Abstract Brana-Coto

Simulation of Electron Transfer Processes at Molecule-Metal and
Molecule-Semiconductor Interfaces

Pedro B. Coto, Veronika Prucker, Oscar Rubio-Pons,y Michel Bockstedte, Haobin
Wang and Michael Thoss
Institut für Theoretische Physik und Interdisziplinäres Zentrum für Molekulare Materialien
(ICMM), Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstraße 7/B2 91058,
Erlangen, Germany
Department of Chemistry and Biochemistry, MSC 3C, New Mexico State University, Las Cruces,
New Mexico 88003, USA

Heterogeneous electron transfer (ET) in molecular systems at semiconductor or metal surfaces is a key step in many processes relevant to Chemistry, Physics and Material Science. Important applications where this process plays a fundamental role include photonic energy conversion in nanocrystalline dye-sensitized solar cells, in which photoexcitation triggers the injection of an electron from an excited electronic state of a dye molecule into the conduction band of a semiconductor, and charge transport in nanoscale molecular junctions. Recently, we have developed an approach to study the dynamics of ET in molecule-metal and molecule-semiconductor systems that combines a first-principles characterization of the systems with an accurate quantum treatment of the dynamics. 1,2 In this contribution, we present the results obtained in the simulation of ET processes in perylene-titanium dioxide dye-semiconductor systems2 and self-assembled monolayers of nitrilesubstituted alkanethiolate molecules adsorbed at metal surfaces.3,4 In particular, we investigate the roles that the symmetry of the donor state and the molecular structure of the spacer groups have in the dynamics of the charge transfer process.

1. Kondov, I.; Cizek, M.; Benesch, C.; Wang, H.; Thoss, M. J.; Phys. Chem. C 2007, 111, 11970.
2. Li, J.; Wang, H.; Persson, P.; Thoss, M. J.; Chem. Phys. 2012, 137, 22A529.
3. Blobner, F.; Coto, P. B.; Allegretti, F.; Bockstedte, M.; Rubio-Pons, O.; Wang, H.; Allara, D. L.; Zharnikov, M.; Thoss, M.; Feulner P. J.;
Phys. Chem. Lett. 2012, 3, 436.
4. Prucker, V.; Rubio-Pons, O.; Bockstedte, M.;Wang, H.; Coto, P. B.; Thoss, M. J.; Phys. Chem. C 2013, 117, 25334.