BMBF Research

Schlözer Programm Lehrerbildung of University of Göttingen within the nationwide Qualitätsoffensive Lehrerbildung


ABSCHLUSSBROSCHÜRE DES SPL



PROJECTS:

Project: Self-efficacy Beliefs of Interdisciplinary Science Teaching – Development of a Measurement Instrument, Impact Evaluation, and a Longitudinal Study
Joint Project: Schlözer Programm Lehrerbildung of University of Göttingen within the nationwide Qualitätsoffensive Lehrerbildung
Funding: Federal Ministry of Education and Research (BMBF; reference number for SPL I in 2016-2019: 01JA1617 and for SPL II in 2019-2023: 01JA1917)
Project PI: Prof. Dr. Susanne Bögeholz
Project Scientist: Kevin Handtke

Project: Self-efficacy Beliefs of Interdisciplinary Science Teaching – Development of a Measurement Instrument, Impact Evaluation, and a Longitudinal Study

Interdisciplinary science teaching is one of the major current national and international challenges for (prospective) science teachers. On the one hand, more and more interdisciplinary science teaching is offered in Germany (e.g., grade 5 and 6 at grammar schools: Graube et al., 2013). On the other hand, teacher education remains largely organized by disciplines (biology, chemistry, and physics; Neumann et al., 2017). These conditions create the challenge of (partly) out-of-field teaching when teaching interdisciplinary science (e.g., Dörges, 2001; Fruböse et al., 2011). Thus, one question is to what extent the (prospective) teachers believe that they can teach this subject, nevertheless.
Therefore, in the project “Self-efficacy beliefs of interdisciplinary science teaching”, we developed two reliable and valid measurement instruments, i.e., for self-efficacy beliefs of interdisciplinary science teaching and for self-rated content knowledge of biology, chemistry, and physics (e.g., Handtke & Bögeholz, 2019a, 2020a, 2020b). The Self-Efficacy Beliefs of Interdisciplinary Science Teaching (SElf-ST) instrument is based on the PCK model from Park and Chen (2012). The instrument for self-rated content knowledge is based on curricula and their core ideas (Handtke & Bögeholz, 2020b). For the instrument developments, we used two nationwide samples with pre-service, trainee, and in-service teachers of biology, chemistry and physics (n =114 and n = 590, respectively 552 without in-service teachers for self-rated content knowledge) in a cross-sectional design (Handtke & Bögeholz, 2019a, 2020a, 2020b). We applied exploratory and confirmatory factor analyses to test the factorial validity of both constructs (Handtke & Bögeholz, 2019a, 2020a, 2020b). The self-efficacy beliefs of interdisciplinary science teaching consist of ten factors, nine linked to the theoretical model from Park and Chen (2012) (CFI = 0.95, TLI = 0.95, RMSEA = 0.06; Handtke & Bögeholz, 2019a, 2019b, 2020a). The analysis revealed one additional factor: Teaching Ethically Relevant Issues of Applied Sciences (Handtke & Bögeholz, 2019a). The self-rated content knowledge of science subject-related self-rated content knowledge consists of three factors: biology, chemistry, and physics (CFI = 0.98, TLI = 0.97, RMSEA = 0.09; Handtke & Bögeholz, 2020b). The investigation of different relations of the nomological net revealed several hints on both instruments' convergent and divergent validity (Handtke & Bögeholz, 2020a, 2020b).
In a second step, we applied structural equation modeling to identify factors influencing self-efficacy beliefs of interdisciplinary science teaching and the science subject-related self-rated content knowledge (e.g., Handtke & Bögeholz, 2020b). The teaching experience, the type and number of science subjects studied, and the desire to teach science influenced the investigated self-efficacy positively. The type and number of science subjects studied and the final school grades in biology, chemistry and physics had an impact on the self-rated content knowledge in biology, chemistry, and physics (Handtke & Bögeholz, 2020b). Regarding self-rated content knowledge, biology and chemistry did not correlate, biology and physics correlated negatively, and chemistry and physics correlated positively (Handtke & Bögeholz, 2020b).
It had a strong positive effect, if one studied a subject corresponding to a factor of the science subject-related self-rated content knowledge (“house effect”) (Handtke & Bögeholz, 2020b). Besides these three house effects for biology, chemistry, and physics, studying a non-corresponding science subject mostly had no or a negative effect on the factors of science subject-related self-rated content knowledge (Handtke & Bögeholz, 2020b). Thus, science subject-related self-rated content knowledge indicates that current teacher education does not sufficiently prepare prospective teachers for interdisciplinary science teaching (Handtke & Bögeholz, 2020b).
In the second phase of the project and the Schlözer Programm Lehrerbildung, we look more closely at the development of the self-efficacy beliefs of interdisciplinary science teaching and the science subject-specific self-rated content knowledge of teaching interdisciplinary science in a longitudinal design. Additionally, we evaluate the effectiveness of a certificate for interdisciplinary science teaching at the University of Göttingen with our developed instruments. The certificate addresses the need for training in interdisciplinary science teaching.

