Peer-reviewed publications



    Terrestrial hydrothermal systems & groundwater flow in faults


  1. Luijendijk, E., Winter, T., Köhler, S., Ferguson, G., von Hagke, C., & Scibek, J. (2020). Using thermal springs to quantify deep groundwater flow and its thermal footprint in the Alps and a comparison with North American orogens. Geophysical Research Letters. https://doi.org/10.1029/2020GL090134.

  2. Louis, S., Luijendijk, E., Dunkl, I, Person, M. (2019) Episodic fluid flow in an active fault. Geology 47, https://doi.org/10.1130/G46254.1

  3. Luijendijk, E. (2019) Beo v1.0: Numerical model of heat flow and low-temperature thermochronology in hydrothermal systems. Geoscientific Model Development 12, 4061-4073, https://doi.org/10.5194/gmd-12-4061-2019

  4. Howald, T., M. Person, A. Campbell, V. Lueth, A. Hofstra, D. Sweetkind, C.W. Gable, A. Banerjee, E. Luijendijk, L. Crossey, K. Karlstrom, S. Kelley, and F. Phillips (2015), Evidence for long-time scale ( >1000 years) changes in hydrothermal activity induced by seismic events, Geofluids, 1-2, 252-268, (link).

  5. Groundwater systems at a global scale


  6. Luijendijk, E., Gleeson, T., & Moosdorf, N. (2020). Fresh groundwater discharge insignificant for the world’s oceans but important for coastal ecosystems. Nature Communications. https://doi.org/10.1038/s41467-020-15064-8

  7. Befus, K.M., Jasechko, S., Luijendijk, E., Gleeson, T., Bayani Cardenas, M., (2017). The rapid yet uneven turnover of Earth’s groundwater. Geophys. Res. Lett. 44, 5511–5520. doi:10.1002/2017GL073322. (link)

  8. Jasechko, S., Perrone, D., Befus, K.M., Cardenas, M.B., Ferguson, G., Gleeson, T., Luijendijk, E., McDonnell, J.J., Taylor, R.G., Wada Y. & Kirchner, J.W. (2017), Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination, Nature Geoscience, doi:10.1038/ngeo2943. (link)

  9. Gleeson, T., Befus K.M., Jasechko, S., Luijendijk, E. and Cardenas M.B. (2016), The Global Volume and Distribution of Modern Groundwater, Nature Geoscience, doi:10.1038/ngeo2590. (link)

  10. Deep groundwater flow and its thermal effects in sedimentary basins


  11. Bauer, J.F., Krumbholz, M., Luijendijk, E., Tanner, D.C. (2019) A numerical sensitivity study of how permeability, geological structure, and hydraulic gradient control the lifetime of a geothermal reservoir. Solid Earth 10, https://doi.org/10.5194/se-10-2115-2019.

  12. Ferguson, G., McIntosh, J.C., Grasby, S.E., Hendry, M.J., Lindsay, M.B.J., Jasechko, S., Luijendijk, E. (2018). The Persistence of Brines in Sedimentary Basins. Geophys. Res. Lett. (link)


  13. Gassiat, C., T. Gleeson, and E. Luijendijk (2013), The location of old groundwater in hydrogeologic basins and layered aquifer systems, Geophysical Research Letters, 40(12), 3042-3047, doi:10.1002/grl.50599.


  14. Luijendijk, E., M. Ter Voorde, R. T. Van Balen, H. Verweij, and E. Simmelink (2011b), Thermal state of the Roer Valley Graben, part of the European Cenozoic Rift System, Basin Research, 23(1), 65-82, doi:10.1111/j.1365-2117.2010.00466.x.


    Heat flow and thermal history of the upper crust


  15. Spooner, S., Scheck-Wenderoth, M., Cacace, M., Götze, H.J., Luijendijk, E. (2020). The 3D thermal field across the Alpine orogen and its forelands and the relation to seismicity Global and Planetary Change 193 (103288), https://doi.org/10.1016/j.gloplacha.2020.103288.

  16. Ter Voorde, M., R. Van Balen, E. Luijendijk, and H. Kooi (2014), Weichselian and Holocene climate history reflected in temperatures in the upper crust of the Netherlands, Netherlands Journal of Geosciences, 93 (3), 107-117, (link).

  17. Luijendijk, E., R. T. Van Balen, M. Ter Voorde, and P. A. M. Andriessen (2011a), Reconstructing the Late Cretaceous inversion of the Roer Valley Graben (southern Netherlands) using a new model that integrates burial and provenance history with fission track thermochronology, Journal of Geophysical Research, 116(B06402), 1-19, doi:10.1029/2010JB008071.

  18. Permeability of porous and fractured rocks


  19. Afsar, F., Luijendijk, E. (2019) Quantifying a critical marl thickness for vertical fracture extension using field data and numerical experiments Geoscience Frontiers, https://doi.org/10.1016/j.gsf.2019.05.008.

  20. Luijendijk, E., and T. Gleeson (2015), How well can we predict permeability in sedimentary basins? Deriving and evaluating porosity-permeability equations for non-cemented sand and clay mixtures, Geofluids, 1-2, 67-83, (link).


  21. Ranjram, M., T. Gleeson, and E. Luijendijk (2015), Is the permeability of crystalline rock in the shallow crust related to depth, lithology, or tectonic setting?, Geofluids, 1-2, 106-119, (link).

  22. Groundwater sustainability in semi-arid regions


  23. Luijendijk, E., and A. Bruggeman (2008), Groundwater resources in the Jabal Al Hass region, northwest Syria: an assessment of past use and future potential, Hydrogeology Journal, 16(3), 511-530.


