Our lecture series covers a broad spectrum of modern molecular life science, from the molecular to the system level. Four lecture hours per week are accompanied by tutorial in smaller groups to discuss the lecture topics further.
* unless stated otherwise All lectures take place in the Ludwig-Prandtl Lecture Hall of the MPI for Multidisciplinary Sciences, Am Fassberg 11 unless announced otherwise. For an overview of the timetable of all lecture and tutorials in PDF format, please click here. Please click on the different modules and respective lecture topics in order to see more details. The provided dates (dd.mm.yyyy / dd.mm.yyyy) are those for the lecture and tutorial, respectively.
Lectures
Keywords: cellular compartments; organelles; (confocal) microscopy; STED microcopy; electron microscopy
Further Reading: Silverman, The Organic Chemistry of Enzyme-catalyzed Reactions, Revised Edition 2002, Chapters 1, 6, 10, 11
Further Reading: Branden & Tooze, Introduction to Protein Structure, 2nd Edition, 1999, Chapters 1- 2
- Watson JD, Baker TA, Bell SP, Gann A, Levine M, Losick R (2004 or 2008) Molecular Biology of the Gene, 5th or 6th Ed, Pearson/Benjamin Cummings, CSHL Press, San Francisco, chapter 8, 9 and 10
Further Reading:
- Rothwell PJ, Waksman G (2005) Structure and mechanism of DNA polymerases. Adv Prot Chem 71: 401- 440
- San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Ann Rev Genet 77: 229-257
- Rudolph C, Schürer KA, Kramer W (2007) Facing stalled replication forks: The intricacies of doing the right thing. in Genome Integrity: Facets and Perspective. Genome Dynamics and Stability, Vol 1, Lankenau D-H (Ed), Springer-Verlag, Berlin, pp. 105-152
- Watson JD, Baker TA, Bell SP, Gann A, Levine M, Losick R (2004 or 2008) Molecular Biology of the Gene, 5th or 6th Ed, Pearson/Benjamin Cummings, CSHL Press, San Francisco, chapter 8, 9 and 10
Further Reading:
- Rothwell PJ, Waksman G (2005) Structure and mechanism of DNA polymerases. Adv Prot Chem 71: 401- 440
- San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Ann Rev Genet 77: 229-257
- Rudolph C, Schürer KA, Kramer W (2007) Facing stalled replication forks: The intricacies of doing the right thing. in Genome Integrity: Facets and Perspective. Genome Dynamics and Stability, Vol 1, Lankenau D-H (Ed), Springer-Verlag, Berlin, pp. 105-152
additionally: selected reading, hand-outs
- Alberts B, Johnson A, et al. Molecular Biology of the Cell, 5th Ed., Garland Publ.:
- Chapter 4 DNA, Chromosomes, and Genomes: pp. 230-233 (inheritance of chromatin structures)
- Chapter 7 Control of Gene Expression: pp. 467-476 (on DNA methylation, imprinting, and heritable Epigenetics)
Further reading
- Reinberg D, Vales LD. Chromatin domains rich in inheritance. Science 2018 361:33-34 (on epigenetic inheritance)
- Heard E, Disteche CM. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev. 2006 20:1848-67. (On X-inactivation)
- Alberts et al.; Molecular Biology of the Cell – Chapter “How Cells Read the Genome – From DNA to RNA”;
- Voet, Voet – Biochemistry – Chapter: “Post-transcriptional Processing”;
- Stryer: Biochemistry – Chapter “RNA Synthesis and Splicing”
Further reading:
- Wahl at al., 2009, Cell 136, 701;
- Wahl, M. C., & Lührmann, R. (2015). SnapShot: Spliceosome Dynamics I. Cell, 161(6), 1474–e1;
- Wahl, M. C., & Lührmann, R. (2015). SnapShot: Spliceosome Dynamics II. Cell, 162(2), 456–456.e1;
- Wahl, M. C., & Lührmann, R. (2015). SnapShot: Spliceosome Dynamics III. Cell, 162(3), 690–690.e1;
- Wan, R., Bai, R., Zhan, X., & Shi, Y. (2020). How Is Precursor Messenger RNA Spliced by the Spliceosome? Annual review of biochemistry, 89, 333–358;
- Wilkinson, M. E., Charenton, C., & Nagai, K. (2020). RNA Splicing by the Spliceosome. Annual review of biochemistry, 89, 359–388;
- Ward, W. L., Plakos, K., & DeRose, V. J. (2014). Nucleic acid catalysis: metals, nucleobases, and other cofactors. Chemical reviews, 114(8), 4318–4342;
- Gerstberger, S., Hafner, M., & Tuschl, T. (2014). A census of human RNA-binding proteins. Nature reviews. Genetics, 15(12), 829–845;
- Corley, M., Burns, M. C., & Yeo, G. W. (2020). How RNA-Binding Proteins Interact with RNA: Molecules and Mechanisms. Molecular cell, 78(1), 9–29
- Quereda JJ, Cossart P. (2017) Regulating bacterial virulence with RNA. Annu. Rev. Microbiol. 71: 263-280.