References
  • Dörges, A. (2001). Erfahrungen mit dem integrierten naturwissenschaftlichen Unterricht. MNU Journal, 54(4), 230–232.
  • Fruböse, C., Illgen, J., Kohm, L., & Wollscheid, R. (2011). Unterricht im integrierten Fach Naturwissenschaften: Erfahrungen aus gymnasialer Sicht. MNU Journal, 64(7), 433–439.
  • Graube, G., Mammes, I., & Tuncsoy, M. (2013). Natur und Technik in der gymnasialen Orientierungsstufe: Zur Notwendigkeit eines interdisziplinären Ansatzes. MNU Journal, 66(3), 176–179.
  • Handtke, K., & Bögeholz, S. (2019a). Self-Efficacy Beliefs of Interdisciplinary Science Teaching (SElf-ST) Instrument: Drafting a Theory-based Measurement. Education Sciences, 9(4), 247. https://doi.org/10.3390/educsci9040247
  • Handtke, K., & Bögeholz, S. (2019b, September 9–12).Selbstwirksamkeitserwartungen zum Unterrichten von Naturwissenschaften: Messinstrumententwicklung und Einflussfaktoren. [Conference presentation]. Internationale Jahrestagung der Gesellschaft für Didaktik der Chemie und Physik (GDCP) und der Fachsektion Didaktik der Biologie (FDdB im VBio), Vienna, Austria.
  • Handtke, K., & Bögeholz, S. (2020a). Arguments for Construct Validity of the Self-Efficacy Beliefs of Interdisciplinary Science Teaching (SElf-ST) Instrument. European Journal of Educational Research, 9(4), 1435–1453. https://doi.org/10.12973/eu-jer.9.4.1435
  • Handtke, K., & Bögeholz, S. (2020b). Self-rated content knowledge of biology, chemistry, and physics - developing a measure and identifying challenges for interdisciplinary science teaching. RISTAL, 3, 46–67. https://doi.org/10.23770/rt183
  • Neumann, K., Härtig, H., Harms, U., & Parchmann, I. (2017). Science Teacher Preparation in Germany. In J. E. Pedersen, T. Isozaki & T. Hirano (Eds.), Model Science Teacher Preparation Programs: An International Comparison of What Works (pp. 29–52). Information Age Publishing.
  • Park, S., & Chen, Y.-C. (2012). Mapping Out the Integration of the Components of Pedagogical Content Knowledge (PCK): Examples From High School Biology Classrooms. Journal of Research in Science Teaching, 49(7), 922–941. https://doi.org/10.1002/tea.21022

Grafik SWE engl. Overview Fig. 1: Overview of the project Self-efficacy Beliefs of Interdisciplinary Science Teaching – Development of a Measurement Instrument, Impact Evaluation, and a Longitudinal Study (SEB = Self-efficacy beliefs, srCK = Self-rated content knowledge).

