301: Special topics in plant methods and ecological applications I		4 WLH
 Learning outcome, core skills: This elective module consists of a seminar and advanced method courses. In the seminar the students will be informed about recent development and new discoveries in forest botany, plant – microbial interactions, biotechnology, plant molecular genetics and practical applications. In the advanced method courses student undertake internships and/or field excursions to learn new methods and applications in plant physiology and ecology. The students will take responsibility in the organization of their study program. Courses: Forest botany (Seminar) Ecological applications / Field excursion (Lecture, practical) 		Workload: Attendance time: 56 h Self-study time: 124 h 2 WLH 2 WLH
Examination: Oral presentation (aaprox. 15 minutes) and written report (10 pages max.)		6 C
Examination requirements: Discussion of scientific presentations, knowledge in application of advanced scientific methods to selecte Skills: knowledge in critical text analyses and presen research, practical skills in handling modern equipme	ed problems in plant science. Itation skills, knowledge in data base	
Admission requirements: none	Recommended previous knowled In-depth knowledge in biology is re	-
Language: English	Person responsible for module: Prof. Dr. Andrea Polle	
Course frequency: each summer semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 4	
Maximum number of students: 10		

Georg-August-Universität Göttingen		6 C
Module B.MES.302: Special topics in plant methods and ecological applications II		4 WLH
Learning outcome, core skills: This elective module consists of a seminar and an advanced method course. The seminar will be conducted as a journal club. The students will get lists of papers which they have to read and present during the semester. The topics will be chosen from recent literature. The goal is to become involved in research and to learn to understand how to structure research and to publish. In the advanced method courses, lectures and specialized techniques will be taught and practiced. The students will organize the journal club.		Workload: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Advanced plant biochemistry and genetics / Journal club (Seminar) 2. Advanced methods (Lecture, practical) Examination: Oral presentation (approx. 15 minutes) and written report (10 pages		2 WLH 2 WLH 6 C
max.) Examination requirements: Reading and analyzing scientific publications, in-de working methods in plant ecology and molecular bi Skills: knowledge in critical text analyses and prese methods.	iology.	
Admission requirements: none Language: English	Recommended previous knowledge: In-depth knowledge in biology is required Person responsible for module: Prof. Dr. Andrea Polle	
Course frequency: each summer semester Number of repeat examinations permitted:	Duration: 1 semester[s]	
cf. examination regulations	Recommended semester: 4	
Maximum number of students:		

Maximum number of students:

Georg-August-Universität Göttingen Module B.MES.303: Semiochemical diversity		6 C 4 WLH Workload: Attendance time: 56 h Self-study time: 124 h
Learning outcome, core skills: Students will learn to investigate the dynamics of semiochemical diversity in different types of ecosystems. This involves field sampling of important plants and animals, volatile extraction from different tissues, laboratory analyses of various types of volatile markers, data analyses and interpretation. Students will learn practical steps to assess semiochemical diversity, and will be able to evaluate the use of chemo-ecological methods for applications in plant protection, nature conservation, and ecosystem management.		
Courses: 1. Semiochemical diversity (Lecture) 2. Methods to study semiochemical diversity and laboratory course) Examination: Term paper (20 pages max.)	biodiversity (Workshop,	1 WLH 3 WLH 6 C
Examination requirements: Classification of semiochemicals, measures of chemi analytical and determination methods, key species, k semiochemicals in practical application.	• ·	
Admission requirements: B.MES.102	Recommended previous knowle	edge:
Language: English	Person responsible for module Prof. Dr. Stefan Schütz	:
Course frequency: each summer semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 4	

Georg-August-Universität Göttingen Module B.MES.304: Protection of renewable resources	6 C 4 WLH
Learning outcome, core skills: The use of chemical methods is commonplace in protection measures at various levels of biological organization in forest protection, plant protection and stored product protection. Students will learn the results of chemo-ecological approaches in integrated pest management based on selected projects and recent literature. Students will be able to critically evaluate benefits and limitations of chemo-ecological approaches in a production and conservation context. Examples will be taken from different geographic and climatic regions.	Workload: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Protection of renewable resources based on chemical and chemo-ecological methods (Lecture)	1 WLH
2. Assessment of protection measures for renewable resources (Seminar, workshop)	3 WLH
Examination: Oral presentation (approx. 15 minutes) with written outline (5 pages max.)	6 C
Examination requirements: Application of semiochemicals in different ecosystems, quality control, toxicology, integrated pest management, production of renewable resources, nature protection.	