- Bechhofer DH, Deutscher MP. (2019) Bacterial ribonucleases and their roles in RNA metabolism. Crit. Rev. Biochem. Mol. Biol. 54: 242-300.
- Nelson JW, Breaker RR (2017) The lost language of the RNA world. Sci. Signal. 10: eaam8812.
- Babitzke P. et al. (2019) Posttrancription initiation control mediated by bacterial RNA-binding proteins. Annu. Rev. Microbiol. 73: 43-67.
Further reading: Roundtree, I.A., Evans, M.E., Pan, T., He, C. (2017) Dynamic RNA Modifications in Gene Expression Regulation. Cell 169: 1187-1200.
- Krebs JE, Goldstein ES, Kilpatrick ST (2011) Lewin's Genes X, Part 3 (for background), Chapter 22
- Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular Biology of the Cell, 5th Ed, Chapter 6
Further Reading: Perry Frey , Enzymatic Reaction Mechanisms, 1st edition, 2007, Chapters 1-5
- Berg et al. Biochemistry fifth Edition
- Leninger Principles of Biochemistry fourth edition
- Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular Biology of the Cell, 5th Ed, Garland Publ, Chapter 10 (pp 617-629)
- Nelson DL, Cox MM (2009) Lehninger Principles of Biochemistry, 5th Ed, W.H. Freeman, Chapter 21
Further Reading
- Voelker DR (2009) Genetic and Biochemical Analysis of Non-Vesicular Lipid Traffic. Annu Rev Biochem 78, 827-856
- Nielsen J (2003) It is all about metabolic fluxes. J Bacteriol 185: 7031-7035
- Edwards JS, Covert M, Palsson B (2002) Metabolic modelling of microbes: the flux-balance approach. Environm Microbiol 4: 133-140
- Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th Ed, Garland Publ, Chap 2
- Berg JM, Tymoczko JL, Stryer L (2004) Biochemistry, 5th ed, WH Freeman, Chap 20
Further Reading:
- Buchanan BB, Guissem W, Eds (2002) Biochemistry and molecular biology of plants. John Wiley & Sons Ltd, Chap 13, 20
- Schwender J, Ohlrogge J, Shachar-Hill Y (2004) Understanding flux in plant metabolic networks. Curr Opin Plant Biol 7: 309-317
- Hills MJ (2004) Control of storage-product synthesis in seeds. Curr Opin Plant Biol 7: 302-308
- Brock Biology of Microorganisms, 15th edition, 2018, chapter 24
Further Reading
- Zoetendal et al. 2006. A microbial world within us. Mol. Microbiol. 59: 1639-1650
- Ley et al. 2006. Human gut microbes associated with obesity. Nature 444: 1022-1023
- Li et al. 2008. Symbiotic gut microbes modulate human metabolic phenotypes. Proc. Natl. Acad. Sci. USA 105: 2117-2122
- Sender et al. 2016. Are we really vastly outnumbered? Cell 164: 337-340
- Smits et al. 2017. Seasonal cycling in the gut microbiome of the Hazda hunter-gatherers of Tanzania. Science 357: 802-806.