Peer-reviewed extended abstracts and conference proceedings



  1. von Hagke, C., Luijendijk, E., Ondrak, R., Lindow, J. (2015). Quantifying erosion rates in the Molasse basin using a high resolution data set and a new thermal model.Geotectonic Resesearch 97, 94–97. doi:10.1127/1864-5658/2015-36

  2. Thomas, R.J., Bruggeman, A., El-Dessougi, H., Luijendijk, E., and Turkelboom, F. (2006) Sustainable management of marginal drylands - the Khanasser Valley integrated research site in Syria, in Sustainable Management of Marginal Drylands (SUMAMAD),Proceedings of the 4th project workshop, Islamabad, Pakistan., Paris, UNESCO, p. 121–134. (pdf)


Peer-reviewed book chapters



  1. Howald, T., M. Person, A. Campbell, V. Lueth, A. Hofstra, D. Sweetkind, C.W. Gable, A. Banerjee, E. Luijendijk, L. Crossey, K. Karlstrom, S. Kelley, and F. Phillips (2016) Evidence for long‐timescale (>10^3 years) changes in hydrothermal activity induced by seismic events, in Gleeson, T. and Ingebritsen, S.E. eds., Crustal Permeability, Chichester, Wiley-Blackwell, 260–274, doi:10.1002/9781119166573.ch21.

  2. Ranjram, M., Gleeson, T., and Luijendijk, E., (2016) Is the permeability of crystalline rock in the shallow crust related to depth, lithology, or tectonic setting?, in Gleeson, T. and Ingebritsen, S.E. eds., Crustal Permeability, Chichester, Wiley-Blackwell, p. 123–136, doi:10.1002/9781119166573.ch12.

  3. Luijendijk, E., and Gleeson, T. (2016) How well can we predict permeability in sedimentary basins? Deriving and evaluating porosity–permeability equations for noncemented sand and clay mixtures, in Gleeson, T. and Ingebritsen, S.E. eds., Crustal Permeability, Chichester, Wiley-Blackwell, p. 87–103, doi:10.1002/9781119166573.ch10.


PhD thesis


Luijendijk, E. (2012), The role of fluid flow in the thermal history of sedimentary basins: Inferences from thermochronology and numerical modeling in the Roer Valley Graben, southern Netherlands, PhD thesis, 198 pp., Vrije Universiteit Amsterdam. (link to pdf)


Published model codes



  1. Luijendijk, E. (2019) GroMPy-couple: Coupled density-driven groundwater flow and solute transport model using Python. Zenodo. http://doi.org/10.5281/zenodo.2616534. See also this GitHub repository: https://github.com/ElcoLuijendijk/GroMPy-couple

  2. Luijendijk, E (2019) PyBHT: Model estimates of subsurface temperatures from borehole temperature records. https://doi.org/10.5281/zenodo.2680497. See also this GitHub repository: https://github.com/ElcoLuijendijk/pyBHT

  3. Luijendijk, E. (2018) Beo: model heat flow and thermochronology in hydrothermal systems (Version v1.0). Zenodo. http://doi.org/10.5281/zenodo.2527845. See also this GitHub repository: https://github.com/ElcoLuijendijk/beo


Published scientific datasets



  1. Luijendijk, Elco; Winter, Theis; Köhler, Saskia; Ferguson, Grant; von Hagke, Christoph; Scibek, Jacek (2020): Compilation of discharge, temperature, hydrochemistry and isotope data for thermal springs in the Alps. PANGAEA, https://doi.org/10.1594/PANGAEA.916089

  2. Luijendijk, E., Gleeson, T., Moosdorf, N. (2019): Geospatial data and model results for a global model study of coastal groundwater discharge. PANGAEA, https://doi.org/10.1594/PANGAEA.907641

  3. Gleeson, T., Befus, K., Jasechko, S., Luijendijk, E., Cardenas, M.B. (2016). Global_modern_groundwater_Gleesonetal. figshare Dataset. https://doi.org/10.6084/m9.figshare.1560081.v3

  4. Ranjram, M., (2015). Permeability-Depth (KZ) Database by Ranjram, Gleeson, and Luijendijk 2015. figshare Dataset. https://doi.org/10.6084/m9.figshare.1360229.v1

  5. Gleeson, T., (2015). Permeability data from Luijendijk and Gleeson, Table S1. figshare Dataset. https://doi.org/10.6084/m9.figshare.1507560.v1


Supervised theses



  1. Theis Winter (2019): Hydrochemistry and isotope hydrology of thermal springs in the Alps. M.Sc. thesis (pdf)

  2. Saskia Köhler (2019): Modelling the influence of thermal springs in fault zones on subsurface temperature in the Alps. M.Sc. thesis (pdf)

  3. Benedikt Ahner (2018): Towards a representative scale of the groundwater footprint. M.Sc. thesis (pdf)

  4. Tom Kaltofen (2017): Modeling burial and thermal history of the central European basins. M.Sc. thesis (pdf)

  5. Sarah Louis (2017): Quantifying the evolution of a hydrothermal system using high-resolution thermochronology. M.Sc. thesis (Winner von Koenen prize 2017) (pdf)
  6. Albertine Potter van Loon (2016): How marine clay layers control fluid flow in sedimentary basins. B.Sc. thesis (pdf)

  7. Mohamed Benhsinat (2016): Brine transport in sedimentary basins on geological timescales. M.Sc. thesis (pdf)