Admission requirements:	Recommended previous knowledge:
none	none
Language:	Person responsible for module:
English	Prof. Dr. Stefan Schütz
Course frequency:	Duration:
each summer semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
cf. examination regulations	4
Maximum number of students: 25	

each summer semester

25

cf. examination regulations

Maximum number of students:

Number of repeat examinations permitted:

Georg-August-Universität Göttingen		6 C
Module B.MES.305: Conservation of biodiversity		4 WLH
Learning outcome, core skills:		Workload:
The use of molecular methods is commonplace in cor	servation at various levels of	Attendance time:
biological organization from genes to ecosystems. Stu	idents will examin the results	56 h
of molecular approaches in biodiversity conservation	pased on selected projects and	Self-study time:
recent literature. Students will be able to critically eval	uate benefits and limitations	124 h
of molecular studies in a conservation context. Examp	oles will be taken from different	
geographic and climatic regions.		
Courses:		
1. Conservation of biodiversity based on molecular tools (Lecture)		1 WLH
2. Assessment of molecular diversity for conserva	ation (Seminar, Workshop)	3 WLH
Examination: Oral presentation (approx. 15 minute	es) with written outline (5 pages	6 C
max.)		
Examination requirements:		
Effective comprehension of scientific literature with re	gard to conservation of	
biodiversity, different methods used for conservation of	of biodiversity and their specific	
applications, critical evaluation of molecular studies in	a conservation context.	
Admission requirements:	Recommended previous knowle	edge:
none	none	
Language:	Person responsible for module:	
English	N. N.	
Course frequency: Duration:		

1 semester[s]

4

Recommended semester:

Georg-August-Universität Göttingen Module B.MES.306: Intraspecific diversity of plants		6 C 4 WLH
Learning outcome, core skills: Students will learn to investigate the dynamics of intraspecific diversity in different types of ecosystems. This involves field sampling of important plants, DNA extraction from different tissues, laboratory analyses with various types of molecular markers, data analyses and interpretation. Students will learn practical steps to assess genetic diversity, and will be able to evaluate the use of DNA-based methods for applications in breeding, conservation, and ecosystem management.		Workload: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Intraspecific diversity of plants (Lecture) 2. DNA based methods to study biodiversity (Workshops, laboratory exercise)		1 WLH 3 WLH 6 C
Examination: Term paper (20 pages max.) Examination requirements: DNA markers and techniques, estimation of intraspecific diversity in different types of ecosystems, methods used for experimental sampling, DNA extraction from different tissues, laboratory techniques, data analyses and interpretation and application of results.		
Admission requirements: B.MES.103, B.MES.104	Recommended previous knowle	edge:
Language: English	Person responsible for module: N. N.	
Course frequency: each summer semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 4	
Maximum number of students: 25		

Georg-August-Universität Göttingen		6 C 4 WLH
Module B.MES.307: Research practicum		
Learning outcome, core skills: Students have a possibility to participate in a research work at an institution of their choice (also abroad) to learn new scientific methods and get additional experiences about variety of research topics.		Workload: Attendance time: 56 h Self-study time: 124 h
Courses: 1. Research practicum (Laboratory courses/work) 2. Research practicum (Seminar)		3 WLH 1 WLH
Examination: Term paper (20 pages max.)		6 C
Examination requirements: Laboratory methods, analysis, interpretation and scientific presentation of research results. In case of abroad practicum: a confirmation letter from the supervisor with a grade (if possible, in the German grade system)		
Admission requirements: none	Recommended previous knowledge: none	
Language: English	Person responsible for module: Prof. Dr. Konstantin V. Krutovsky	
Course frequency: each summer semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 4	
Maximum number of students: 25		