- Utilization of the energy of the sunlight by photosynthesis is the basis for life on earth (How did photosynthesis begin?; Pigments capture the energy of sunlight; Light absorption excites a chlorophyll molecule; An Antenna is required to capture light);
- Photosynthesis is an electron transport process (The photosynthetic machinery is constructed from modules; An oxidant and a reductant are formed during photosynthesis; Function of a photosynthetic reaction centre; Two photosynthetic reaction centres are arranged in sequence in the photosynthesis of algae and plants; Water is split by Photosystem II; The cytochrome b6/f complex mediates the electron trasnport between photosystem I and II; Photosystem I reduces NADP);
- ATP is generated by photosynthesis (A proton gradient serves as an energy-rich intermediate state during ATP synthesis; Uncouplers dissipate the electrochemical proton gradient into heat);
- The Calvin cycle is the reaction pathway for photosynthetic CO2 assimilation (CO2 assimilation proceeds via the photosynthetic dark reactions; Ribulosebisphosphate carboxylase/oxygenase catalyses CO2 fixation; Triose phosphates are formed by the reduction of 3-phosphoglycerate; There is a reductive and an oxidative pentose phosphate cycle; Regulation of the pentose phosphate cycles)
- Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular Biology of the Cell, 5th Ed, Garland Publ, Chapter 14 (pp 840-855)
- Nelson DL, Cox MM (2009) Lehninger Principles of Biochemistry, 5th Ed, W.H. Freeman, Chapter 19+20
Further Reading
- Buchanan BB, Gruissem W, Jones RJ (2002) Biochemistry & Molecular Biology of Plants, 1st Ed, Johns Wiley and Sons Ltd, Chapter 12 (pp 1408 paper back)
- Marks, F, Klingmüller, U, Müller-Decker, K (2017) Cellular Signal Processing, 2nd edition Garland Science, chapters 4.1-4.4 (general); 5.2, 5.3, 5.9 (G protein-coupled receptors/ WNT); 7.1, 7.2 (tyrosine kinases); 10.1-10.3 (small G proteins); 11 (MAPK/NFkB); 14.5 (Ca2+)
- Voet D, Voet JG, Pratt CW (2016) Fundamentals of Biochemistry, 5th edition Wiley, chapter 19
- Cooper GM, Hausman RE (2015) The Cell, 7th edition Sinauer Associates, chapter 17
Further Reading:
- Kramer I (2015) Signal Transduction, 3rd edition Academic Press
- Lim W, Mayer B, Pawson T (2014) Cell Signaling, Routledge
Further reading: Hegde RS and Keenan RJ, Nat Rev Mol Cell Biol. 2022 Feb;23(2):107-124. doi: 10.1038/s41580-021-00413-2.
Compartmentalisation of eukaryotic cells; division of labour between nucleus and cytoplasm; need for nuclear transport; classes of nuclear transport substrates; Structure and function of nuclear pore complexes; Digitonin-permeabilised cells as an experimental system; The "classical" nuclear protein import pathway; Importins and exportins; Nuclear import of Ran; Nuclear export of RNAs; Mechanism of nuclear pore passage; Comparison of nuclear transport with protein transport into the endoplasmic reticulum.
- Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular biology of the cell. 5th Ed, Garland Publ, relevant chapters
- Pollard TD (2002) Cell Biology, 1st Ed, Saunders, relevant chapters
Intermediate Filaments and Lamins (Classification, primary sequence, domain structure of IFs (head-rod -tail) , assembly pathway, tissue distribution and specificity), Microtubules (overall structure and biochemical properties, subunit structure, assembly, microtubule nucleation, associated proteins), Actin (assembly and properties, crosslinkers, actin networks in migration), Molecular motors (Kinesins, Dynein, Myosin, organelle and cargo transport), Cilia and Flagella (cell locomotion), Mechanosensation (force sensors, transmission of extracellular forces through membranes, translation into chemical signals).
- The Origin of Animal Multicellularity and Cell Differentiation. Brunet T, King N. Dev Cell. 2017 Oct 23;43(2):124-140. doi: 10.1016/j.devcel.2017.09.016. Review.
- Adherens junctions: from molecules to morphogenesis. Harris TJ, Tepass U. Nat Rev Mol Cell Biol. 2010 Jul;11(7):502-14. doi: 10.1038/nrm2927. Review.
- Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Takeichi M. Nat Rev Mol Cell Biol. 2014 Jun;15(6):397-410. doi: 10.1038/nrm3802. Epub 2014 May 14. Review.