Project: Situational, Conceptual and Procedural Knowledge on Biodiversity and Climate Change – Teacher Student Knowledge on Sustainable Development Issues and a Delphi Study on Procedural Knowledge
Joint Project: Schlözer Programm Lehrerbildung of University of Göttingen within the nationwide Qualitätsoffensive Lehrerbildung
Funding: Federal Ministry of Education and Research (BMBF; reference number for SPL I in 2016-2019: 01JA1617 and for SPL II in 2019-2023: 01JA1917)
Project PI: Prof. Dr. Susanne Bögeholz
Project Scientist: Lisa Richter-Beuschel

Projekt: Interdisziplinäres Wissen zu Bildung für nachhaltige Entwicklung
Im Rahmen des Projekts wurde ein Messinstrument entwickelt, um Wissen von Lehramtsstudierenden für die Gestaltung nachhaltiger Landnutzung zu erfassen. Der Fokus lag dabei auf den Themen Biodiversität und Klimawandel. Das Wissen sollte differenziert nach situationalem, konzeptuellem und prozeduralem Wissen (de Jong & Ferguson-Hessler, 1996) analysiert werden. Um situationales und konzeptuelles Wissen zu messen, wurden anhand exemplarischer Kontexte zu Insekten und Bestäubung und Moornutzung Szenarien als Grundlage für die Bearbeitung von Multiple-Choice Aufgaben entwickelt (Richter-Beuschel, Derksen & Bögeholz, 2018; Richter-Beuschel & Bögeholz 2020a). Um Aufgaben zur Erfassung von prozeduralem Wissen zu entwickeln, wurde eine mehrstufige Expert*innenbefragung (Delphi-Studie) durchgeführt (Richter-Beuschel, Grass & Bögeholz, 2018). Dabei konnte unter anderem ein Maßstab generiert werden, auf dessen Basis das prozedurale Wissen von Lehramtsstudierenden beurteilt werden kann (Richter-Beuschel, Grass & Bögeholz, 2018; Richter-Beuschel & Bögeholz, 2020a). Mittels Item Response Theorie wurde geprüft, inwiefern sich die theoretisch zugrunde gelegten Typen von situationalem, konzeptuellem und prozeduralem Wissen empirisch stützen lassen (Richter-Beuschel & Bögeholz, 2020b). Die Modellierungen haben ergeben, dass mit Hilfe des entwickelten Instrumentes situational/konzeptuelles Wissen und prozedurales Wissen geeignet als zwei voneinander unabhängige Dimensionen erfasst werden können. Beide Dimensionen wurden zudem über Validitätsuntersuchungen abgesichert (Richter-Beuschel & Bögeholz, 2020b). Weiterhin konnten erste Erkennt-nisse über disziplinäres Wissen verschiedener Disziplinen im Bereich situational/konzeptuelles Wissen und interdisziplinäres Wissen im Bereich des prozeduralen Wissens von Lehramtsstudierenden gewonnen werden.
Literaturverzeichnis
  • De Jong, T., Ferguson-Hessler, M. (1996). Types and Qualities of Knowledge. J. Educ. Psychol. 31, 105–113.
  • Richter-Beuschel, L., & Bögeholz, S. (2020a). Student Teachers’ Knowledge to Enable Problem-Solving for Sustainable Development. Sustainability 12(1), 79.
  • Richter-Beuschel, L., & Bögeholz, S. (2020b). Knowledge of Student Teachers on Sustainable Land Use Issues – Knowledge Types Relevant for Teacher Education. Sustainability 12(20), 8332.
  • Richter-Beuschel, L., Derksen, C, & Bögeholz, S. (2018). Konzeptuelles Wissen angehender Lehrkräfte für Bildung für Nachhaltige Entwicklung. In: Korn, H., Dünnfelder, H. & Schliep, R. (Hrsg.) - Treffpunkt Biologische Vielfalt XVI - nterdisziplinärer Forschungsaustausch im Rahmen des Übereinkommens über die biologische Vielfalt - BfN-Skripten 487. Bonn, Bad-Godesberg: Bundesamt für Naturschutz (BfN), S.88-95.
  • Richter-Beuschel, L., Grass, I., & Bögeholz, S. (2018). How to Measure Procedural Knowledge for Solving Biodiversity and Climate Change Challenges. Educ. Sci., 8 (4).


