Project C05

C05 - Controlling electron-driven chemistry by intercalation
Understanding multi-electron transfer reactions at manganite spinel surfaces is the focus of this project. After successful demonstration of both in situ Li intercalation and deintercalation during the first funding period, the project will establish electrochemical de-/lithiation as a tactic for controlling the oxygen evolution reaction (OER) via induced changes in the electronic structure of the spinel in close collaboration with theoretical studies.

C05 - Kontrolle Elektronen-getriebener Chemie durch Interkalation
Ein besseres Verständnis von Vielelektronentransferreaktionen an Manganat-Spinelloberflächen ist der Fokus dieses Projektes. Nach erfolgreicher Demonstration sowohl von in situ Li-Interkalation als auch Deinterkalation in der ersten Förderperiode soll nun elektrochemische De/-Interkalation als Taktik zur Kontrolle der Sauer¬stoff¬entwicklungs¬reaktion (OER) angewandt werden. Dabei werden die induzierten Änderungen der elektronischen Struktur der Spinelle in enger Zusammenarbeit mit theoretischen Studien analysiert.


The Cover Feature shows bio-inspired electrocatalysis for the oxygen evolution reaction on LiMn2O4 nanocrystals. The electrocatalyst shares the cubane motif with the active site of photosystem II and the valence of Mn3.5+ with the dark-stable state of natural photosynthesis. These commonalities allow discussion of the electrocatalytic mechanism of LiMn2O4 in the context of natural photosynthesis. More information can be found in the Full Paper by Köhler et al. in the journal ChemSusChem on page 4479 in Issue 22, 2017 (DOI: 10.1002/cssc.201701582).


The cover art illustration shows lithium manganese oxide particles, a commonly used electrode material. One of the long-standing challenges is the microstructural characterization of the electrode material itself and identifying the influence of the different microstructures on the (de)intercalation of Li ions. Using atom probe tomography, it was possible to identify different phases, phase segragation as well as a lamellar microstructure and their effect on charging/discharging. Using this information, it should be possible to further improve electrode materials. You can read more in the Full Paper by Johannes Maier et al. in the Journal Energy Technology on page 1565 in Issue 12, 2016 (DOI: 10.1002/ente.201600210).