- Phase Separation of Zonula Occludens Proteins Drives Formation of Tight Junctions. Beutel O, Maraspini R, Pombo-García K, Martin-Lemaitre C, Honigmann A. Cell. 2019 Oct 31;179(4):923-936.e11. doi: 10.1016/j.cell.2019.10.011.
- Multicolor and electron microscopic imaging of connexin trafficking. Gaietta G, Deerinck TJ, Adams SR, Bouwer J, Tour O, Laird DW, Sosinsky GE, Tsien RY, Ellisman MH. Science. 2002 Apr 19;296(5567):503-7.
- Cytoskeletal control of early mammalian development. Lim HYG, Plachta N. Nat Rev Mol Cell Biol. 2021 Aug;22(8):548-562. doi: 10.1038/s41580-021-00363-9. Epub 2021 Apr 29.
- Cellular locomotion using environmental topography. Reversat A, Gaertner F, Merrin J, Stopp J, Tasciyan S, Aguilera J, de Vries I, Hauschild R, Hons M, Piel M, Callan-Jones A, Voituriez R, Sixt M. Nature. 2020 Jun;582(7813):582-585. doi: 10.1038/s41586-020-2283-z. Epub 2020 May 13.
- Luteinizing hormone causes MAP kinase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles: one of two paths to meiotic resumption. Norris RP, Freudzon M, Mehlmann LM, Cowan AE, Simon AM, Paul DL, Lampe PD, Jaffe LA. Development. 2008 Oct;135(19):3229-38. doi: 10.1242/dev.025494.
- Relevant chapters in Alberts et al: “transport from the trans Golgi network to lysomes” to “Autophagy degrades unwanted proteins and organelles" (pages 722-727)
- Nakatogawa “Mechanisms governing autophagosome biogenesis” (2020) Nature Reviews Molecular Cell Biology (will be provided)
- Charalambous C, Webster A, Schuh M (2022) Aneuploidy in mammalian oocytes and the impact of maternal ageing. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-022-00517-3;
- Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2015) Molecular biology of the cell, 6th Ed, Garland Publ, Chapter 17 Cell Cycle -> Section on Meiosis (p. 1004-1020)Further reading: Watanabe Y. (2012) Geometry and force behind kinetochore orientation: lessons from meiosis. Nat Rev Mol Cell Biol. 16, 370-82
Further points of interest for aficionados: Genetics stability, angiogenesis, invasion and metastasis, cancer therapy
Further Reading: Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57-70
- Lodish, Berk, Kaiser, Krieger, Scott, Bretscher, Ploegh, Matsudaira (2008) Molecular Cell Biology, 6th edition. W.H. Freeman and Company, UK. Chapters 4.5, 18, 20, 25.4
- Alberts, Johnson, Lewis, Raff, Roberts, Walter (2008). Molecular Biology of the Cell, 5th edition. Garland Science, UK. Chapters 5, 17
Optional:
- Morgan DO (2006) The Cell Cycle: Principles of Control. Oxford University Press, UK
Further reading: other chapters of Janeway’s Immunobiology
Further reading: other chapters of Janeway’s Immunobiology
Further reading: other chapters of Janeway’s Immunobiology
Further reading: other chapters of Janeway’s Immunobiology
- Mims CA, Nash A, Stephen J (2001) Mims' pathogenesis of infectious disease, 5th Ed, Academic Press, Chap 7
- Wilson M, McNab R, Henderson B (2002) Bacterial disease mechanisms: an introduction to cellular microbiology. 1st Ed, Cambridge University Press, Chap 9
- Strauss JH, Strauss EG (2002) Viruses and human disease, Academic Press, chapter on Papilloma viruses
Optional: Groisman EA (2001) Principles of bacterial pathogenesis, 1st Ed, Academic Press
- Main Developmental Processes: Cell Division (Cleavage Patterns; Germ Line versus Somatic Cells; Genomic Equivalence; Differential Gene Expression); Pattern Formation (Asymmetric Cell Division; Induction; Morphogen Gradient; Lateral Inhibition); Morphogenesis (Cell Form Changes; Cell Migration; Apoptosis); Cell Differentiation (versus Cell Division) (Cell Specification; Cell Determination; Cell-specific Functions; Cell-specific Morphologies); Growth (size controlled; allometric)
- Principles of Experimental Embryology: Isolation Experiment; Transplantation Experiment; Recombination Experiment; Defect Experiment
- Developmental Model Organisms
- Evolutionary Developmental Biology
- Alberts et al., Molecular Biology of the Cell, 6th edition, Chapter 21: Development of Multicellular Organisms (Overview of Development, pp. 1145 – 1155).
