SFB 937

Lebende Systeme sind strukturell komplex, heterogen und per definitionem außerhalb des thermodynamischen Gleichgewichts. In der Physik der kondensierten Materie beschreibt man das komplexe Verhalten von Vielteilchensystemen sehr erfolgreich mit den Methoden der statistischen Physik. Die spezielle Stärke dieses Ansatzes liegt in der Fähigkeit, die kollektive Dynamik großer Systeme mit vielen wechselwirkenden Freiheitsgraden effektiv beschreiben zu können. In den letzten Jahren sind Nichtgleichgewichtssysteme der weichen kondensierten Materie - kurz aktive Materie -, insbesondere wie sie in der Biologie vorkommt, stark in den Fokus des Interesses gerückt. Ein prominentes Beispiel sind die Materialien, aus denen Zellen bestehen. Um zu verstehen, wie eine Zelle funktioniert oder wie ein Organismus sich entwickelt und seine Struktur aufrechterhält, ist eine statistische Beschreibung vonnöten, aber eine solche, die über die traditionelle Gleichgewichtsphysik hinausgeht.

Die schnelle Entwicklung experimenteller Techniken gibt uns heutzutage einen nie dagewesenen Zugang zu physikalischen Eigenschaften von Molekülen, makromolekularen Aggregaten sowie Zellen und Geweben. Vor diesem Hintergrund ist es höchst opportun, Fragen über aktive weiche und biologische Materialien zu stellen, die über das molekulare Organisationsniveau hinausgehen, und einen integralen experimentellen, numerischen und theoretischen Forschungsansatz zu verfolgen, der kollektive Nichtgleichgewichtsphänomene auf mikroskopischer über mesoskopische zu makroskopischer Skala zu verstehen sucht.

Der Sonderforschungsbereich SFB 937 zielt auf ein quantitatives Verständnis der physikalischen Mechanismen, die dazu führen, dass sich weiche und biologische Materie in komplexe Strukturen selbst organisiert, die dann dynamische Funktionen ausführen können, so wie Zellteilung, Zellbewegung und Gewebeentwicklung. Mit diesem Ziel vor Augen untersuchen wir, wie Moleküle und Zellen physikalisch interagieren, Kräfte ausüben, viskoelastisch reagieren, sich gegenseitig bewegen und sich in komplexe funktionelle Muster organisieren. Dies geschieht auf allen Längenskalen, von Polymeren, Lipidmembranen über Zellen bis hin zu Geweben. Wir kombinieren Physik, Chemie, Biologie und Medizin sowie Theorie, numerische Mathematik und Experiment und verfolgen eine kombinierte Bottom-up- und Top-down-Strategie, mit, auf der einen Seite, einfachen Modellsystemen und, auf der anderen Seite, ganzen Organismen und Geweben.