Göttinger Graduiertenschule für Neurowissenschaften, Biophysik und Molekulare Biowissenschaften

Müller, Marcus, Prof. Dr.

  • 1995 Dr. rer. nat. (Physics) Johannes Gutenberg University, Mainz
  • 1995, 1998 TRACS visitor EPCC, Edinburgh (collaboration with M. Cates)
  • 1995-1996 Postdoc (with M. Schick, University of Washington, Seattle)
  • 1997-1999 Postdoc (with K. Binder, Mainz)
  • 1999 Habilitation for Theoretical Physics, Mainz
  • 1999-2001 Hochschulassistent (C1), Mainz
  • 2001-2004 Hochschuldozent (C2), Mainz
  • 2002-2004 Heisenberg Fellow of the DFG
  • 2004-2005 Associate Professor for Physics, University of Wisconsin, Madison
  • 2005- Lichtenberg-Professor der Volkswagenstiftung, Georg-August Universität, Göttingen
  • 2008- Universitätsprofessor (W3), Institut für Theoretische Physik, Georg-August Universität, Göttingen

Major Research Interests

Using computer simulation and numerical self-consistent field theory, we study the statistical physics of soft matter with special focus on polymer physics, interfacial and wetting phenomena, and biologically motivated problems. We are interested in collective phenomena (e.g., pore formation and fusion of lipid membranes, phase separation in mixed polymer brushes, self-assembly of block copolymers, dewetting and motion of droplets on surfaces), in which many molecules participate. Both, equilibrium properties as well as the kinetics of structure formation or motion driven by external fields are investigated. Employing coarse-grained models that only incorporate the essential, relevant interactions we are able to systematically investigate collective phenomena on time scales of microseconds and length scales of 10-100nm. Another focus of our research is the development of models and computational techniques to speed up the simulation and to accurately calculate free energies and locate phase boundaries).

GGNB Marcus Müller Figure 1Figure 1: Transition state of the fusion process between two tense apposed bilayer membranes.

GGNB Marcus Müller Figure 2Figure 2: Bicontinuous morphology of a lamellar-forming diblock copolymer on a patterned substrate.

Homepage Department/Research Group


Selected Recent Publications

  • M. Fuhrmans and M. Müller (2013) Mechanisms of vesicle spreading on surfaces: Coarse-grained simulations. Langmuir 29, 4335

  • M. Müller, Y.G. Smirnova, G. Marelli, M. Fuhrmans, and A.C. Shi (2012) Transition path from two apposed membranes to a stalk obtained by a combination of particle simulations and string method. Phys. Rev. Lett. 108, 228103

  • V.C. Chappa, D.C. Morse, A. Zippelius, and M. Müller (2012) A translationally invariant slip-spring model for entangled polymer dynamics. Phys. Rev. Lett. 109, 148302

  • M. Müller and K.Ch. Daoulas (2011) Speeding up intrinsically slow collective processes in particle simulations by concurrent coupling to a continuum description, Phys. Rev. Lett.107, 227801

  • H.J. Riesselada, S.J. Marrink, and M. Müller (2011) Curvature-dependent elastic properties of liquid-ordered domains result in inverted domain sorting on uni-axially compressed vesicles. Phys. Rev. Lett. 106, 148102

  • M.A. Cohen-Stuart, W.T.S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko (2010) Emerging applications of stimuli-responsive polymer materials. Nature Materials 9, 101

  • M. Hömberg and M. Müller (2010) Main phase transition in lipid bilayers: phase coexistence and line tension in a soft, solvent-free, coarse-grained model. J. Chem. Phys. 132, 155104

  • K.Ch. Daoulas, A. Cavallo, R. Shenhar, and M. Müller (2010) Directed assembly of supramolecular copolymers in thin films: Thermodynamic and kinetic advantages. Phys. Rev. Lett. 105, 108301

  • Y. Norizoe, K.Ch. Daoulas, and M. Müller (2010) Measuring excess free energies of self-assembled membrane structures. Faraday Discussion 144: Multiscale Modelling of Soft Matter, 363

  • M. Müller, K. Katsov, and M. Schick (2006) Biological and synthetic membranes: What can be learned from a coarse-grained description?. Phys. Rep. 434, 113