Georg-August-Universität Göttingen Module B.MES.308: Scientific project		12 C 3 WLH
Learning outcome, core skills: Advanced knowledge of scientific methods and procedures, and practical skills acquired by active participation in a research project conducted under supervision of a lecturer of the programme at the University of Goettingen or a respective supervisor at a foreign institution. Ability to analyze, interpret and present relevant scientific data. Duration: 6 weeks.		Workload: Attendance time: 60 h Self-study time: 300 h
Courses: 1. Scientific project (Laboratory courses/work) 2. Scientific project (Seminar) Examination: Term paper (30 pages max.)		2 WLH 1 WLH 12 C
Examination requirements: Scientific hypotheses, experimental design, laboratory techniques, analysis, interpretation and scientific presentation of research results. In case of abroad practicum: a confirmation letter from the supervisor with a grade (if possible, in the German grade system).		
Admission requirements: Conducted only together with the module B.MES.309 "Practical training in laboratory techniques". Each student must get an approval from the MES programme's coordinator 3 months before the start of work.	Recommended previous knowle	edge:
Language: English	Person responsible for module: Prof. Dr. Konstantin V. Krutovsky	
Course frequency: each summer semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 4	
Maximum number of students: 25		

Georg-August-Universität Göttingen Module B.MES.309: Practical training in laboratory techniques		18 C 4 WLH
Learning outcome, core skills: Students learn about different research techniques, organization of work in a laboratory and an experiment planning by active participation in a research project conducted under supervision of a lecturer of the programme at the University of Goettingen or a respective supervisor at a foreign institution. Duration: 9 weeks.		Workload: Attendance time: 90 h Self-study time: 450 h
Courses: 1. Practical training in laboratory techniques (Laboratory courses/work) 2. Practical training in laboratory techniques (Seminar)		3 WLH 1 WLH
Examination: Laboratory protocol (10 pages max.), passed/failed. In case of abroad practicum: a confirmation letter from the supervisor with a result., not graded		18 C
Examination requirements: Experimental design, laboratory techniques, analysis and interpretation of research results. In case of abroad practicum: a confirmation letter from the supervisor with a result.		
Admission requirements: Conducted only together with the module B.MES.308 "Scientific project". Each student must get an approval from the MES programme's coordinator 3 months before the start of work.	Recommended previous knowle none	edge:
Language: English	Person responsible for module: Prof. Dr. Konstantin V. Krutovsky	
Course frequency: each summer semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 4	
Maximum number of students: 25		

Georg-August-Universität Göttingen		6 C
Module B.MES-SK.105: Laboratory techniques		4 WLH
Learning outcome, core skills: Students will train in small groups to work in a laboratory. They will be introduced into modern basic and sophisticated methods in the fields of chemistry, biochemistry, microbiology and molecular biology to rules assuring personal and environmental safety and good scientific practice. Students acquire knowledge in experimental planning, technical performance, data interpretation and documentation of practical scientific research.		Workload: Attendance time: 56 h Self-study time: 124 h
	Courses: 1. Organic trace analysis (Seminar, laboratory course, exercises)	
2. Inorganic analysis (Seminar, laboratory course 3. Microbiology and molecular biology (Laborator		1 WLH
Examination: Protocol (30 pages max.) Examination prerequisites: Regular attendance and participation		6 C
Examination requirements: Personal and environmental safety, handling and preparation of samples, calibration and use of standards, chromatographic methods, design, performance and documentation of chemical, microbial, and molecular experiments, assessment of results, team work to resolve experimental problems. Handling of radioactive substances, radiation safety, analytics of radioactive isotopes, contaminations with stable and radioactive isotopes .		
Admission requirements: none	Recommended previous knowle	dge:
Language: English	Person responsible for module: Prof. Dr. Stefan Schütz	
Course frequency: each winter semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 1	
Maximum number of students: 25		

