Functional Principles of Living Matter: Life at the Nanoscale (life@nano)

Most processes during cellular homeostasis are initiated and driven by dynamic and non-covalently associated assemblies of biomolecules rather than individually acting molecules. These cellular nanodomains are the major players in biological processes, and as such have been recognized in the various different disciplines of the natural and life sciences. However, analyzing their formation, regulation and function is still highly challenging owing to their nanoscopic size and the short time scales on which they dynamically operate and function within the intricate, far-from equilibrium environment of a living cell.
As part of the life@nano project, two three-year fellowships have been awarded to support excellent young scientist in building their own research group with innovative and interdisciplinary research in this exciting field.

Life at the Nanoscale is funded by the state of Lower Saxony ( Landesmittel des Niedersächsichen Vorab ).


life@nano Fellows:

Dr. Sebastian Kruss

Dr. H. Jelger Risselada


Publications


  • E. Polo, T. T. Nitka , E. Neubert, L. Erpenbeck, L. Vukovic , S. Kruss. Control of Integrin Affinity by Confining RGD Peptides on Fluorescent Carbon Nanotubes. ACS Appl. Mater. Interfaces 2018. doi: 10.1021/acsami.8b04373
  • F. A. Mann, J. Horlebein, N. F. Meyer, D. Meyer, F. Thomas, S. Kruss: Carbon Nanotubes Encapsulated in Coiled-coil Peptide Barrels, Chemistry - A European Journal, 2018, accepted.
  • M. D'Agostino, H.J. Risselada, A. Lürick, C. Ungermann, A. Mayer. A tethering complex drives the terminal stage of SNARE-dependent membrane fusion. Nature 2017. doi:10.1038/nature24469.
  • H.J. Risselada. Membrane fusion stalks and 'lipid rafts': A love-hate Relationship. Biophysical J. 2017;112(12): 2475-2478. doi: 10.1016/j.bpj.2017.04.031.
  • F. A. Mann, N. Herrmann, D. Meyer, S. Kruss. Tuning Selectivity of Fluorescent Carbon Nanotube-Based Neurotransmitter Sensors. Sensors 2017;17(7):1521. doi:10.3390/s17071521.
  • D. Meyer, A. Hagemann, S. Kruss. Kinetic Requirements for Spatiotemporal Chemical Imaging with Fluorescent Nanosensors. ACS Nano, doi: 10.1021/acsnano.7b00569.
  • S. Kruss, D.P. Salema, L. Vukovic, B. Lima, E. Vander Ende, E.S. Boyden, and M.S. Strano. High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array. Proc. Natl. Acad. Sci. U.S.A. 2017;114(8):1789-1794. doi: 10.1073/pnas.1613541114.
  • E. Polo, S. Kruss. Impact of Redox-Active Molecules on the Fluorescence of Polymer-Wrapped Carbon Nanotubes. Journal of Physical Chemistry C, 2016; 120(5):3061?3070. doi:10.1021/acs.jpcc.5b12183.
  • G. Bisker, J. Dong, H. D. Park, N. M. Iverson, J. Ahn, J. T. Nelson, M. P. Landry, S. Kruss, M. S. Strano. Protein-targeted corona phase molecular recognition. Nature Communications, 2016, 7, 10241. doi:10.1038/ncomms10241
  • G. Bubnis, H. J. Risselada, H. Grubmüller. Exploiting Lipid Permutation Symmetry to Compute Membrane Remodeling Free Energies. Phys Rev Lett. 2016, 117(18):188102. doi: 10.1103/PhysRevLett.117.188102
  • D'Agostino, H. J. Risselada, A. Mayer. Steric hindrance of SNARE transmembrane domain organization impairs the hemifusion-to-fusion transition. EMBO Rep. 2016, 17(11):1590-1608. doi:10.15252/embr.201642209
  • A. Gladytz, B. Abel, H. J. Risselada. Gold-Induced Fibril Growth: The Mechanism of Surface-Facilitated Amyloid Aggregation. Angew Chem Int Ed Engl. 2016 Sep 5;55(37):11242-6. doi: 10.1002/anie.201605151.
  • A. Gladytz, T. John, T. Gladytz, R. Hassert, M. Pagel, H. J. Risselada, S. Naumov, A.G. Beck-Sickinger, B. Abel. Peptides@mica: from affinity to adhesion mechanism. Phys Chem Chem Phys. 2016 Sep 14;18(34):23516-27. doi: 10.1039/c6cp03325c.