C12 - Hard x-ray imaging with multilayer zone plates

The main goal of the proposed project is the design, fabrication, and application of multilayer zone plates (MZPs) for two-dimensional hard x-ray imaging with resolutions of 10nm and below. Using MZPs, we already have demonstrated sub-5nm point focusing of hard x-rays, and preliminary results show the possibility of high-resolution imaging (collaboration of C01 and C04).
Methods developed in the projects C01, C04 and C05 (which in the first period concentrated on "optimized focusing of hard x-rays by nanostructures") will be
joined in the new project C12 to further advance from nano-focusing to high resolution imaging using hard x-rays.


Members of this project:

Dr. Markus Osterhoff
M.Sc.Jakob Soltau


Publications:

Markus Osterhoff, Florian Döring, Christian Eberl, Robin Wilke, J. Wallentin, Hans-Ulrich Krebs, M. Sprung, Tim Salditt (2015)
Progress on multi-order hard x-ray imaging with multilayer zone plates
Proc. SPIE 9592, X-Ray Nanoimaging: Instruments and Methods II, 9592, DOI:10.1117/12.2187799

Eberl C.; Osterhoff, M. Döring. F.; Krebs. H.-U. (2015)
MZP design and fabrication for efficient hard x-ray nano-focusing and imaging
Proc. SPIE 9588, Advances in X-Ray/EUV Optics and Components X, DOI:10.1117/12.2187788

Osterhoff, M., Eberl, C., Döring, F., Wilke, R., Wallentin, J., Krebs, H., Sprung, M. and Salditt, T. (2015)
Towards multi-order hard x-ray imaging with multilayer zone plates
J. Apply. Cryst.open access,, 48: 116-124, DOI:10.1107/S1600576714026016

Döring, F., Robisch, A., Eberl, C., Osterhoff, M., Ruhland, A., Liese, T., Schlenkrich, F., Hoffmann, S., Bartels, M., Salditt, T. and Krebs, H. U. (2013)
Sub-5 nm hard x-ray point focusing by a combined Kirkpatrick-Baez mirror and multilayer zone plate
Opt. Express, 21(16): 19311, DOI:10.1364/OE.21.019311

Eberl, C., Döring, F., Liese, T., Schlenkrich, F., Roos, B., Hahn, M., Hoinkes, T., Rauschenbeutel, A., Osterhoff, M., Salditt, T. and Krebs, H.-U. (2014)
Fabrication of laser deposited high-quality multilayer zone plates for hard X-ray nanofocusing
Appl. Surf. Sci., 307: 638-644, DOI:10.1016/j.apsusc.2014.04.089

Eberl, C., Liese, T., Schlenkrich, F., Döring, F., Hofsäss, H. and Krebs, H.-U. (2013)
Enhanced resputtering and asymmetric interface mixing in W/Si multilayers
Appl. Phys. A, 111(2): 431-437, DOI:10.1007/s00339-013-7587-5

Osterhoff, M., Morawe, C., Ferrero, C. and Guigay, J.-P. (2013)
Optimized x-ray multilayer mirrors for single nanometer focusing
Opt. Lett., 38(23): 5126-9

Osterhoff, M., Morawe, C., Ferrero, C. and Guigay, J.-P. (2012)
Wave-optical theory of nanofocusing x-ray multilayer mirrors.
Opt. Lett., 37(17): 3705-7

Osterhoff, M. and Salditt, T. (2011)
Partially coherent x-ray beam simulations: mirrors and more
Adv. Comput. Methods X-Ray Opt. IISPIE,(1): 81410C-81410C-10, DOI:10.1117/12.893003

Osterhoff, M. and Salditt, T. (2011)
Coherence filtering of x-ray waveguides: analytical and numerical approach
New J. Phys.open access,, 13(10): 103026, DOI:10.1088/1367-2630/13/10/103026

Röder, J., Liese, T. and Krebs, H.-U. (2010)
Material-dependent smoothing of periodic rippled structures by pulsed laser deposition
J. Appl. Phys., 107(10): 103515, DOI:10.1063/1.3388591

Osterhoff, M. and Salditt, T. (2009)
Real structure effects in X-ray waveguide optics: The influence of interfacial roughness and refractive index profile on the near-field and far-field distribution
Optics Communications, 282(16): 3250 - 3256, DOI:DOI: 10.1016/j.optcom.2009.05.008