Georg-August-Universität Göttingen		6 C
Module B.MES-SK.110: The science-policy interface: society and re- search structures		4 WLH
Learning outcome, core skills: Policy of Ecosystems:		Workload: Attendance time:
Knowledge about both: on the one hand the relation between ecosystem sciences and politics and on the other hand about the structure and processes of policy-making. Skills in political consulting and debating.		56 h Self-study time: 124 h
The Research Community: Structure and Organizatio	n	
The scientific community depends on private and public research organizations and funding mechanisms. Students will understand the structure and organization of main institutions conducting or financing research and teaching (universities and large research institutions) in Germany and elsewhere.		
Courses:		
1. Policy of ecosystems (Seminar)		2 WLH
2. The research community: structure and organiz	•	2 WLH
Examination: 2 Oral presentations (approx. 10 minutes) with written outline (10 pages max.)		6 C
Examination requirements: Current theories of science-policy interface and scientific conditions for knowledge transfer, conditions for application of ecosystem knowledge in society, basics of public policy analysis, research infrastructures, comparison between different research structures.		
Skills: understanding of the relationship between ecosystem research and actual utilization in society, understanding of the role of different actors in science, planning a research career.		
Admission requirements: none	Recommended previous knowledge: none	
Language: English	Person responsible for module: Prof. Dr. Maximilian Krott	
Course frequency: each winter semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: cf. examination regulations	Recommended semester: 5	
Maximum number of students: 25		

Georg-August-Universität Göttingen		6 C
Module B.MES-SK.115: Scientific methods and project design		4 WLH
Learning outcome, core skills:		Workload:
Understanding, application and interpretation of basic		Attendance time:
confirmative statistics, such as important discrete and	continuous distributions, least	56 h
squares, confidence intervals, testing statistical hypot	heses, error propagation and basic	Self-study time:
experimental designs. Understanding of advanced sta	atistical methods such as two-way	124 h
ANOVA and multiple regressions.		
Courses:		
1. Research methods (Lecture)		3 WLH
2. Research methods (Exercises)		1 WLH
Examination: Written examination (90 minutes)		6 C
Examination requirements:		
Detailed knowledge of methods for statistical analysis (t-tests, ANOVA, regression,		
nonparametric methods), descriptive statistics and probability distributions.		
Admission requirements: Recommended previous knowle		edge:
none	none	

Admission requirements:	Recommended previous knowledge:
none	none
Language:	Person responsible for module:
English	Prof. Dr. Winfried Kurth
Course frequency:	Duration:
each winter semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
cf. examination regulations	3
Maximum number of students: 25	

Georg-August-Universität Göttingen		6 C 4 WLH
Module SK.FS.EN-FF-C1-1: Scientific Writing in English		
Learning outcome, core skills: Progression of pre-existing discursive skills and competences at a level above B2 according to the <i>Common European Framework of Reference for Languages</i> , which will enable the student to compose scientific texts in English, particularly in the area of molecular ecosystems sciences, e.g.		Workload: Attendance time: 56 h Self-study time: 124 h
 the skills needed to compose texts for scientific publications utilising specific language structures and conventions, the acquisition of specific linguistic and stylistic structures in the English language as well as the development of a differentiated scientific vocabulary the expansion of the operative intercultural knowledge about practices required to write a scientific paper with a focus on molecular ecosystems sciences in an academic context. 		
Course: Scientific Writing in English (Course) Exam preparation: ungraded written work completed in class and outside of class.		4 WLH
Examination: Portfolio consisting of three tasks of max. 15 pages in total Examination prerequisites: regular active participation		6 C
Examination requirements: Proof of linguistic competence in an intercultural and scientific context. Demonstration of the ability to write scientific texts in the English language at a level above B2 according to the <i>Common European Framework of Reference for Languages</i> .		
Admission requirements: Module Mittelstufe II or placement test with a completed level B2 of the CEFR	Recommended previous knowledge: none	
Language: English	Person responsible for module: Heather Anne Kretschmer	
Course frequency: each summer semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: twice	Recommended semester: 2	
Maximum number of students: 16		
Additional notes and regulations: Applicable to: Bachelor's Degree Programme "Mole	cular ecosystem sciences"	