- Wolpert et al., Principles of Development, 5th edition, Chapter 1: History and Basic concepts (pp. 1- 36).
- Kandel ER, Schwartz JH, Jessell TM (2012) Principles of neural science, 5th Ed, McGraw-Hill, Chap 52 - 54
- Purves D, Augustine GJ, Fitzpatrick D (2011) Neuroscience, 5th Ed, Sinauer Assoc, Chap 22, 23
Optional:
- Kandel ER, Schwartz JH, Jessell TM (2012) Principles of neural science, 5th Ed, McGraw-Hill, Chap 55 – 57
- ten Donkelaar HJ, Lammens M, Hor A. (2010) Clinical Neuroembryology: Development and Developmental Disorders of the Human Central Nervous System, Springer
- Alberts et al, 7th edition. Chapter 11, Small-Molecule Transport and Electrical Properties of Membranes. Section: Channels and electrical properties of membranes.
- Kandel et al., Principles of Neural Science, 6th edition. Chapter 7: The cells of the Nervous system.
Further Reading: Vierra, N.C.; Trimmer, J.S. Ion Channel Partnerships: Odd and Not-So-Odd Couples Controlling Neuronal Ion Channel Function. Int J Mol Sci 2022, 23, doi:10.3390/ijms23041953.
- The problem of cell-type specific synaptic connectivit
- Basic principles of neurite guidance processes
- Neurite growth cone dynamics and steering mechanisms
- Molecular principles of synaptogenesis (adhesion and scaffold proteins)
- Commonalities across species - from worm to human
- Cell adhesion protein families and cell-type specific synaptic connectivity
- Structure of electrical and chemical synapses
- Basic characteristics of electrical synapses
- Action potential, presynaptic calcium channels
- Mechanisms of transmitter release
- Ionotropic transmitter receptors
- Metabotropic transmitter receptors and their signaling principles
- Neuromuscular junction in vertebrates
- Lodish, Molecular Cell Biology. Chapter 21.6 Sensory Transduction (p. 951-959, IVth Edition)
- Alberts et al., Molecular Biology of the Cell, 5th Edition, pp. 916-921 (part of Chapter 15)
Further Reading: Kandel, Schwartz & Jessel (2002) Principles of Neuroscience, 4th Edition, Chapters 25 to 27
NG2 cells; Oligodendrocytes; Schwann cells, Remak bundles; Myelin; Nodes of Ranvier; Saltatory impulse propagation; Axonal energy support
Microglia; Myelin diseases; Multiplce sclerosis
- Sherman, D and Brophy, P (2005) Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 9, 683-690
- Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11, 87-99
- Nave K-A (2010) Myelination and support of axonal integrity by glia.Nature 468, 244-252
- Siegel GJ, Agranoff BW, Albers RW, et al., Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th Ed. Philadelphia: Lippincott-Raven; 1999. Chap 14 and 15
- Genome-Wide Association Studies: https://doi.org/10.1007/978-1-0716-2237-7
- Genome-Wide Association Studies: https://doi.org/10.1017/CBO9781107337459
Relevance of Stem Cells: Regenerative medicine; Disease modelling and drug testing; Developmental biology / cell differentiation in vitropunkt
- Molecular Biology of the Cell, Fifth Edition, Chapter 23 (Textbook)
- Review collection
- Forsburg SL (2001) The Art and Design of Genetic Screens: Yeast. Nat Rev Genet 9:659-68
- Gow NAR, Gadd GM (1995) The growing fungus, Chapman and Hall, Chap 1, 5, 11, 12
- Osiewacz HD (2002) Molecular biology of fungal development, 1st Ed, Marcel Dekker, Chap 1-3, 9
- Bresinsky, A., Körner, C., Kadereit, J.W., Neuhaus, G., and Sonnewald, U. (2013). Strasburger’s Plant Sciences (Springer Berlin Heidelberg: Berlin, Heidelberg). DOI: 10.1007/978-3-642-15518-5: p. 8 – 9 (plant vs. animals), p. 585 – 598 (plant pathogens and immunity), p. 675 – 680 (evolution phylogeny).
