Stefan Dippel



Research interests:

The olfactory system of the red flour beetle Tribolium castaneum



The olfactory system of the red flour beetle Tribolium castaneum
The red flour beetle Tribolium castaneum (Herbst, Coleoptera, Tenebrionidae) is a secondary pest of stored, dried food products [1]. As a coleopteran model system, it represents the largest insect order, containing many different pests like bark beetles (Dendroctonus ponderosae, Ips typographus), colorado potato beetle (Leptinotarsa decemlineata), pollen beetle (Brassicogethes aeneus) and the Western corn rootworm (Diabrotica virgifera), which cause severe economic and ecological damage. Over the past years, T. castaneum turned into a remarkable model organism with plenty of genetic tools such as systemic RNA interference [2, 3], forward genetics based on insertional mutagenesis [4], transgene-based mis-expression systems [5, 6], as well as a fully annotated genome sequence [7, 8]. These tools predestine T. castaneum as a model system for coleopterans and to investigate findings from the vinegar fly Drosophila melanogaster for their generality in insects. Odor discrimination is a key process in insect life: from food and host finding to partner recognition, insects rely strongly on odor stimuli. Perception of odorants takes place in the chemosensory (olfactory or gustatory) sensilla and is supposed to be mediated by chemosensory proteins (CSPs) or odorant binding proteins (OBPs) [9?13], followed by detection via odorant receptors (ORs), ionotropic glutamate-like receptors (IRs), or gustatory receptors (GRs) [14].





Stefan Dippel Research To better understand the olfactory system of this a coleopteran pest species, we performed transcriptome analyses antennae, heads, mouthparts, legs, and bodies and analysed the expression of genes involved in odor reception. In addition we use competitive fluorescence binding assays in combination with RNAi based loss of function experiments to deorphanize OBPs.






Dreyer D, Vitt H, Dippel S, Goetz B, El Jundi B, et al. (2010) 3D Standard Brain of the Red Flour Beetle Tribolium Castaneum: A Tool to Study Metamorphic Development and Adult Plasticity. Front Syst Neurosci 4: 3. doi:10.3389/neuro.06.003.2010.


Paczkowski S, Paczkowska M, Dippel S, Schulze N, Schütz S, et al. (2013) The olfaction of a fire beetle leads to new concepts for early fire warning systems. Sens Actuators B Chem 183: 273?282. doi:10.1016/j.snb.2013.03.123.


Paczkowski S, Paczkowska M, Dippel S, Flematti G, Schütz S (2014) Volatile Combustion Products of Wood Attract Acanthocnemus nigricans (Coleoptera: Acanthocnemidae). J Insect Behav 27: 228?238. doi:10.1007/s10905-013-9430-4.







References:
1. Sokoloff A: The Genetics of Tribolium and Related Species. Volume 1. Academic press New York; 1966.
2. Bucher G, Scholten J, Klingler M: Parental RNAi in Tribolium (Coleoptera). Curr Biol CB 2002, 12:R85?86.
3. Tomoyasu Y, Denell RE: Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol 2004, 214:575?578.
4. Trauner J, Schinko J, Lorenzen MD, Shippy TD, Wimmer EA, Beeman RW, Klingler M, Bucher G, Brown SJ: Large-scale insertional mutagenesis of a coleopteran stored grain pest, the red flour beetle Tribolium castaneum, identifies embryonic lethal mutations and enhancer traps. BMC Biol 2009, 7:73.
5. Schinko JB, Weber M, Viktorinova I, Kiupakis A, Averof M, Klingler M, Wimmer EA, Bucher G: Functionality of the GAL4/UAS system in Tribolium requires the use of endogenous core promoters. BMC Dev Biol 2010, 10:53.
6. Schinko JB, Hillebrand K, Bucher G: Heat shock-mediated misexpression of genes in the beetle Tribolium castaneum. Dev Genes Evol 2012, 222:287?298.
7. Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, Gibbs R, Beeman RW, Brown SJ, Bucher G, Friedrich M, Grimmelikhuijzen CJP, Klingler M, Lorenzen M, Richards S, Roth S, Schröder R, Tautz D, Zdobnov EM, Muzny D, Gibbs RA, Weinstock GM, Attaway T, Bell S, Buhay CJ, Chandrabose MN, Chavez D, Clerk-Blankenburg KP, Cree A, Dao M, et al.: The genome of the model beetle and pest Tribolium castaneum. Nature 2008, 452:949?955.
8. Kim HS, Murphy T, Xia J, Caragea D, Park Y, Beeman RW, Lorenzen MD, Butcher S, Manak JR, Brown SJ: BeetleBase in 2010: revisions to provide comprehensive genomic information for Tribolium castaneum. Nucleic Acids Res 2010, 38(Database issue):D437?442.
9. Santis F de, François M-C, Merlin C, Pelletier J, Maïbèche-Coisné M, Conti E, Jacquin-Joly E: Molecular Cloning and in Situ Expression Patterns of Two New Pheromone-Binding Proteins from the Corn Stemborer Sesamia nonagrioides. J Chem Ecol 2006, 32:1703?1717.
10. Angeli S, Ceron F, Scaloni A, Monti M, Monteforti G, Minnocci A, Petacchi R, Pelosi P: Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. Eur J Biochem 1999, 262:745?754.
11. Pelosi P, Zhou J-J, Ban LP, Calvello M: Soluble proteins in insect chemical communication. Cell Mol Life Sci CMLS 2006, 63:1658?1676.
12. Wanner KW, Willis LG, Theilmann DA, Isman MB, Feng Q, Plettner E: Analysis of the Insect OS-D-Like Gene Family. J Chem Ecol 2004, 30:889?911.
13. Liu R, He X, Lehane S, Lehane M, Hertz-Fowler C, Berriman M, Field LM, Zhou J-J: Expression of chemosensory proteins in the tsetse fly Glossina morsitans morsitans is related to female host-seeking behaviour. Insect Mol Biol 2012, 21:41?48.
14. Leal WS: Odorant Reception in Insects: Roles of Receptors, Binding Proteins, and Degrading Enzymes. Annu Rev Entomol 2013, 58:373?391.