Project: Integrating Teaching and Learning Labs into Biology Pre-Service Teacher Education – Fostering Biodiversity- and Science-related Interests in Educational Interventions (2016-2021)
Joint Project: Schlözer Programm Lehrerbildung of University of Göttingen within the nationwide Qualitätsoffensive Lehrerbildung
Funding: Federal Ministry of Education and Research (BMBF; reference number for SPL I: 01JA1617 and for SPL II: 01JA1917)
Project PI: Prof. Dr. Susanne Bögeholz; Scientific Cooperation: Prof. Dr. Ariane Willems
Project Scientists: Kevin Handtke, Finn K. Matthiesen, Gina Wilder

Biology educational research has shown that linking teaching and learning in school and out-of-school settings is beneficial for fostering agriculture- and biology-related interests (e.g., Bickel, 2015). The University of Göttingen runs several teaching-learning laboratories, i.e., the experimental laboratory for young people (XLAB), the humanities and social sciences lab (YLAB), and the biodiversity-related lab (BLAB). Integrating teaching-learning laboratories (Haupt et al., 2013) into teacher education supports bridging from theory to practice in teacher education. For example, in teaching-learning labs, pre-service teacher students work together with school students. In Biology Education at the University of Göttingen, we work together with the BLAB and the XLAB. For instance, biology teacher students (i) plan an educational intervention for school students that aims at fostering interest in biodiversity-related topics, contexts, and activities, (ii) conduct the designed teaching and learning unit, and (iii) reflect on the further development of the unit – based on theory and evidence.
One focus of a bachelor course is to foster the planning competence of biology teacher students that enables secondary school students to develop (situational) interests in the biology-related teaching topics. We conducted the course in two variants: (i) teacher students in the XLAB class focus on out-of-school learning and its preparation and follow-up in school on general biology topics, whereas (ii) the BLAB class focuses explicitly on biodiversity. The seminar concept and the accompanying research approach regarding the two variants are published in Danilschenko et al. (2019). The evaluation showed that teacher students of both classes perceived a significant increase with strong effects in their own planning competence (self-reported) of an interest-promoting teaching and learning unit. In addition, the mixed ANOVA revealed that teacher students’ biodiversity-specific planning competence in the BLAB class raises with a strong effect after the course compared to those at the XLAB.
In addition, guidelines for reflection and improvement of lesson plans were developed for interest-promoting lesson planning. We adapted the Content Representation (CoRe) of Loughran et al. (2004). We used the version adapted for fostering interests as an individual written assignment for the teacher students. The new guideline supported the teacher students to reflect and improve the first draft of their lesson plans for the BLAB- and XLAB-related teaching and learning unit. Lastly, oriented on the Science Lesson Plan Analysis Instrument of Jacobs et al. (2008), we developed a lesson plan analysis instrument focusing on planning competence regarding fostering interests of learners in biology. This instrument aims to support teacher educators and teacher students to analyze and improve interest-promoting planning competence. The objective measurement instrument complements the evaluation of the self-reported planning competence of teacher students.

References
  • Bickel, M. (2015). Students’ Interests in Agriculture: The Impact of School Farms Regarding Fifth and Sixth Graders [Doctoral Dissertation, University of Göttingen]. eDiss.
  • Danilschenko, M., Matthiesen, F. K., Willems, A. S., & Bögeholz, S. (2019). Förderung biodiversitätsbezogener Interessen von Schüler*innen als fachdidaktische Aufgabe für angehende Lehrkräfte – Konzeption und Evaluation einer Lehrveranstaltung. In H. Korn, & H. Dünnfelder (Eds.), Treffpunkt Biologische Vielfalt XVII – Interdisziplinärer Forschungsaustausch im Rahmen des Übereinkommens über die biologische Vielfalt (pp. 17–23). Bundesamt für Naturschutz (BfN).
  • Haupt, O. J., Domjahn, J., Martin, U., Skiebe-Corrette, P., Vorst, S., Zehren, W., & Hempelmann, R. (2013). Schülerlabor: Begriffsschärfung und Kategorisierung. Der mathematische und naturwissenschaftliche Unterricht, 66(6), 324–330.
  • Jacobs, C. L., Martin, S. N., & Otieno, T. C. (2008). A Science Lesson Plan Analysis Instrument for formative and summative program evaluation of a teacher education program. Science Education, 92(6), 1096–1126. https://doi.org/10.1002/sce.20277
  • Loughran, J., Mulhall, P., & Berry, A. (2004). In search of pedagogical content knowledge in science: Developing ways of articulating and documenting professional practice. Journal of Research in Science Teaching, 41(4), 370–391. https://doi.org/10.1002/tea.20007