Further reading:
- Krämer, U. (2015). Planting molecular functions in an ecological context with Arabidopsis thaliana. Elife 4: 1–13. DOI: 10.7554/eLife.06100 (Arabidopsis thaliana),
- Bentham,et al. (2020). A molecular roadmap to the plant immune system. J. Biol. Chem. 295:14916–14935. DOI: 10.1074/jbc.REV120.010852 (plant immunity),
- Jones, J.D.G. and Dangl, J.L. (2006). The plant immune system. Nature 444: 323–329. DOI: 10.1038/nature05286 (the zigzag model),
- Van de Weyer, et al. (2019). A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. Cell 178:1260-1272.e14. DOI: 10.1016/j.cell.2019.07.038 (diversity of immune receptors)
- Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th Ed, Garland Publ, Chap 21, p 1177-1210
- Rubin GM and Lewis EB (2000) A brief history of Drosophila's contributions to genome research. Science 287: 2216-2218
Further reading: Reddien, P.W. The Cellular and Molecular Basis for Planarian Regeneration Cell (2018) PMID: 30290140
- Germ cell plasm and the Determination of the primordial germ cells, Gilbert, Developmental Biology 6th edition (https://www.ncbi.nlm.nih.gov/books/NBK10073/)
- Oogenesis in Mammals, Gilbert, Developmental Biology 6th edition (https://www.ncbi.nlm.nih.gov/books/NBK10008/)
- Human embryonic development (video summary; https://www.youtube.com/watch?v=4YKvVeVMmEE)
Further reading: PGC specification: Kobayashi and Surani, DOI: 10.1242/dev.150433, Development 2018
- Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2022) Molecular biology of the cell, 7th Ed, Garland Publ, pp 1306 (Organoids), pp 1290-1291 (stem cell niche);
- Kim, J., Koo, BK. & Knoblich, J.A. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21, 571–584 (2020);
- Hofer, M., Lutolf, M.P. Engineering organoids. Nat Rev Mater 6, 402–420 (2021).
Further reading:
- Balak, J.R.A., Juksar, J., Carlotti, F. et al. Organoids from the Human Fetal and Adult Pancreas. Curr Diab Rep 19, 160 (2019);
- Heide, M., Huttner, W.B., Mora-Bermúdez, F. Brain organoids as models to study human neocortex development and evolution. Curr Op in Cell Biol 55, 8-16 (2018)
- Wolpert L, Beddington R, Brockes J, Jessell T, Lawrence P, Meyerowitz E (1998) Principles of development, Oxford University Press, p 25-41
- Gilbert SF (2003) Developmental biology, 7th Ed, Sinauer Associates, p 364-376
Further Reading: Hogan B, Beddington R, Costantini F, Lacy E (2003) Manipulating the mouse embryo, Cold Spring Harbor Press
- Perelman P, Johnson WE, Roos C, Seuánez HN, Horvath JE, Moreira MA, Kessing B, Pontius J, Roelke M, Rumpler Y, Schneider MP, Silva A, O'Brien SJ, Pecon-Slattery J (2011) A molecular phylogeny of living primates. PLoS Genet 7: e1001342
- Gardner MB, Luciw PA (2008) Macaque models of human infectious disease. ILAR J. 49: 220–255
- Mittermeier RA, Rylands AB, Wilson DE eds. (2013) Handbook of the Mammals of the World. Vol. 3 Primates. Lynx Edicions, Barcelona
- Fields Virology, 5th edition, Volume 2, Chapters Retroviridae and Orthomyxoviridae, Wolters Kluwer, Lippincott Williams & Wilkins
- Principles of Virology, 3rd Edition, Volume 2, Chapters on Cytosine Deamination (Apobec, Apolipoprotein B Editing Complex), Trim Proteins (Tripartite Interaction Motif), American Society of Microbiology (ASM)
- Misra et al., Macaques as model hosts for studies of HIV-1 infection. Front Microbiol. 2013, 4:176
