Abteilung Palynologie und Klimadynamik

Projekt

Towards pollen accumulation rates as a measure of plant abundance – a case study in NE-Germany

The aim of my study is to calibrate PAR from small lakes against tree biomass, which can be used to achieve quantitative estimates of biomass in the past. Furthermore, the relation between pollen percentages and plant abundance will also be investigated.
As study area, the state Brandenburg was chosen, because it has a large number of lakes and is covered by different plant communities, like conifer forest, mixed forest, deciduous forest and open land. These are situated on a range of soil types in a terrain with little altitudinal differences.
Lakes in different types of landscape were selected. They were of almost uniform size, mostly ranging from 100-300 m in diameter and without inflow and outflow. Deeper lakes in proportion to the lake size were preferred, to avoid lakes with a high pollen redeposition.
In order to have an effective fieldwork and to get the broadest possible data spectrum for modeling, the relevant pollen source area of pollen (Sugita, 1994) was estimated, based on the map CORINE. The calculation shows that the pollen source area is approximately 5-6 km. However, we also sampled lakes which are situated closer together, especially when the landscape structure was very heterogenic at the small scale.
From the surface samples of 50 lakes, the pollen percentages of different taxa will be compared with the information from the forest inventory data for different distances around the lakes to evaluate theoretical considerations of pollen source area. These data are available at the data base ‘Datenspeicher Wald’, which contains information about cover, age and biomass for the different tree species. This information was collected during the time of the German Democratic Republic (DDR) and is in the most continued.
Concurrently, 15 of the short cores are selected for dating by 210Pb. PAR will be calculated based on the sedimentation rates obtained for these cores, so that PAR can be compared to tree biomass for different time slices over the past 50 years.


Supervisor
Dr. T. Giesecke

Projektdauer
2009-2014

Funding
DFG - Emmy Noether Programme