- Yan N, Chen ZJ. Intrinsic antiviral immunity. Nat Immunol. 2012,13(3):214-22
- Gustin et al., Innovations in modeling influenza virus infections in the laboratory. Trends Microbiol. 2012, 20(6):275-81
- Kolata G. Flu, The story of the great influenza pandemic of 1918 and the search for the virus that caused it. Simon & Schuster, New York
Important fungal fermentation processes: Microbial cells or biomass as the product e.g. Saccharomyces cerevisiae, Microbial enzymes: catalase, amylase, protease, pectinase, cellulase, lipase etc., Microbial metabolites: ethanol, citric acid, vitamins etc. (primary metabolites) antibiotics (secondary metabolites), Products made by means of biotransformation: steroid biotransformation, cortisone;
Heterologous protein production in fungal cells: Transformation of fungi (Saccharomyces cerevisiae, Pichia pastoris, filamentous ascomycetes)
- Glick BR, Pasternak JJ (2003) Molecular biotechnology. Principles and Applications of recombinant DNA. ASM Press, 3rd ed Washington, Chapters: 1, 2, 6, 7, and 16
- Brock Biology of Microorganismsby Michal T Madigan, John M. Martinko,David Stahl, David Clark, 13rd Edition (2011), Pearson Chapter: 5, 15, 26
- Vogl T, Hartner FS, Glieder A (2013) New opportunities by synthetic biology for biopharmaceutical production in Pichia pastoris. Curr Opin Biotechnol 24: 1094-1101
- Nevalainen H & Peterson R (2014) Making recombinant proteins in filamentous fungi – are we expecting too much? Frontires in Microbiology 5:75
- Pastwa E, Blasiak J (2003) Non-homolgous end joining. Review Acta Biochimica Polonica 50: 891-908
- Li P, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Düzgüneş N, Renugopalakrishnan V (2007) Expression of Recombinant Proteins in Pichia pastoris. Appl Biochem Biotechnol 142:105–124
Major traits for transgenic plants (How can plants be used as bioreactors?; How and where is plant biotechnology actually been used?; Input traits (i.e. Protection of plants against biotic and abiotic stresses); Output traits (Production parameters, i.e. yield); Strategies for pathway engineering)
- Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular Biology of the Cell, 5th Ed, Garland Publ, Chapter 8 (pp 568-569)
- Heldt HW, Piechulla B (2011) Plant Biochemistry, 4th Ed, Elsevier, Chapter 22
- Innovations: applications of insect transgenesis. Wimmer EA. Nat Rev Genet. 2003. 4:225-32. Review.
- Yellow Biotechnology I and II. Prefaces. Vilcinskas A. Adv Biochem Eng Biotechnol. 2013. 135 & 136
04.10.2022 / 06.10.2022: Architecture of the Cell (Silvio Rizzoli)
05.10.2022: Fundamentals of Biophysical Chemistry (Kai Tittmann)
10-11.10.2022 / 13-14.10.2022: Protein Structures and Folding (Kai Tittmann)
14.10.2022 / 20.10.2022: DNA Structure (Hauke Hillen)
18.10.2022 / 21.10.2022: DNA Replication (Wilfried Kramer)
24.10.2022 / 27.10.2022: DNA Repair (Wilfried Kramer)
25.10.2022 / 28.10.2022: Gene Editing (Jochen Rink)
01.11.2022 / 03.11.2022: Functional and Comparative Genomics (Jan de Vries)
07.11.2022 / 10.11.2022: Chromatin Structure (Marieke Oudelaar)
08.11.2022 / 11.11.2022: Epigenetics (Argyris Papantonis)
14-15.11.2022 / 17-18.11.2022: Transcription (Patrick Cramer)
21-22.11.2022 / 24-25.11.2022: RNA Splicing (Henning Urlaub)
28-29.11.2022 / 01-02.12.2022: Translation (Marina Rodnina)
05.12.2022 / 08.12.2022: RNA-based Regulation in Prokaryotes (Jörg Stülke)
06.12.2022 / 09.12.2022: RNA-based Regulation in Eurkaryotes (Markus Bohnsack)
12.12.2022 / 15.12.2022: RNA Quality Control (Heike Krebber)
13.12.2022 / 16.12.2022: Ubiquitin & Posttranslational Modification (Sonja Lorenz)
19-20.12.2022 / 20.12.2022: Enzyme Mechanisms and Regulation (Kai Tittmann)
09-10.01.2023 / 13.01.2023: Basic Metabolism (Peter Rehling)
16.01.2022 / 20.01.2023: Biological Membranes I (Ivo Feußner)
17.01.2023 / 20.01.2023: Biological Membranes II (Alexander Stein)
23.01.2023 / 27.01.2023: Metabolic Networks (Jörg Stülke)
24.01.2023 / 27.01.2023: Microbiomes (Jörg Stülke)
30.01.2023 / 03.02.2023: Photosynthesis (Ivo Feußner)
31.01+06-07.02.2023 / 03.+10.02.2023: Signal Transduction (Jürgen Wienands, Michael Engelke, Niklas Engels)
13.02.2023 / 17.02.2023: Protein Sorting and Processing (Alexander Stein)
14.02.2023 / 17.02.2023: Membrane Traffic (Reinhard Jahn)
20.02.2023 / 24.02.2023: Nucleocytoplasmic Transport (Dirk Görlich)
21.02.2023 / 24.02.2023: Protein Import and Organelle Biosynthesis (Peter Rehling)
27.02.2023 / 03.03.2023: Cytoskeleton (Dieter Klopfenstein)
28.02.2023 / 03.03.2023: Cell Adhesion (Peter Lenart)
06.03.2023 / 10.03.2023: Autophagocytosis (Alex Faesen)
07.03.2023 / 10.03.2023: Meiosis (Melina Schuh)
13-14.03.2023 / 17.03.2023: Apoptosis, Cancer (Matthias Dobbelstein)
20-21.03.2023 / 24.03.2023: Cell Cycle (Holger Bastians)
27.03.2023 / 31.03.2023: Immunology: Innate Immunity (Jürgen Wienands, Michael Engelke)
28.03.2023 / 31.03.2023: Immunology: T Cell Development and Function (Jürgen Wienands, Michael Engelke)
11.04.2023 / 14.04.2023: Immunology: B Cells (Jürgen Wienands, Michael Engelke)
12.04.2023 / 14.04.2023: Immunology: Immuno-Oncology (Jürgen Wienands, Niklas Engels)
17-18.04.2023 / 21.04.2023: Infectious Diseases, Principles of Pathogenicity (Uwe Groß, Carsten Lüder)
24.04.2023 / 28.04.2023: Developmental Biology: General Principles (Ernst Wimmer)
25.04.2023 / 28.04.2023: Nervous System: Early Development (Gregor Bucher)
02.05.2023 / 05.05.2023: Neurons: Structure, Function, Electrical Properties (Luis Pardo)
03.05.2023 / 05.05.2023: Nervous System: Development of Networks (Nils Brose)
08.05.2023 / 12.05.2023: Synapses and Synaptic Transmission (Nils Brose)
09.05.2023 / 12.05.2023: Sensory Systems (Tobias Moser)
15.05.2023 / 17.05.2023: Glial Cells and Brain Vasculature (Klaus-Armin Nave)
16.05.2023 / 17.05.2023: Genetic Analyses (Bertram Brenig)
22.05.2023 / 26.05.2023: Stem Cells (Rüdiger Behr)
23.05.2023 / 26.05.2023: Fungi (Kai Heimel)
30.05.2023 / 02.06.2023: Arabidopsis (Thomas Spallek)
30.05.2023 / 02.06.2023: Drosophila (Gerd Vorbrüggen)
05.06.2023 / 09.06.2023: Regeneration, Planaria (Jochen Rink)
06.06.2023 / 09.06.2023: Oocyte Development (Melina Schuh)
12.06.2023 / 16.06.2023: Organoids (Michael Heide)
13.06.2023 / 16.06.2023: Mouse (Heidi Hahn)
19.06.2023 / 23.06.2023: Primates (Lutz Walter)
20.06.2023 / 23.06.2023: Non-human Primate Models / Use in Virus Research (Stefan Pöhlmann)
26.06.2023 / 30.06.2023: Biotechnology of Bacteria (Rolf Daniel)
27.06.2023 / 30.06.2023: Biotechnology of Fungi (Stefanie Pöggeler)
03.07.2023 / 05.07.2023: Biotechnology of Plants (Ivo Feußner)
04.07.2023 / 05.07.2023: Biotechnology of Insects (Ernst Wimmer)